微生物学报  2023, Vol. 63 Issue (8): 2980-2993   DOI: 10.13343/j.cnki.wsxb.20220900.
http://dx.doi.org/10.13343/j.cnki.wsxb.20220900
中国科学院微生物研究所,中国微生物学会

文章信息

左伟, 王欣宇, 胡剑刚, 王少辉. 2023
ZUO Wei, WANG Xinyu, HU Jiangang, WANG Shaohui.
病原菌效应因子调控宿主泛素化修饰的研究进展
Modulation of host ubiquitination pathways by bacterial effectors
微生物学报, 63(8): 2980-2993
Acta Microbiologica Sinica, 63(8): 2980-2993

文章历史

收稿日期:2022-12-05
修回日期:2023-02-07
网络出版日期:2023-02-13
病原菌效应因子调控宿主泛素化修饰的研究进展
左伟 , 王欣宇 , 胡剑刚 , 王少辉     
中国农业科学院上海兽医研究所, 上海 200241
摘要:泛素化(ubiquitination)是真核细胞内广泛存在的蛋白质翻译后修饰方式,参与并调控DNA修复、细胞周期、免疫应答、信号通路等真核细胞内几乎所有的生命活动。同时,细胞通过去泛素化酶(deubiquitinases, DUBs)使泛素化修饰成为可逆过程,保证了泛素化系统及其相关生理过程的动态平衡。病原菌感染过程中,宿主细胞可通过泛素化修饰发挥抗细菌感染作用。然而,病原菌可编码并分泌效应因子,靶向宿主泛素(ubiquitin, Ub)系统并调控宿主泛素化修饰过程,干扰宿主细胞的免疫应答,从而促进细菌存活与毒力。本文概述了重要病原菌利用效应因子调控宿主细胞泛素化修饰的研究进展,有助于全面理解病原菌调控宿主泛素化修饰促进感染的机制。
关键词病原菌    泛素化    效应因子    E3泛素连接酶    去泛素化酶    
Modulation of host ubiquitination pathways by bacterial effectors
ZUO Wei , WANG Xinyu , HU Jiangang , WANG Shaohui     
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
Abstract: Ubiquitination is a common post-translational modification of proteins in eukaryotic cells, which is involved in a variety of physiological and pathological processes such as DNA repair, cell cycle, immunological response, and signal transduction. Meanwhile, host cells use deubiquitinases (DUBs) to reverse ubiquitin signals, ensuring the dynamic balance of the ubiquitination system and physiological functions. In the case of bacterial infection, host cells mount a defense response by ubiquitination. However, pathogenic bacteria can encode and secrete effectors to regulate the ubiquitination of the host, thereby interfering with the host cellular immune response and bolstering their survival and virulence. This review outlines the research on the effectors of pathogenic bacteria that regulate ubiquitination pathways in host cells, which is expected to enhance the understanding of bacteria's regulation of host ubiquitination for the infection.
Keywords: pathogenic bacteria    ubiquitination    effector    E3 ubiquitin ligase    deubiquitinase    

泛素化(ubiquitination)是真核细胞内高度保守的蛋白翻译后修饰,其对细胞生命周期的多种过程发挥重要作用。泛素化可调控蛋白质的稳定性、功能、活性及亚细胞定位,而且参与细胞生长、信号转导、蛋白转运、囊泡运输及炎症反应等生理过程[1-2]。泛素是一种由76个氨基酸构成的小蛋白,其C末端甘氨酸被暴露在外。泛素化是将一个或多个泛素(ubiquitin, Ub)与底物共价连接的过程,这种连接通常发生在泛素的C末端甘氨酸残基与底物的赖氨酸残基之间,也可发生在非赖氨酸位点及N末端游离氨基上[3]。不同类型的泛素连接或多聚泛素链的产生导致了被修饰蛋白的功能多样性。泛素化是一个可逆过程,宿主通过去泛素化酶(deubiquitinase, DUB)将泛素从底物上去除,保证了泛素化系统及其相关生理过程的动态平衡。细胞内的各种免疫应答过程都离不开泛素化修饰的精细调控,如核转录因子κB (nuclear transcription factor kappa B, NF-κB)、炎症小体应答信号通路、细胞焦亡和细胞凋亡等。因此,泛素化修饰在宿主细胞抗细菌感染过程中发挥着不可替代的功能[4]

在病原菌与宿主相互斗争的过程中,病原菌进化出不同分泌系统,分泌大量的毒性效应因子作用于宿主细胞。这些效应因子具有不同的生物化学活性,它们可以特异性地作用于宿主细胞内的信号分子,使信号分子激活或失活,从而调节宿主细胞内信号通路、拮抗宿主细胞的免疫防御反应、促进病原菌感染[5]。细菌不具备完整的泛素化系统[6]。但是,细菌可以“劫持”宿主泛素化系统,从而逃避宿主免疫应答,促进病原菌感染[5-6]。目前,发现的参与调控宿主泛素化系统的效应因子很多,根据其作用方式分为:(1) 具有E3泛素连接酶活性的效应因子;(2) 发挥去泛素化酶活性的效应因子;(3) 调控非经典泛素化机制的效应因子。本文综述了病原菌利用效应因子调节宿主细胞泛素化的研究进展,为解析病原菌对宿主泛素化系统所采用的作用机制,以及开发新的治疗方法策略提供参考。

1 泛素化及去泛素化过程

泛素化指的是泛素在酶的作用下连接于底物特异的赖氨酸残基上的过程。泛素化通常由E1、E2和E3酶组成的多级酶联反应实现。首先,E1通过与Ub的末端羧基形成硫酯键来激活Ub的C端。然后,被激活的Ub在转硫反应中从E1转移到E2酶的活性部位半胱氨酸,保留硫酯连接。最后,E3s与底物和E2s相互作用,促进Ub转移到底物的赖氨酸残基上[7]。目前已经发现人类基因组能够编码两种E1酶(UBA1和UBA2),40多个E2酶,近1 000个E3酶[8]。因此,在泛素化过程中,一个E1酶可以对应下游多个E2酶,然后一个E2酶又对应多个E3酶。

根据泛素作用于其底物的方式,泛素化修饰可分为单泛素化和多泛素化。单泛素化是指在一个蛋白的一个和多个赖氨酸位点标记单个Ub分子,而多泛素化修饰则是给底物相同的赖氨酸残基加上多个Ub分子形成的泛素链[9]。此外,Ub分子还可以通过自身的7个赖氨酸残基(K6、K11、K27、K29、K33、K48、K63)和1种甲硫氨酸残基肽键连接形成多种类型的线性泛素链(M1)[8]。不同类型的Ub连接或多Ub链的产生导致被修饰蛋白不同的生理功能。K48连接的多聚泛素链通过介导蛋白降解调控信号通路转导,在NF-κB信号通路中,NF-κB转录抑制因子IκBα被K48泛素链修饰后,被蛋白酶体降解,从而激活下游信号[10]。K63连接的多聚泛素能够作为蛋白识别信号,调节多个信号通路中蛋白之间的互作,例如促进IKK复合物与上游TAK1复合物结合,导致NF-κB通路被激活[11]。K6连接的多聚泛素参与DNA损伤修复和线粒体稳定调控[12-14]。K27连接的多聚泛素控制DNA损伤反应和先天免疫反应[15]。此外,有研究报道K29连接的多聚泛素与调节胚胎发生和肿瘤发生的Wnt信号通路有关[16]。K33连接的多聚泛素参与T细胞抗原受体和AMP活化蛋白激酶相关蛋白激酶的调节[17-18]。Met1连接的线性泛素链能够通过靶向NEMO来促进NF-κB信号传导的激活[19]

去泛素化是指被泛素化修饰的底物蛋白在去泛素化酶的作用下去除泛素标记的过程。目前,在人基因组中报道发现大约有100多个DUB,这些DUB根据序列和结构分为7大家族。其中6个家族属于半胱氨酸依赖的蛋白酶类,分别为泛素特异性蛋白酶家族(ubiquitin-specific proteases, USP)、泛素羧基端水解酶家族(ubiquitin carboxyl-terminal hydrolases, UCH)、卵巢肿瘤结构域家族(otubain/ovarian tumor-domain containing proteins, OTU)、MINDY蛋白酶家族(MIU结合DU家B族)、Machado-Joseph域(Machado-Joseph domain, MJD)家族,以及ZUFSP/Mug105家族。而JAMM (Jad1/Mov34/ Mpr1 Pad1 N-terminal domain proteases)家族的DUB属于金属蛋白酶类[20]。DUB可作用于泛素化修饰的底物分子,催化水解Ub与底物分子之间的酯键、肽键或异肽键,进而将Ub从底物上迅速水解,产生可循环利用的Ub,保证了泛素化修饰系统及其相关生理过程的动态平衡[21](图 1)。

图 1 泛素化和去泛素化过程[7, 21] Figure 1 The process of ubiquitination and deubiquitination[7, 21].

细菌感染过程中,通过分泌系统向宿主分泌不同类型的效应因子,“劫持”宿主泛素化系统并扰乱宿主免疫防御,从而逃避宿主免疫应答,促进病原菌感染[5-6]

2 病原菌效应因子具有E3泛素连接酶活性

在病原菌效应因子介导的泛素化过程中,效应因子通过模仿宿主E3泛素连接酶的功能,“劫持”宿主泛素化系统,从而逃避宿主免疫应答,发挥致病作用[22]。根据E3泛素连接酶的结构组成,可以将其分为单亚基型和多亚基型两大类。其中,单亚基型E3泛素连接酶根据其结构域的不同可分为3种类型,分别为与E6-AP C端同源(homologous to the E6-AP C-terminus, HETC)家族、非常有趣的新基因(really interesting new gene, RING)家族以及U-box家族。多亚基型E3泛素连接酶可以分为后期促进复合物(anaphase promoting complex, APC)、SCF (SKP1-cullin1- F-box)、VHL-ELONGIN-CUL2/5、DDB-CUL4 (UV-damaged DNA-binding protein1-cullin4)和BTB-CUL3 (bric a brac, tramtrack and broad complex/poxvirus-cullin3) 5种类型[23-24]。目前,病原菌效应因子不仅可以模仿HECT型与RING型泛素连接酶,而且还进化出具有新型结构折叠类型的E3泛素连接酶(表 1)。

表 1. 扰乱宿主泛素化系统的病原菌效应因子汇总 Table 1. Summary of pathogenic bacterial effectors subverting the host ubiquitin system
Bacterial effector Effector activity Bacteria Functions Targets References
E3 ligases
    SopA HECT-like E3 ligase Salmonella Regulation of host inflammation TRIM56 and TRIM65 [25-26]
    NleL HECT-like E3 ligase EHEC Modulation of adherence to host epithelial cells via changes to actin pedestal IPR025726 [27]
    AvrPtoB RING/U-box-type E3 ligase Pseudomonas syringae Inhibition of immune response Fen, Cerk1, Fsl2 [28]
    LubX U-box-type E3 ligase Legionella pneumophila Acts as a meta-effector on SidH to advance the infection but also has host targets Clk1 and SidH [29]
    GobX U-box-type E3 ligase Legionella pneumophila Using S-palmitoylation to ensure its localization in the Golgi Unknown [30]
    NleG RING-type E3 ligase EPEC EHEC Unknown Unknown [31]
    IpaH1.4 NEL E3 ligase Shigella Antagonizes the ubiquitination of bacteria for degradation via xenophagy, targeting LUBAC for the degradation HOIP [32]
    IpaH4.5 NEL E3 ligase Shigella Inhibition of NF-κB activation, regulation of cytokine expression P65 [33]
    IpaH0722 NEL E3 ligase Shigella Inhibition of NF-κB activation TRAF2 [34]
    SspH1 NEL E3 ligase Salmonella Inhibition of NF-κB activation PKN1 [35]
    SspH2 NEL E3 ligase Salmonella Promotion of IL-8 secretion via Nod1 signaling Nod1 [36]
    SlrP NEL E3 ligase Salmonella Induction of host cell death Trx [37]
    SidC/SdcA NEL E3 ligase Legionella pneumophila Tethering factor, functions in trafficking between ER and LCV Rab1 [38-39]
    FBXW7 E3 ligase Mycobacterium Facilitating the degradation of TNF-α by K63-linked ubiquitylation TNF-α [40]
    LNX1 E3 ligase Mycobacterium Promoting the polyubiquitination and proteasome-mediated degradation of NEK6 NEK6 [41]
Deubiquitinases
    SseL DUB Salmonella Inhibition of NF-κB activation, required for virulence, interference with autophagy of bacteria, inhibition of lipid droplet accumulation Ubiquitin aggregates ALIS, S100A6, hnRNPK [42]
    ChlaDUB1 DUB Chlamydia trachomatis Modulation of NF-κB activation, involved in Golgi fragmentation IκBα, Mcl-1 [43]
    ChlaDUB2 DUB Chlamydia trachomatis Involved in Golgi fragmentation TAK1 [43]
    ChlaOTU DUB Chlamydia caviae Inhibition of NF-κB activation IκBα [44]
    YopJ DUB Yersinia Inhibition of NF-κB activation and MAKP pathway TRAF2, TRAF6, IκBα [45]
    TssM DUB Burkholderia Inhibition of NF-κB activation and Type 1 IFN activation TRAF3, TRAF6, IκBα [46]
    RavD DUB Legionella pneumophila Inhibition of NF-κB activation PI3P, PI4P, IκBα [47-48]
    SdeA DUB/E3 ligase Legionella pneumophila Important for the association of ubiquitinated species with the bacterial phagosome Unknown [49-50]

2.1 HECT E3泛素连接酶

HECT E3泛素连接酶家族是最大和最早研究的E3泛素连接酶之一,根据N端结构域的不同,HECT E3泛素连接酶可以分为Nedd4家族、HERC家族以及HECT。HECT连接酶由E6AP及其同源蛋白组成。E6AP蛋白的C端含多个氨基酸组成的HECT结构域,能够特异性合成K48泛素链[51]。第一个被确认为HECT E3泛素连接酶的细菌效应物是来自沙门氏菌的效应因子SopA。在被感染的宿主中,SopA介导TRIM56和TRIM65的降解,并导致干扰素转录的减少,从而降低宿主细胞抵抗病原体的能力[25-26]。另一个与宿主编码的HECT E3泛素连接酶相似的细菌效应物是肠出血性大肠杆菌的NleL。NleL能够单泛素化宿主c-Jun NH2末端激酶(c-Jun NH2 terminal kinase, JNKs),抑制JNK与上游激酶MKK7的相互作用,进而阻断JNK的激活,促进宿主细胞表面肌动蛋白基座的形成[27]。此外,NleL的异位表达可以减弱IKK的磷酸化和IκBα的降解[52](图 2)。

图 2 病原菌通过E3泛素连接酶活性的效应因子扰乱宿主泛素化通路[25-26, 32-37, 52] Figure 2 Pathogenic bacteria subvert host ubiquitination pathways via effectors with E3 ubiquitin ligase activity[25-26, 32-37, 52].

2.2 RING E3泛素连接酶

RING是E3泛素连接酶中最大的一个家族,在泛素化过程中,RING E3泛素连接酶直接将泛素分子由E2转移至底物蛋白[53]。RING E3泛素连接酶可分为单体环指和多亚基E3泛素连接酶。单体RING E3泛素连接酶不仅含有与底物结合和泛素化的结构域,还具有自身泛素化的功能,如COP1、Mdm2和TRAF6[54]。多亚基E3泛素连接酶,例如cullin-RING连接酶(cullin- RING ligase, CRL)是一类高度多样化的泛素连接酶,cullin支架包括N末端环盒蛋白、衔接蛋白和C末端底物受体。另一种关键的多亚基E3泛素连接酶APC/C由19个亚基组装而成,包括一个RING亚基Apc11和一个cullin样亚基Apc2[51]。AvrPtoB是被最早发现具有泛素连接酶活性的效应因子,由细菌性植物病原体丁香假单胞杆菌(Pseudomonas syringe)产生。AvrPtoB属于HopAB蛋白家族,在黄单胞菌属(Xanthomonas)等植物病原体以及假单胞菌(Pseudomonas)的许多菌株中广泛保守。AvrPtoB的N端结构域与宿主蛋白结合可以触发C端U-box结构域内的AvroPtoB E3泛素连接酶活性,从而导致几个宿主模式识别受体的泛素化[28]。此外,由嗜肺军团菌(Legionella pneumophila) T4SS分泌的效应因子LubX和GobX,以及致病性大肠杆菌T3SS分泌的效应因子NleG都可以模仿真核生物RING型泛素连接酶[32]。LubX在宿主细胞中积累到一定的量后,能够利用宿主的泛素化机制使SidH靶向蛋白酶体降解,从而促进宿主细胞的感染[29]。GobX能够利用S-棕榈酰化来确保其在高尔基体内的定位,但其宿主底物尚未确定, 需要开展进一步的研究[30]。NleG家族的分子功能目前还不清楚,但NleG最保守的C端部分在结构上与RING支架结构域相似,并具有E3泛素连接酶活性[31]

2.3 RBR E3泛素连接酶

与RING和HECT类型不同,新发现的RBR E3泛素连接酶是一个独特的RING-HECT杂合E3泛素连接酶家族。RBR E3泛素连接酶由一个保守的催化区域特化,包括一个RING1、一个中央中间环IBR和一个RING2结构域[55]。RING1可以招募载有泛素的E2。RING2结构域包含一个催化半胱氨酸,当缺少催化半胱氨酸残基时,IBR结构域可以采用与RING2结构域相同的折叠。此外,RBR E3泛素连接酶可参与分子间相互作用以使蛋白质保持在自抑制状态,这种状态受不同种类的机制调节,例如磷酸化或蛋白质-蛋白质相互作用[56]。与HECT E3泛素连接酶类似,RBR E3泛素连接酶通过两步反应发挥其功能,首先将Ub转移到RING2上的催化半胱氨酸位点,然后再转移至底物蛋白[57-58]。尽管它们通常类似于HECT E3泛素连接酶,但RBR连接酶倾向于通过线性泛素链泛素化底物,这也是RBR连接酶的一种独特机制[59]。线性泛素链组装复合物LUBAC作为一种多亚基E3泛素连接酶复合物,由HOIP、HOIL-1L、Parkin及SHARPIN四部分组成。此外,LUBAC可以通过特异性组装Met1连接的线性泛素链来调节NF-κB信号传导[51](图 2)。

2.4 新型E3泛素连接酶

不同于HECT型和RING型泛素连接酶的效应因子,广泛存在于多种病原菌中的IpaH家族效应因子被认为是一种新型的E3泛素连接酶[60-61]。IpaH家族效应因子在沙门氏菌(Salmonella)、志贺氏菌(Shigella)、根瘤菌(Rhizobium)和假单胞菌等病原菌中广泛存在,并且拥有大量的同源效应因子。这些同源效应因子都具有C端序列高度保守的泛素连接酶结构域和N端序列多变但结构保守的亮氨酸(LRR)结构域[62]。IpaH效应因子能够通过LRR结构域掩盖催化的Cys进行自抑制,从而防止不必要泛素化机制的产生。一旦IpaH酶通过LRR结构域与效应因子结合,这种结合所引起的构象变化会导致E3泛素连接酶活性从自抑制状态释放出来。IpaH家族效应因子成员IpaH0722和IpaH4.5酶分别通过泛素化TNF受体相关因子2 (TNF receptor correlated factor 2, TRAF2)和NF-κB p65来灭活NF-κB途径[33-34]。IpaH1.4通过靶向线性泛素链组装复合物(linear ubiquitin chain assembly complexes, LUBAC)降解来完成对细菌泛素化的拮抗作用[32] (图 2)。

另外,在沙门氏菌中发现的SspH1、SspH2和SlrP是一组新的E3泛素连接酶效应因子。SspH1通过泛素化宿主PKN1,进而影响宿主的炎症反应[35]。SspH2通过单泛素化上调Nod1介导的IL-8的分泌,从而介导上皮细胞的先天免疫反应[36]。SlrP通过泛素化硫氧还蛋白-1 (Trx)来促进宿主细胞的凋亡[37](图 2)。研究发现,大肠杆菌(Escherichia coli) Ⅲ型分泌系统2 (ETT2)分泌的效应因子EspE3包含亮氨酸重复序列,具有E3泛素连接酶活性,且催化K63位点的多聚泛素化。此外,效应因子EspE3可以促进禽致病性大肠杆菌的细胞黏附能力、体内定殖能力和致病力,并且能够抑制宿主细胞IL-1β、IL-8炎性因子的表达,但其如何调控炎症通路尚未清楚[63]

另一类新型E3泛素连接酶是军团菌编码的SidC和及其同源物SdcA,它们利用其自身独特的结构特点,实现由一种效应因子调控泛素化途径和磷酸肌醇途径的过程。SidC与SdcA序列相似性为72%,但二者对E2的亲和力明显不同,在E2酶中,SidC与UbcH7亲和力较强,而SdcA与UbcH5结合能力更强。SidC通过对宿主GTP酶Rab1的单泛素化,参与嗜肺军团菌空泡(LCV)的成熟,但SidC和及其同源物SdcA的宿主底物尚未清楚[38-39]。此外,在分枝杆菌中发现的效应因子FBXW7和LNX1被认为是一种新型的E3泛素连接酶。FBXW7通过K63连接的泛素化促进TNF-α的降解,从而促进分枝杆菌的免疫逃避[40]。LNX1可以直接结合NEK6,促进NEK6的多聚泛素化和蛋白酶体介导的降解[41]

3 病原菌效应因子具有去泛素化酶活性

泛素化修饰过程少不了DUB的调控,DUB对泛素相关信号通路具有重要意义。尽管细菌缺乏典型的泛素化修饰系统[6],但越来越多研究发现,病原菌通过分泌具有DUB活性的效应因子,从而对不同的泛素链进行切割,“劫持”宿主细胞泛素化修饰系统并扰乱宿主免疫防御,最终促进其生存及感染[64](表 1)。

3.1 具有切割多聚泛素化链的去泛素化酶

根据MEROPS数据库(https://www.ebi.ac.uk/merops/)序列分析发现,病原菌中存在一类与去磺酰化酶(SENP)相似,具有共同的His-Asp/ Asn-Cys活性位点的DUB,被列为一种新型“CE家族DUB”[64]。沙门氏菌SPI-2 T3SS效应因子SseL是最早被报道的细菌CE家族DUB,同时也是最早被研究的去泛素化酶的效应因子,其可以水解切割K48和K63多聚泛素链,但偏好于K63多聚泛素链。研究表明,SseL通过抑制NF-κB信号通路及炎症反应、切割沙门菌囊泡膜(SCV)上的多聚泛素链抑制自噬、减少细胞毒性等,从而增强沙门菌的胞内存活[42]。另外,沙眼衣原体效应因子ChlaDUB1和ChlaDUB2均具有DUB活性,对K63多聚泛素链具有特异性。ChlaDUB1不仅能够去泛素化NF-κB并抑制NF-κB信号通路,而且可稳定抗凋亡蛋白Mcl-1调控细胞凋亡[43]。而肺炎衣原体含有一个OTU家族的DUB ChlaOTU,通过切割K48和K63连接的泛素链,抑制NF-κB信号通路[44]。鼠疫耶尔森菌(Yersinia pestis)效应因子YopJ具有DUB和乙酰转移酶活性,能够通过其DUB活性切割K48和K63多聚泛素链,进而调控NF-κB信号通路及细胞凋亡[45]。伯克霍尔德氏菌(Burkholderia)编码的TssM效应因子通过裂解TRAF3、TRAF6和IκBα中的多聚泛素链来转移宿主的炎症信号,从而抑制1型干扰素和NF-κB途径[46](图 3)。此外,据报道黄单胞杆菌(Xanthomonas)的XopD、大肠杆菌的ElaD以及弗氏链球菌(Streptococcus Freundii)中的SchiCE效应因子也都具有泛素化酶活性[42]

图 3 病原菌通过去泛素化酶活性的效应因子扰乱宿主泛素化修饰[42-48] Figure 3 Pathogenic bacteria subvert host ubiquitination pathways through effectors with deubiquitinase activity[42-48].

3.2 具有切割线性泛素化链的去泛素化酶

线性泛素化链在真核生物的细胞中发挥重要作用,当入侵的病原菌被机体内的巨噬细胞识别、标记后,线性泛素化链能够对病原菌进行修饰,从而激活宿主体内的NF-κB信号通路。在病原菌中,已经发现了许多具有切割多聚泛素链的去泛素化酶效应因子,但是对于具有切割线性泛素化链的去泛素化效应因子却一直未发现。最近研究发现,存在于嗜肺军团菌中的效应因子RavD能够特异性切割线性泛素化链中的DUB[47]。RavD具有独特的Cys-His-Ser催化三联体基序,其C末端结构域可以与磷脂酰肌醇PI3P和PI4P结合,使RavD定位在LCV上,然后通过N端结构域对线性泛素链进行切割,从而抑制宿主NF-κB信号通路[48](图 3)。此外,通过对嗜肺乳杆菌中RavD蛋白RavDlc结构的解析,研究发现该结构由6个α螺旋和8条β链组成,但其核心结构域由3条中心β链和α螺旋组成[65]。Ub在RavDlc中具有不同的结合方式。在近端时,Ub结合在一个开放口袋上,而在远端时Ub则结合在一个大的开放表面上,这种独特的结合方式不仅可以确保RavDlc的催化中心准确地作用在G76-Met1上,而且表明了RavD效应因子对Met1连接泛素链的特异性[65]。此外,在军团菌属的其他细菌中也发现了具有特异性切割线性泛素链的去泛素化效应因子,并且它们均为RavD的同源蛋白,这表明在宿主细胞内特异性切割线性泛素链是军团菌属细菌生存的一种法则。

4 细菌效应因子调控非经典泛素化途径

随着对细菌病原体内效应因子结构和功能的不断研究,最近,在嗜肺军团菌中发现了可以调控非经典泛素化途径的效应蛋白因子MavC/MvcA和SidE家族效应因子。与经典泛素化机制不同的是,这两种效应因子介导的泛素化途径不需要经过三级酶联反应的参与,这些非经典泛素化机制有助于人们更加全面了解病原菌所采用的入侵机制。

4.1 SidE家族效应蛋白调控的非经典泛素化途径

嗜肺军团菌编码的SidE家族效应因子包括SdeA、SdeB、SdeC和SidE,它们可以对宿主蛋白进行非经典泛素化修饰[66]。SidE家族效应因子包含4个结构域,分别为DUB结构域、一个磷酸二酯酶(phosphodiesterase, PDE)结构域、一个单ADP核糖基转移酶(mART)结构域和一个卷曲螺旋(CC)结构域[67]。SidE家族效应因子不需要利用E1和E2酶就可以完成泛素化催化这一过程。例如,效应因子SdeA的催化过程可以分两步进行,首先,泛素分子Arg42在mART结构域的催化下进行ADP糖基化修饰,形成ADP核糖泛素中间体(ADPR-Ub)。然后,SidE的PDE结构域将ADPR-Ub转换为磷酸核糖基并释放出AMP分子,泛素通过磷酸核苷基团共价连接到底物或SdeA的丝氨酸残基上[49-50]。另外,SidE家族效应因子还可以通过PR泛素化宿主蛋白,从而调控不同细胞功能[49]。PR泛素化底物主要为内质网内的调节蛋白,主要包括FAM134家族蛋白、RTN3以及TEX264等蛋白。这些底物蛋白能够将内质网分解为大小不同的片段,然后将分解的片段转运到溶酶体内,再利用内质网的吞噬途径进行降解[68-69]。研究发现,SidE家族效应因子可以将维持内质网结构稳定的蛋白Atlastins PR泛素化[70]。因此,SidE家族效应因子介导的磷酸核糖泛素化途径可以依据PR泛素化宿主蛋白来实现对细胞凋亡及囊泡运输等过程的干扰,从而有利于其对宿主细胞的感染。

4.2 MavC与MvcA效应因子调控的非经典泛素化途径

在转谷氨酰胺酶的作用下,嗜肺军团菌效应因子MavC将E2泛素结合酶(UBE2N)的2个赖氨酸残基K92和K94与Ub的谷氨酰胺残基Q40相互催化形成异肽键,从而实现对宿主UBE2N的非经典泛素化途径[71-72]。这一劫持过程阻止了UBE2N与宿主细胞蛋白之间K63型多聚泛素链的形成,从而抑制NF-kB信号通路激活[71-72]。另外,在嗜肺军团菌发现的另一个效应因子MvcA可以将MavC催化的泛素化过程进行特异性逆转,从而实现对宿主信号精确的时空调控[71]。MvcA与MavC一级序列相似,同源率超过50%,结构也相似,二者都由一个插入域、一个球状中心结构域和一个尾部α螺旋延伸区域组成,MvcA与MavC通过3个结构域的相互配合完成催化反应[71]。根据研究发现,MvcA在嗜肺军团菌侵染的后期能够将MavC的产物UBE2N-Ub进行去泛素化。在这个过程当中,MvcA不仅具有和其他脱酰胺酶一样的催化中心,而且还拥有一个独特的结构域,从而可以与底物UBE2N-Ub相互结合[71-73]。另外,在MavC参与的泛素化体系中,当MavC的量较高时,其本身也表现出一定的去泛素化酶活性,能够裂解UBE2N-Ub。但在嗜肺军团菌侵袭宿主细胞过程中,Ub的含量远远高于UBE2N-Ub,也就是说,MavC主要介导非典型泛素化途径,在相反的催化反应中体现出弱活性,而效应因子MvcA在这种泛素化反应过程中体现专一性[74]

5 总结及展望

泛素化修饰自发现以来,已经被证实是介导真核细胞内蛋白质降解的最主要途径,它在调控蛋白质稳定性、功能、活性及亚细胞定位等方面具有非常重要的作用[1-2]。目前,在泛素化酶联反应过程中,调节宿主泛素信号通路的效应因子可以模仿宿主体内蛋白质的活性,或者利用其独特的生物活性,对泛素化过程进行修改调节,从而逃避宿主的免疫监视,促进病原菌感染。随着研究的不断深入,我们对病原菌调节泛素化过程的信号通路已经有了新的认识,但仍存在许多未知的调节机制需要我们进一步进行研究。例如,病原菌效应因子除了调控泛素分子、去泛素化酶、泛素结合酶以及泛素连接酶外,其是否还可以对泛素激活酶进行调节还需要进一步去验证。

近年来关于病原菌利用效应因子调控泛素化途径的报道不断增多,例如,嗜肺军团菌效应因子RavD能够特异性切割宿主巨噬细胞内嗜肺军团菌囊泡膜(LCV)上的M1线性泛素链,抑制宿主NF-κB信号通路及炎症应答,从而促进其胞内生存[62]。结核分枝杆菌效应因子RV0222和PtpA能够利用宿主细胞内的泛素分子对宿主自身免疫信号通路的激活进行抑制[75]。布鲁氏菌(Brucella)效应因子TcpB能够促进泛素化和胱天蛋白酶1、4和11降解,从而减弱LPS诱导的非典型炎性体信号传导[76]。因此,病原菌效应因子在很多生命过程中具有重要作用,许多疾病的产生都与之相关,深入研究效应因子的分子机制将有助于我们全面了解细菌病原体所采用的模仿机制,对于开发新的治疗方法策略至关重要。

References
[1] LIU X, WANG Q, CHEN W, WANG C. Dynamic regulation of innate immunity by ubiquitin and ubiquitin-like proteins[J]. Cytokine & Growth Factor Reviews, 2013, 24(6): 559-570.
[2] SHAID S, BRANDTS CH, SERVE H, DIKIC I. Ubiquitination and selective autophagy[J]. Cell Death & Differentiation, 2013, 20(1): 21-30.
[3] ABDUL REHMAN SA, KRISTARIYANTO YA, CHOI SY, NKOSI PJ, WEIDLICH S, LABIB K, HOFMANN K, KULATHU Y. MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes[J]. Molecular Cell, 2016, 63(1): 146-155 DOI:10.1016/j.molcel.2016.05.009.
[4] HU RG, HOCHSTRASSER M. Recent progress in ubiquitin and ubiquitin-like protein (ubl) signaling[J]. Cell Research, 2016, 26(4): 389-390 DOI:10.1038/cr.2016.43.
[5] STEELE-MORTIMER O. Exploitation of the ubiquitin system by invading bacteria[J]. Traffic (Copenhagen, Denmark), 2011, 12(2): 162-169 DOI:10.1111/j.1600-0854.2010.01137.x.
[6] QIU JZ, LUO ZQ. Hijacking of the host ubiquitin network by Legionella pneumophila[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 487 DOI:10.3389/fcimb.2017.00487.
[7] YIN X, LIU QB, LIU F, TIAN XC, YAN TH, HAN J, JIANG SL. Emerging roles of non-proteolytic ubiquitination in tumorigenesis[J]. Frontiers in Cell and Developmental Biology, 2022, 10: 944460 DOI:10.3389/fcell.2022.944460.
[8] VOZANDYCHOVA V, STOJKOVA P, HERCIK K, REHULKA P, STULIK J. The ubiquitination system within bacterial host-pathogen interactions[J]. Microorganisms, 2021, 9(3): 638 DOI:10.3390/microorganisms9030638.
[9] SENFT D, QI JF, RONAI ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy[J]. Nature Reviews Cancer, 2018, 18(2): 69-88 DOI:10.1038/nrc.2017.105.
[10] JACOBSON AD, ZHANG NY, XU P, HAN KJ, NOONE S, PENG JM, LIU CW. The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26S proteasome[J]. Journal of Biological Chemistry, 2009, 284(51): 35485-35494 DOI:10.1074/jbc.M109.052928.
[11] MADIRAJU C, NOVACK JP, REED JC, MATSUZAWA SI. K63 ubiquitination in immune signaling[J]. Trends in Immunology, 2022, 43(2): 148-162 DOI:10.1016/j.it.2021.12.005.
[12] MANZANILLO PS, AYRES JS, WATSON RO, COLLINS AC, SOUZA G, RAE CS, SCHNEIDER DS, NAKAMURA K, SHILOH MU, COX JS. The ubiquitin ligase parkin mediates resistance to intracellular pathogens[J]. Nature, 2013, 501(7468): 512-516 DOI:10.1038/nature12566.
[13] MORRIS JR, SOLOMON E. BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair[J]. Human Molecular Genetics, 2004, 13(8): 807-817 DOI:10.1093/hmg/ddh095.
[14] ORDUREAU A, SARRAF SA, DUDA DM, HEO JM, JEDRYCHOWSKI MP, SVIDERSKIY VO, OLSZEWSKI JL, KOERBER JT, XIE T, BEAUSOLEIL SA, WELLS JA, GYGI SP, SCHULMAN BA, HARPER JW. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis[J]. Molecular Cell, 2014, 56(3): 360-375 DOI:10.1016/j.molcel.2014.09.007.
[15] JIA JJ, LIAO XY, LIANG YY, CHEN RL, GAO FG. K48- and K27-mutant ubiquitin regulates adaptive immune response by affecting cross-presentation in bone marrow precursor cells[J]. Journal of Leukocyte Biology, 2022, 112(1): 157-172 DOI:10.1002/JLB.4MA0222-419RR.
[16] YU YY, ZHENG QY, ERRAMILLI SK, PAN M, PARK S, XIE Y, LI JX, FEI JY, KOSSIAKOFF AA, LIU L, ZHAO ML. K29-linked ubiquitin signaling regulates proteotoxic stress response and cell cycle[J]. Nature Chemical Biology, 2021, 17(8): 896-905 DOI:10.1038/s41589-021-00823-5.
[17] RIBET D, COSSART P. Ubiquitin, SUMO, and NEDD8: key targets of bacterial pathogens[J]. Trends in Cell Biology, 2018, 28(11): 926-940 DOI:10.1016/j.tcb.2018.07.005.
[18] XU R, LU T, ZHAO JY, LI Q, WANG J, PENG B, LIU J, ZHANG PF, QU LD, CHANG XY, YAO LQ, ZHANG LY. Identification of ubiquitinated substrate proteins and their gene expression patterns in lung adenocarcinoma[J]. Annals of Translational Medicine, 2021, 9(22): 1692 DOI:10.21037/atm-21-5645.
[19] JAHAN AS, ELBÆK CR, DAMGAARD RB. Met1-linked ubiquitin signalling in health and disease: inflammation, immunity, cancer, and beyond[J]. Cell Death & Differentiation, 2021, 28(2): 473-492.
[20] CLAGUE MJ, BARSUKOV I, COULSON JM, LIU H, RIGDEN DJ, URBÉ S. Deubiquitylases from genes to organism[J]. Physiological Reviews, 2013, 93(3): 1289-1315 DOI:10.1152/physrev.00002.2013.
[21] PARSONS JL, DIANOVA Ⅱ, KHORONENKOVA SV, EDELMANN MJ, KESSLER BM, DIANOV GL. USP47 is a deubiquitylating enzyme that regulates base excision repair by controlling steady-state levels of DNA polymerase Β[J]. Molecular Cell, 2011, 41(5): 609-615 DOI:10.1016/j.molcel.2011.02.016.
[22] HICKS SW, GALÁN JE. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors[J]. Nature Reviews Microbiology, 2013, 11(5): 316-326 DOI:10.1038/nrmicro3009.
[23] JIA Q, SUN S, SUN T, LIN W. Mechanism of F-box protein family in plant resistance response to environmental stress[J]. Chinese Journal of Eco-Agriculture, 2018, 26(8): 1125-1136.
[24] LECHNER E, ACHARD P, VANSIRI A, POTUSCHAK T, GENSCHIK P. F-box proteins everywhere[J]. Current Opinion in Plant Biology, 2006, 9(6): 631-638 DOI:10.1016/j.pbi.2006.09.003.
[25] FISKIN E, BHOGARAJU S, HERHAUS L, KALAYIL S, HAHN M, DIKIC I. Structural basis for the recognition and degradation of host TRIM proteins by Salmonella effector SopA[J]. Nature Communications, 2017, 8: 14004 DOI:10.1038/ncomms14004.
[26] ZHANG Y, HIGASHIDE WM, McCORMICK BA, CHEN J, ZHOU DG. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase[J]. Molecular Microbiology, 2006, 62(3): 786-793 DOI:10.1111/j.1365-2958.2006.05407.x.
[27] SHENG XP, YOU Q, ZHU HN, CHANG ZN, LI QR, WANG HF, WANG C, WANG HY, HUI LJ, DU CT, XIE XD, ZENG R, LIN AN, SHI DF, RUAN KC, YAN JH, GAO GF, SHAO F, HU RG. Bacterial effector NleL promotes enterohemorrhagic E. coli-induced attaching and effacing lesions by ubiquitylating and inactivating JNK[J]. PLoS Pathogens, 2017, 13(7): e1006534 DOI:10.1371/journal.ppat.1006534.
[28] ROSEBROCK TR, ZENG LR, BRADY JJ, ABRAMOVITCH RB, XIAO FM, MARTIN GB. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity[J]. Nature, 2007, 448(7151): 370-374 DOI:10.1038/nature05966.
[29] KUBORI T, SHINZAWA N, KANUKA H, NAGAI H. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector[J]. PLoS Pathogens, 2010, 6(12): e1001216 DOI:10.1371/journal.ppat.1001216.
[30] HIGASHI Y, NAGAI Y, MACHIDA M, HAYASHI N. Field-angle resolved flux-flow resistivity as a phase-sensitive probe of unconventional Cooper pairing[J]. Physical Review B, 2013, 88(22): 224511 DOI:10.1103/PhysRevB.88.224511.
[31] WU B, SKARINA T, YEE A, JOBIN MC, DILEO R, SEMESI A, FARES C, LEMAK A, COOMBES BK, ARROWSMITH CH, SINGER AU, SAVCHENKO A. NleG type 3 effectors from enterohaemorrhagic Escherichia coli are U-box E3 ubiquitin ligases[J]. PLoS Pathogens, 2010, 6(6): e1000960 DOI:10.1371/journal.ppat.1000960.
[32] BERGLUND J, GJONDREKAJ R, VERNEY E, MAUPIN-FURLOW JA, EDELMANN MJ. Modification of the host ubiquitome by bacterial enzymes[J]. Microbiological Research, 2020, 235: 126429 DOI:10.1016/j.micres.2020.126429.
[33] WANG F, JIANG Z, LI Y, HE X, ZHAO JL, YANG XL, ZHU L, YIN ZT, LI XL, WANG XS, LIU W, SHANG W, YANG Z, WANG SM, ZHEN Q, ZHANG ZN, YU YQ, ZHONG H, YE QN, HUANG LY, et al. Shigella flexneri T3SS effector IpaH4.5 modulates the host inflammatory response via interaction with NF-κB p65 protein[J]. Cellular Microbiology, 2013, 15(3): 474-485 DOI:10.1111/cmi.12052.
[34] ASHIDA H, NAKANO H, SASAKAWA C. Shigella IpaH0722 E3 ubiquitin ligase effector targets TRAF2 to inhibit PKC-NF-κB activity in invaded epithelial cells[J]. PLoS Pathogens, 2013, 9(6): e1003409 DOI:10.1371/journal.ppat.1003409.
[35] HARAGA A, MILLER SI. A Salmonella type Ⅲ secretion effector interacts with the mammalian serine/threonine protein kinase PKN1[J]. Cellular Microbiology, 2006, 8(5): 837-846 DOI:10.1111/j.1462-5822.2005.00670.x.
[36] BHAVSAR AP, BROWN NF, STOEPEL J, WIERMER M, MARTIN DDO, HSU KJ, IMAMI K, ROSS CJ, HAYDEN MR, FOSTER LJ, LI X, HIETER P, FINLAY BB. The Salmonella type Ⅲ effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity[J]. PLoS Pathogens, 2013, 9(7): e1003518 DOI:10.1371/journal.ppat.1003518.
[37] BERNAL-BAYARD J, RAMOS-MORALES F. Salmonella type Ⅲ secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin[J]. Journal of Biological Chemistry, 2009, 284(40): 27587-27595 DOI:10.1074/jbc.M109.010363.
[38] HSU F, LUO X, QIU JZ, TENG YB, JIN JP, SMOLKA MB, LUO ZQ, MAO YX. The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(29): 10538-10543.
[39] LUO X, WASILKO DJ, LIU Y, SUN JY, WU XC, LUO ZQ, MAO YX. Structure of the Legionella virulence factor, SidC reveals a unique PI(4)P-specific binding domain essential for its targeting to the bacterial phagosome[J]. PLoS Pathogens, 2015, 11(6): e1004965 DOI:10.1371/journal.ppat.1004965.
[40] SONG JR, CHAO J, HU XH, WEN X, DING CR, LI D, ZHANG D, HAN SS, YU X, YAN B, JIN Z, SONG YH, GONZALES J, VIA LE, ZHANG L, WANG DC. E3 ligase FBXW7 facilitates Mycobacterium immune evasion by modulating TNF-α expression[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 851197 DOI:10.3389/fcimb.2022.851197.
[41] FU BB, XUE WW, ZHANG HW, ZHANG R, FELDMAN K, ZHAO QT, ZHANG SF, SHI L, PAVANI KC, NIAN WQ, LIN XY, WU HB. MicroRNA-325-3p facilitates immune escape of Mycobacterium tuberculosis through targeting LNX1 via NEK6 accumulation to promote anti-apoptotic STAT3 signaling[J]. mBio, 2020, 11(3): e00557-e00520.
[42] MESQUITA FS, THOMAS M, SACHSE M, SANTOS AJM, FIGUEIRA R, HOLDEN DW. The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates[J]. PLoS Pathogens, 2012, 8(6): e1002743 DOI:10.1371/journal.ppat.1002743.
[43] Le NEGRATE G, KRIEG A, FAUSTIN B, LOEFFLER M, GODZIK A, KRAJEWSKI S, REED JC. ChlaDub1 of Chlamydia trachomatis suppresses NF-kappaB activation and inhibits IkappaBalpha ubiquitination and degradation[J]. Cellular Microbiology, 2008, 10(9): 1879-1892 DOI:10.1111/j.1462-5822.2008.01178.x.
[44] FURTADO AR, ESSID M, PERRINET S, BALAÑÁ ME, YODER N, DEHOUX P, SUBTIL A. The chlamydial OTU domain-containing protein ChlaOTU is an early type Ⅲ secretion effector targeting ubiquitin and NDP52[J]. Cellular Microbiology, 2013, 15(12): 2064-2079 DOI:10.1111/cmi.12171.
[45] ZHOU HL, MONACK DM, KAYAGAKI N, WERTZ I, YIN JP, WOLF B, DIXIT VM. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation[J]. The Journal of Experimental Medicine, 2005, 202(10): 1327-1332 DOI:10.1084/jem.20051194.
[46] TAN KS, CHEN YH, LIM YC, TAN GY G, LIU YC, LIM YT, MACARY P, GAN YH. Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM[J]. Journal of Immunology (Baltimore, Md: 1950), 2010, 184(9): 5160-5171 DOI:10.4049/jimmunol.0902663.
[47] PIKE CM, BOYER-ANDERSEN R, KINCH LN, CAPLAN JL, NEUNUEBEL MR. The Legionella effector RavD binds phosphatidylinositol-3-phosphate and helps suppress endolysosomal maturation of the Legionella-containing vacuole[J]. Journal of Biological Chemistry, 2019, 294(16): 6405-6415 DOI:10.1074/jbc.RA118.007086.
[48] CHOSED R, TOMCHICK DR, BRAUTIGAM CA, MUKHERJEE S, NEGI VS, MACHIUS M, ORTH K. Structural analysis of Xanthomonas XopD provides insights into substrate specificity of ubiquitin-like protein proteases[J]. Journal of Biological Chemistry, 2007, 282(9): 6773-6782 DOI:10.1074/jbc.M608730200.
[49] BHOGARAJU S, KALAYIL S, LIU YB, BONN F, COLBY T, MATIC I, DIKIC I. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination[J]. Cell, 2016, 167(6): 1636-1649.e13 DOI:10.1016/j.cell.2016.11.019.
[50] WANG Y, SHI M, FENG H, ZHU YL, LIU SQ, GAO A, GAO P. Structural insights into non-canonical ubiquitination catalyzed by SidE[J]. Cell, 2018, 173(5): 1231-1243.e16 DOI:10.1016/j.cell.2018.04.023.
[51] YANG Q, ZHAO JY, CHEN D, WANG Y. E3 ubiquitin ligases: styles, structures and functions[J]. Molecular Biomedicine, 2021, 2(1): 23 DOI:10.1186/s43556-021-00043-2.
[52] SHENG XP, YOU Q, ZHU HN, LI QR, GAO H, WANG HF, YOU CP, MENG Q, NIE YJ, ZHANG XY, HU RG. Enterohemorrhagic E. coli effector NleL disrupts host NF-κB signaling by targeting multiple host proteins[J]. Journal of Molecular Cell Biology, 2020, 12(4): 318-321 DOI:10.1093/jmcb/mjaa003.
[53] BULATOV E, CIULLI A. Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation[J]. The Biochemical Journal, 2015, 467(3): 365-386 DOI:10.1042/BJ20141450.
[54] JOAZEIRO CA, WEISSMAN AM. RING finger proteins: mediators of ubiquitin ligase activity[J]. Cell, 2000, 102(5): 549-552 DOI:10.1016/S0092-8674(00)00077-5.
[55] AGUILERA M, OLIVEROS M, MARTÍNEZ-PADRÓN M, BARBAS JA, FERRÚS A. Ariadne-1: a vital Drosophila gene is required in development and defines a new conserved family of ring-finger proteins[J]. Genetics, 2000, 155(3): 1231-1244 DOI:10.1093/genetics/155.3.1231.
[56] WALDEN H, RITTINGER K. RBR ligase-mediated ubiquitin transfer: a tale with many twists and turns[J]. Nature Structural & Molecular Biology, 2018, 25(6): 440-445.
[57] SMIT JJ, SIXMA TK. RBR E3-ligases at work[J]. EMBO Reports, 2014, 15(2): 142-154 DOI:10.1002/embr.201338166.
[58] WENZEL DM, LISSOUNOV A, BRZOVIC PS, KLEVIT RE. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids[J]. Nature, 2011, 474(7349): 105-108 DOI:10.1038/nature09966.
[59] BERNDSEN CE, WOLBERGER C. New insights into ubiquitin E3 ligase mechanism[J]. Nature Structural & Molecular Biology, 2014, 21(4): 301-307.
[60] SINGER AU, ROHDE JR, LAM R, SKARINA T, KAGAN O, DiLEO R, CHIRGADZE NY, CUFF ME, JOACHIMIAK A, TYERS M, SANSONETTI PJ, PARSOT C, SAVCHENKO A. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases[J]. Nature Structural & Molecular Biology, 2008, 15(12): 1293-1301.
[61] ZHU YQ, LI HT, HU LY, WANG JY, ZHOU Y, PANG ZM, LIU LP, SHAO F. Structure of a Shigella effector reveals a new class of ubiquitin ligases[J]. Nature Structural & Molecular Biology, 2008, 15(12): 1302-1308.
[62] YI ZF, WANG D, XIN SH, ZHOU DL, LI T, TIAN MX, QI JJ, DING C, WANG SH, YU SQ. The CpxR regulates type Ⅵ secretion system 2 expression and facilitates the interbacterial competition activity and virulence of avian pathogenic Escherichia coli[J]. Veterinary Research, 2019, 50(1): 40 DOI:10.1186/s13567-019-0658-7.
[63] MUKHERJEE R, DIKIC I. Regulation of host-pathogen interactions via the ubiquitin system[J]. Annual Review of Microbiology, 2022, 76: 211-233 DOI:10.1146/annurev-micro-041020-025803.
[64] PRUNEDA JN, DURKIN CH, GEURINK PP, OVAA H, SANTHANAM B, HOLDEN DW, KOMANDER D. The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases[J]. Molecular Cell, 2016, 63(2): 261-276 DOI:10.1016/j.molcel.2016.06.015.
[65] WAN MY, WANG XF, HUANG CF, XU DD, WANG Z, ZHOU Y, ZHU YQ. A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling[J]. Nature Microbiology, 2019, 4(8): 1282-1293 DOI:10.1038/s41564-019-0454-1.
[66] QIU JZ, SHEEDLO MJ, YU KW, TAN YH, NAKAYASU ES, DAS C, LIU XY, LUO ZQ. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors[J]. Nature, 2016, 533(7601): 120-124 DOI:10.1038/nature17657.
[67] JEONG M, JEON H, SHIN D. Ubiquitin-regulating effector proteins from Legionella[J]. BMB Reports, 2022, 55(7): 316-322 DOI:10.5483/BMBRep.2022.55.7.054.
[68] AN H, ORDUREAU A, PAULO JA, SHOEMAKER CJ, DENIC V, HARPER JW. TEX264 is an endoplasmic reticulum-resident ATG8-interacting protein critical for ER remodeling during nutrient stress[J]. Molecular Cell, 2019, 74(5): 891-908.e10 DOI:10.1016/j.molcel.2019.03.034.
[69] GRUMATI P, MOROZZI G, HÖLPER S, MARI M, HARWARDT ML I, YAN RQ, MÜLLER S, REGGIORI F, HEILEMANN M, DIKIC I. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy[J]. eLife, 2017, 6: e25555 DOI:10.7554/eLife.25555.
[70] HU JJ, SHIBATA Y, ZHU PP, VOSS C, RISMANCHI N, PRINZ WA, RAPOPORT TA, BLACKSTONE C. A class of dynamin-like GTPases involved in the generation of the tubular ER network[J]. Cell, 2009, 138(3): 549-561 DOI:10.1016/j.cell.2009.05.025.
[71] GAN NH, GUAN HX, HUANG YN, YU T, FU JQ, NAKAYASU ES, PUVAR K, DAS C, WANG DM, OUYANG SY, LUO ZQ. Legionella pneumophila regulates the activity of UBE2N by deamidase-mediated deubiquitination[J]. The EMBO Journal, 2020, 39(4): e102806 DOI:10.15252/embj.2019102806.
[72] PUVAR K, IYER S, FU JQ, KENNY S, NEGRÓN TERÓN KI, LUO ZQ, BRZOVIC PS, KLEVIT RE, DAS C. Legionella effector MavC targets the Ube2N~Ub conjugate for noncanonical ubiquitination[J]. Nature Communications, 2020, 11: 2365 DOI:10.1038/s41467-020-16211-x.
[73] GUAN HX, FU JQ, YU T, WANG ZX, GAN NH, HUANG YN, PERČULIJA V, LI Y, LUO ZQ, OUYANG SY. Molecular basis of ubiquitination catalyzed by the bacterial transglutaminase MavC[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2020, 7(12): 2000871.
[74] MU YJ, WANG Y, HUANG YF, LI D, HAN YY, CHANG M, FU JQ, XIE YC, REN J, WANG H, ZHANG Y, LUO ZQ, FENG Y. Structural insights into the mechanism and inhibition of transglutaminase- induced ubiquitination by the Legionella effector MavC[J]. Nature Communications, 2020, 11: 1774 DOI:10.1038/s41467-020-15645-7.
[75] WANG L, WU JH, LI J, YANG H, TANG TQ, LIANG HJ, ZUO MY, WANG J, LIU HP, LIU F, CHEN JX, LIU ZH, WANG Y, PENG C, WU XY, ZHENG RJ, HUANG XC, RAN YJ, RAO ZH, GE BX. Host-mediated ubiquitination of a mycobacterial protein suppresses immunity[J]. Nature, 2020, 577(7792): 682-688 DOI:10.1038/s41586-019-1915-7.
[76] JAKKA P, NAMANI S, MURUGAN S, RAI N, RADHAKRISHNAN G. The Brucella effector protein TcpB induces degradation of inflammatory caspases and thereby subverts non-canonical inflammasome activation in macrophages[J]. The Journal of Biological Chemistry, 2017, 292(50): 20613-20627 DOI:10.1074/jbc.M117.815878.
病原菌效应因子调控宿主泛素化修饰的研究进展
左伟 , 王欣宇 , 胡剑刚 , 王少辉