中国科学院微生物研究所,中国微生物学会
文章信息
- 陈杨慧, 黎源, 王蓓. 2023
- CHEN Yanghui, LI Yuan, WANG Bei.
- 胞内致病菌入侵宿主细胞分子机理研究进展
- Molecular mechanism of intracellular pathogenic bacteria invading host cells
- 微生物学报, 63(8): 2994-3008
- Acta Microbiologica Sinica, 63(8): 2994-3008
-
文章历史
- 收稿日期:2022-12-06
- 修回日期:2023-02-28
- 网络出版日期:2023-03-03
胞内致病菌是指能够入侵宿主细胞且能够在宿主细胞体内较长时间存活并繁殖的病原菌,可通过寄生于宿主细胞实现持续性感染,或利用“特洛伊木马”方式劫持巨噬细胞广泛传播实现多部位感染[1-2]。胞内致病菌根据对宿主细胞的依赖程度常被分为专性胞内致病菌和兼性胞内致病菌两类,专性胞内致病菌常指衣原体(Chlamydia)和立克次体(Rickettsia)等生长时必须依赖于细胞内物质方能存活的病原菌[3];而兼性胞内致病菌则指既能存活于细胞内,又可生长于细胞外的病原菌,常见有单核细胞增多性李斯特菌(Listeria monocytogenes)[4]、布鲁氏菌(Brucella)[5]、致病奈瑟菌(Neisseria)[6]等。胞内致病菌可借助黏附素黏附于皮肤黏膜、呼吸道以及消化道等部位,随后在黏附素(adhesin)和侵袭素(invasion)的介导下进入宿主细胞并在其内部进行繁殖,通过不同的作用机制调控宿主细胞死亡相关信号通路,从而达到逃避宿主免疫监视的目的。
病原菌与宿主细胞之间复杂的相互作用是细菌实现感染宿主的基础,而细菌性感染疾病始终是威胁人类生命安全和生活生产的主要原因。随着抗生素的广泛使用,细菌性感染疾病在一定程度上得到抑制,然而由于胞内致病菌掩藏在宿主细胞内,抗生素难以发挥作用,又因其不断进化出新的感染机制和免疫逃避机制,使得宿主的免疫系统对其失效,这便造成了胞内致病菌难以被清除,其引起的感染性疾病难以被治愈。因此,了解胞内致病菌与宿主细胞相互作用的分子机制、探讨其侵染的整个过程不仅具有实践意义,对于感染性疾病的预防、诊断和治疗也能提供新的思路。故本文对胞内致病菌感染宿主细胞过程所涉及的分子机制做如下概述,概括阐明近年来针对胞内致病菌的相关研究进展。
1 胞内致病菌黏附宿主细胞的作用机制黏附(adhesion)是细菌表面的黏附分子与宿主细胞膜受体相互作用的结果,是跨越细胞和组织屏障的起点,也是细菌能否感染宿主的先决条件[7]。只有成功黏附之后,细菌才可以在宿主内进行传播以及释放毒力因子,进而感染宿主细胞[8]。这个过程具有多种特异性,如宿主特异性、组织特异性以及细胞特异性等[9-10]。通常来讲克服细胞表面的排斥力是成功黏附的基础,该过程需要细菌黏附素和宿主细胞表面的特异性受体共同作用。常见的黏附素主要有菌毛、鞭毛、外膜蛋白、血凝素等,而黏附素受体通常则为糖脂或糖蛋白、纤维结合素、纤维蛋白原以及胶原等。
1.1 黏附素黏附素的成分通常为蛋白质或糖脂,一般位于菌毛末端、细胞壁、外膜蛋白等处,是一种能直接介导细菌在宿主细胞上黏附的细菌表面结构[7]。1961年,Stirm等[11]发现了一种具有黏附特性的菌毛,这也是被人类发现的第一种黏附素,随后其他具有黏附特性的菌毛也陆续被发现,之前的研究一度认为黏附素仅存在于某些细菌的菌毛结构中,但随着研究的深入,革兰氏阳性菌表面的具有黏附特性的非菌毛形态结构陆续被发现,黏附素的含义也由此被丰富。因此目前按照黏附素的形态结构差异将其主要分为两大类:菌毛黏附素和非菌毛黏附素。
1.1.1 菌毛黏附素菌毛黏附素可与宿主细胞的受体结合,介导对宿主细胞的粘附和感染[12]。常见的有P菌毛、Ⅰ型菌毛、Ⅲ型菌毛、Ⅳ型菌毛、Yad菌毛等。
P菌毛的表达和合成至少需要PAP基因群的11种基因[13],位于其尖端的PapG黏附素可与尿路上皮细胞、肾上皮细胞表面P血型抗原物质Gal(α1-4)Gal双糖特异性结合[14-16],可介导病原菌黏附于上尿道,引起急性肾盂肾炎。
由fim基因群编码的Ⅰ型菌毛是存在于大多数肠杆菌表面的一种极其重要的毒性决定因子,它可以介导细菌与宿主细胞的d-甘露糖连接,从而使细菌成功侵入泌尿生殖道、呼吸道和肠道的上皮细胞[17-18]。Ⅰ型菌毛的黏附作用主要由位于其尖端的FimH蛋白体现[18],FimH蛋白有两个结构域,一边连接菌毛的FimG,另一边则含有一个“糖结合袋”用来容纳宿主细胞特异性受体的甘露糖残基[19]。Kuźmińska-Bajor等[20]使用野生型肠炎沙门氏菌(Salmonella enteritidis)及其fimH敲除菌株(肠炎沙门氏菌)同时进行感染小鼠,研究发现敲除株感染小鼠肠细胞的粘附和侵袭性显著降低,与此同时使用生物发光成像观察到FimH的丢失与细菌在小鼠体内的大量定居密切相关,这些实验都说明了FimH蛋白在肠炎沙门氏菌黏附小鼠肠细胞过程中发挥了重要作用(图 1)。
由mrk (E.A.B.C.D.F)基因群表达蛋白装配形成的Ⅲ型菌毛常介导肺炎克雷伯菌(Klebsiella pneumonia)对相应宿主的内皮细胞和泌尿生殖道、呼吸道的上皮细胞以及肾小管基底膜等处的黏附[22]。其中位于菌毛尖端的MrkD蛋白发挥了主要的黏附功能,李扬等[23]通过黏附活性实验与黏附动力学实验证实了MrkD蛋白对肺炎克雷伯菌黏附永生化人支气管上皮细胞(BEP-2D)具有显著的影响。
Ⅳ型菌毛是一种常见的介导细菌黏附于小肠黏膜的菌毛,常存在于产酶溶杆菌(Lysobacter enzymogenes)、致病奈瑟菌和霍乱弧菌(Vibrio cholerae)等细菌表面[24]。Ⅳ型菌毛也是许多病原菌表面的重要毒力因子,参与多种功能,包括黏附、蠕动、生物膜形成、水平基因转移等[25](图 2)。
在致肾盂肾炎大肠埃希菌(uropathogenic Escherichia coli, UPEC)中广泛存在的Yad菌毛,由yadN、yadM、yadL、yadK、ecpD、htrE和yadC等7个基因编码的蛋白组装形成[27],其中yadC表达形成顶端黏附素(图 3)。李晓[28]通过构建UPEC菌株CFT073的YadC缺失菌株(ΔyadC)和回补菌株(ΔyadC p-yadC)并在体外分别进行细胞黏附及侵袭实验,探究了Yad菌毛的YadC蛋白在UPEC致病过程中的作用,证实了YadC可介导UPEC对膀胱上皮细胞的黏附与侵袭,此外还利用Far-western blotting、质谱分析和免疫共沉淀等技术证实了膜联蛋白A2 (annexin A2, ANXA2)是膀胱上皮细胞表面与YadC相互作用的受体蛋白。
病原菌的菌毛往往由其特定的基因群表达合成,但其顶端蛋白才是黏附宿主细胞的关键结构,那么菌毛结构中其他蛋白质的功能又是如何,仍值得研究者们深入探讨,是否仅仅起着连接病原菌主体的作用?还是具有信息传递、促进黏附等多种功能?
1.1.2 非菌毛黏附分子非菌毛黏附素主要有鞭毛蛋白、外膜蛋白、血凝素等几种类型,常见于革兰氏阳性菌,是在细菌表面的不成菌毛形状但可介导细菌的黏附作用的一类物质的总称[7, 30-32]。
鞭毛蛋白所引起的黏附常见于沙门氏菌、铜绿假单胞菌(Pseudomonas aeruginosa)以及空肠弯曲菌(Campylobacter jejuni)等,此类蛋白对细菌黏附宿主细胞起着重要作用[33-36]。Tasteyre等[37]分别分析了艰难梭状芽胞杆菌(Clostridium difficile)的鞭毛缺失突变株和野生株对宿主的黏附作用,研究结果表明鞭毛缺失突变株与宿主细胞的结合能力比同一血清组的野生株的结合能力低10倍,证明了鞭毛蛋白作为黏附物质介导细菌对宿主细胞的黏附。
外膜蛋白(outer membrane proteins, OMP)是一种参与细菌黏附过程的重要黏附分子,可以与细胞膜上的糖残基受体结合发生反应,从而使细菌固着在宿主细胞上。李楚楚[38]利用细胞黏附侵袭实验研究了致病性小肠结肠炎耶尔森菌(Yersinia enterocolitica) 105.5R(r)ΔompA和野生株105.5R(r)在细胞黏附侵袭上的差异,实验结果表明105.5R(r)ΔompA的黏附侵袭能力明显低于野生株,证实了外膜蛋白A在该菌黏附过程中发挥了重要作用。
一些血凝素在细菌粘附细胞的过程中起着重要作用,如肝素结合血凝素参与分枝杆菌(Mycobacterium)黏附宿主[39],百日咳杆菌(Bordetella pertussis)的丝状血凝素对细菌黏附单层WiDr细胞(人肠癌类上皮细胞)起着重要作用[40],以及幽门螺旋杆菌(Helicobacter pylori)的N-乙酰乳糖神经氨原纤维血凝素亦可介导该菌对细胞的黏附[41]。
1.2 黏附素受体细菌黏附是一个配体(黏附素)与受体相互作用的过程,二者缺一不可。若是缺失了相应的受体,则无法发生特异性结合,细菌也无法在相应的部位黏附及定殖,从而入侵宿主细胞[42-43]。从某种程度上讲,宿主细胞在整个黏附过程中甚至扮演了主动者的角色,在宿主细胞接受到被感染的信号后,便主动地表达相应的黏附受体与细菌特异性结合[44]。一般来讲,一种宿主细胞可被多种细菌黏附,因此,一种宿主细胞表面应该存在多种类型受体,与此同时,一种受体亦可被多种黏附素识别[7]。大多数革兰氏阴性菌的黏附受体都是位于宿主细胞表面的糖脂或糖蛋白。细菌常常与其糖类残基特异性结合,比如上文提到的Ⅰ型菌毛可与宿主细胞的D-甘露糖连接介导黏附。革兰氏阳性菌的黏附受体种类较多,大都是细胞外基质的一些成分,比如纤维结合素、纤维蛋白原以及胶原等[45-48]。
2 胞内致病菌对宿主细胞的侵染机制 2.1 入侵非吞噬细胞病原菌入侵非吞噬细胞往往采取主动“进攻”的方式[49],它们能充分利用自身所具备的毒力因子,采用最适宜的手段侵入上皮细胞、内皮细胞等。侵袭成功与否是胞内致病菌能否致病的关键,其中一些细菌可以分泌一些因子来模拟真核细胞信号颗粒跨膜转导,使宿主细胞主动地改变局部肌动蛋白骨架,除此之外,一些细菌还可以直接分泌作用于宿主蛋白细胞骨架的特异性毒力因子,从而进入宿主细胞[50]。总而言之,这个过程与Rho、Rac和Cdc42等Rho家族成员介导的肌动蛋白细胞骨架重排有密切的联系,通常涉及“拉链(zipper)”与“触发(trigger)”两种主要机制[51](图 4)。
2.1.1 拉链(zipper)机制
拉链(zipper)机制是指细菌的配体与宿主细胞的受体直接接触,通过与宿主细胞表面的相应受体特异性结合来激活宿主细胞一连串的信号转导,包括蛋白质的磷酸化、效应分子的募集以及细胞骨架成分的活化,从而形成吞噬杯把菌体包裹在内以实现细菌的内化[54]。这个过程中宿主细胞一般不会出现明显的细胞膜褶皱,且不会引起细胞骨架的大规模重排。
耶尔森氏菌(Yersinia)可通过自身的黏附素(YadA)黏附宿主细胞后,通过侵袭素(Inv)与宿主细胞的β1-整合素相互作用,使整合素聚集成簇,从而产生多种细胞内信号,引起细胞骨架重排,随后在网格蛋白的介导下陷入宿主细胞的胞内膜包含体中[55]。研究表明,耶尔森氏菌与宿主细胞的结合至少诱导了两条不同的信号通路,一种通过活化磷脂酰肌醇-3激酶(phosphatidylinositol-3 kinase, PI-3K)和酪氨酸激酶(tyrosine kinase, TK)使其成功内化[56-57];另一种则不依赖于PI-3K,而是通过Rac1的参与并诱导多种细胞因子产生[58]。
四大食源性致病菌之一的单增李斯特菌[59],是一种致死率极高的胞内致病菌,在肝细胞、上皮细胞都能实现入侵并成功增殖[60-61]。研究表明单增李斯特菌分泌的毒力因子内化素A (InlA)、内化素B (InlB)可分别与宿主细胞表面受体跨膜糖蛋白钙黏着蛋白E-cadherin、c-Met特异性结合[62-63],介导细菌入侵肠道上皮细胞、肝细胞等。当InlA与E-cadherin结合时,可募集α-链蛋白,α-链蛋白进而与肌动蛋白发生作用。InlB与c-Met的结合引起磷酸肌醇3-激酶的活化,继而激活Rac、WASP家族蛋白、Arp2/3复合物、血管舒张剂刺激磷蛋白LIM激酶及丝切蛋白(cofilin)等,启动肌动蛋白多聚化,使肌动蛋白丝伸长、吞噬杯处的肌动蛋白重排,细胞膜延展并包绕细菌,使细菌成功内化[64-65]。
2.1.2 触发(trigger)机制触发(trigger)机制是指一些病原菌在对数生长期激活一些效应分子引起TTSS系统或类似系统的合成与组装,在细菌与宿主细胞接触后,使宿主细胞骨架产生大规模的重排、细胞膜流动性改变,伸出片状或者伪足样结构包裹病原菌,将其卷入细胞内。利用该种机制入侵的细菌通常具有TTSS或者与其类似的毒力系统,类似于生长因子刺激下的细胞膜发生的皱突反应。
志贺氏菌(Shigella)主要通过Ⅲ型分泌系统分泌的毒力效应蛋白来介导细菌的入侵并在宿主细胞内诱导肌动蛋白彗尾的形成[66]。除此之外,志贺氏菌的分泌蛋白Ipa复合物是其成功侵袭必需的蛋白分子[67]。此分泌蛋白在与宿主细胞膜结合后,通过激活信号转导通路使细胞膜形成伪足状突起,随后细菌被包裹,完成内化过程[54]。Ipa复合物中的IpaA通过激活Cdc42、Rac及Rho,使细胞膜上聚集α-辅肌动蛋白和踝蛋白,形成黏着斑样结构,此为细菌侵袭过程所必需结构。而Ipa复合物中的IpaB、IpaC则在胞外形成可溶性复合物,使细胞膜出现孔状结构以及激活Rho蛋白家族成员,诱导局部重组肌动蛋白细胞骨架,使志贺氏菌成功入侵宿主细胞[68-69]。
目前,越来越多的致病菌被证明具有入侵非吞噬细胞的能力,如杀鱼爱德华氏菌(Edwardsiella piscicida)被证实可以入侵多种非吞噬细胞,研究表明,杀鱼爱德华氏菌在入侵Hela细胞时其细胞膜会发生明显的膜皱褶和肌动蛋白重排,随后在小窝蛋白的介导下通过激活宿主细胞的信号通路诱导胞饮形成完成入侵,其中Rac1触发膜皱褶并激活Pak1,Pak1再对细胞骨架进行调节[70]。研究发现,无乳链球菌(Streptococcus agalactiae)表面的一些黏附分子可与宿主细胞表面受体结合,诱导宿主细胞内的黏着斑激酶(focal adhesion kinase, FAK)磷酸化,激活其下游的信号通路,诱导细胞骨架重排和细胞膜内陷,从而完成入侵。无乳链球菌作为人畜共患菌,可引起包括人类在内的多个物种感染,而入侵非吞噬细胞是造成局部慢性感染的主要原因之一。目前无乳链球菌也被证明能够入侵多种非吞噬细胞,如HeLa细胞、HEp-2细胞、A549细胞、MDCK细胞、人脑微血管内皮细胞、奶牛乳腺上皮细胞等[71-76],但是入侵鱼类非吞噬细胞还未见报道。罗非鱼(Oreochromis niloticus)是无乳链球菌的主要宿主之一[77],利用无乳链球菌侵染罗非鱼细胞系对于研究无乳链球菌引起罗非鱼慢性感染的致病机制有着重要意义。
2.2 入侵吞噬细胞一些病原菌可通过吞噬作用被一些专职吞噬细胞如巨噬细胞、中性粒细胞所吞噬,并在吞噬细胞胞内存活实现感染。巨噬细胞的激活受到多种信号通路的调节。病原体会表达数种标志性分子即病原体相关分子模式(pathogen-associated molecular patterns, PAMP),而在巨噬细胞表面有一系列识别配体的受体,当细菌黏附巨噬细胞时,巨噬细胞则利用细胞表面或胞内的模式识别受体(pattern recognition receptors, PRR)识别PAMP或通过调理素(opsonin)介导对细菌的间接识别,继而吞噬细菌并形成吞噬泡[78]。例如嗜肺军团菌(Legionella pneumophila)的外膜蛋白可在C3和C3bi的介导下与巨噬细胞表面的补体受体CR1(CD35)和CR3(CD18/CD11b)结合[79],随后被吞噬细胞摄取并激活相关信号通路以响应细菌的入侵。在这种宿主细胞占绝对主动性的吞噬过程中,病原菌在其中扮演的角色却值得我们深思。此外,巨噬细胞如何接收到病原菌的信息,是否对不同的病原菌有不同的吞噬机制;病原菌是否有抵抗吞噬行为,抑或与吞噬细胞相互作用促进吞噬,其中的分子机制都值得深入探索。
3 胞内致病菌调控宿主细胞死亡以逃避免疫应答病原菌在长期与宿主的免疫系统相互作用的过程中,进化出了多种逃避宿主免疫应答的分子机制。随着感染的发生,宿主免疫系统可产生抗感染免疫应答,但病原菌却可通过调控宿主细胞死亡的方式逃避免疫应答来实现自我的存活与传播。研究发现,致病病原菌可通过各种方法使细胞出现不同的死亡方式,其形态特征、分子机制以及生理效应也有所不同。
3.1 细胞焦亡(pyroptosis)细胞焦亡是一种新发现的炎性细胞程序性死亡方式,主要依赖于caspase-1和/或caspase-11的活化[80]。当病原菌感染细胞后,细胞质内的含半胱氨酸的天冬氨酸蛋白水解酶被活化,释放IL-1β、IL-18清除细菌,产生一系列的后续反应,使细胞膜出现穿孔,胞内的物质释放到胞外,诱发炎症反应[81]。研究表明,多种胞内致病菌皆可诱导细胞焦亡现象的发生[81]。Fink等[82]通过鼠伤寒沙门氏菌感染巨噬细胞的研究,发现伤寒沙门氏菌可利用Ⅲ型分泌系统使巨噬细胞的膜上形成数纳米的膜孔,发生细胞焦亡;Suzuki等[83]通过研究发现,志贺杆菌可利用蛋白质IpaB诱导巨噬细胞焦亡;Li等[84]通过对牙龈卟啉单胞菌感染人单核细胞系U937的研究发现,该菌可在感染早期通过miR–155调节NLRP3炎症小体促进细胞焦亡;Katagiri等[85]通过嗜肺军团菌感染小鼠巨噬细胞Raw264.7发现嗜肺军团菌可诱导细胞焦亡。此外,布鲁氏菌、幽门螺杆菌、耶尔森菌以及单增李斯特菌等皆有诱导细胞产生焦亡的报道[86-89]。
3.2 细胞自噬(autophagy)自噬是由自噬相关基因(autophagy-related genes, ATG)编码的蛋白介导的一种保守的细胞死亡途径[90]。病原菌入侵细胞后,会在病原菌周围形成双层膜结构的囊泡,即自噬体,并将细菌包裹转运到溶酶体处进行降解,以抑制病原菌生长[91]。然而,胞内致病菌也可以采取不同的策略参与宿主细胞的自噬途径,更有一些病原菌直接进化出了操纵自噬相关基因表达和功能的机制,以此来保证自身的存活和繁殖[92]。自噬体的诱导受到一系列信号通路的严格调控,在细胞受到病原体刺激时,雷帕霉素靶蛋白(the mammalian target of rapamycin complex 1, mTOR)则处于失活的状态,此时腺苷酸激活激酶(AMP-activated kinase, AMPK)通过磷酸化自噬信号起始复合物ULK-51样激酶1 (UNC-51-like kinase 1, ULK1)的Ser 317和Ser 777启动自噬体形成[93]。通常胞内致病菌可通过抑制自噬信号的诱导、抑制自噬体的形成、阻断自噬体与溶酶体的融合以及利用宿主蛋白掩盖自身以逃避自噬,但也有一些胞内菌则通过主动诱导自噬,利用自噬体作为自身生长繁殖的生态位[94]。
3.3 细胞凋亡(apoptosis)细胞凋亡是一种受基因调控的主动的生理性自杀行为,主要由caspase-8或caspase-9激活的外源性(死亡受体途径)或内源性(线粒体途径)信号通路触发,然后激活凋亡蛋白酶casapse-3、caspase-6和caspase-7,并使细胞形态发生改变[95]。细菌感染常会诱发细胞凋亡,而胞内致病菌通过各种途径入侵机体后,通过操纵细胞凋亡的机制来获取生存。常见的调控方式有干扰细胞外信号转导、干扰细胞内信号转导以及利用胞葬作用逃逸免疫系统等。例如耶尔森菌可利用Pla蛋白酶降解凋亡信号分子Fas配体,使Fas/FasL介导的细胞凋亡信号通路被抑制,从而使caspase-3不被激活,减少炎性细胞因子的产生,促进自身的繁殖[96];结核分枝杆菌可通过自身的蛋白酪氨酸磷酸激(protein tyrosine phosphate kinase, PtpA)阻断核因子κB (nuclear factor kappa-B, NF-κB)途径激活,抑制TNF和其他炎症因子的产生[97];海洋分枝杆菌感染巨噬细胞诱导细胞凋亡,其则掩藏在发生凋亡的细胞中被其他巨噬细胞吞噬,实现进一步感染并随着新感染的巨噬细胞传播到新的繁殖场所[98]。
3.4 细胞程序性坏死(necroptosis)细胞程序性坏死主要由受体互作蛋白激酶(receptor interaction protein kinases, RIPK) 1和3调控,通过诱导形成死亡信号复合体,活化NF-κB相关信号通路,促进细胞程序性死亡[99]。其参与调控的信号分子主要有TNF-α、N-甲基-d-天冬氨酸、p38丝裂原活化蛋白激酶以及病原体识别受体等[100]。研究表明当细胞受到病原体刺激时,便会发生程序性坏死以此来抵抗病原体[101]。例如造成肺结核的结核分枝杆菌感染巨噬细胞时,RIPK1/RIPK3信号通路可被其胞内的TNF信号通路激活,使细胞发生程序性坏死[102];伤寒沙门菌在感染巨噬细胞时不仅可以诱导细胞发生焦亡,还可通过激活细胞内的IFN-I信号通路诱导巨噬细胞发生程序性坏死[103];才旭[104]通过检测嗜肺军团菌感染肝脏细胞时程序性坏死相关蛋白的表达情况,发现嗜肺军团菌可诱导细胞发生程序性坏死。
4 总结与展望胞内致病菌能在宿主体内较长时间存活以及广泛传播而不受宿主体液免疫和常规药物的影响,宿主只能通过细胞免疫将其清除,然而因其不断进化出强大的免疫逃逸策略,使宿主细胞不能有效地识别并清除细菌,因此常会造成慢性感染以及复发性感染。目前胞内致病菌与宿主细胞相互作用的分子机制尚未得到充分研究,未来可以从以下几点着手:
(1) 胞内致病菌在入侵时需要与宿主细胞表面受体特异性结合,且其表面黏附素与侵袭素多由蛋白质组成,具有很强的免疫原性,能够刺激宿主产生抗体,因此,其表面黏附素与侵袭素可作为疫苗开发的作用靶点,为预防胞内致病菌引起的疾病提供新的思路。
(2) 胞内菌引起的慢性感染和复发性感染始终是困扰人类的一大难题,近年来随着医学的发展,抗菌肽、纳米颗粒以及反义寡核苷酸技术等新型疗法逐渐被用于杀灭胞内致病菌,但其仍然存在安全性、稳定性以及经济成本等问题。因此,应该加大对胞内菌侵染宿主细胞机制的研究,根据胞内菌不同的侵染生存策略,开发出新的递药系统,完善相应的治疗方法,使其引起的感染从根源得到抑制。
(3) 近年来,有研究发现细菌可入侵肿瘤细胞重塑其骨架,以此增强抗压力,从而促使癌细胞转移。因此显然需要对胞内致病菌感染肿瘤细胞这一新兴领域进行更多的研究。
[1] | LIU Y, JIA YQ, YANG KN, WANG ZQ. Heterogeneous strategies to eliminate intracellular bacterial pathogens[J]. Frontiers in Microbiology, 2020, 11: 563-576 DOI:10.3389/fmicb.2020.00563. |
[2] | CAPUTA G, MATSUSHITA M, SANIN DE, KABAT AM, EDWARDS-HICKS J, GRZES KM, POHLMEYER R, STANCZAK MA, CASTOLDI A, CUPOVIC J, FORDE AJ, APOSTOLOVA P, SEIDL M, van TEIJLINGEN BAKKER N, VILLA M, BAIXAULI F, QUINTANA A, HACKL A, FLACHSMANN L, et al. Intracellular infection and immune system cues rewire adipocytes to acquire immune function[J]. Cell Metabolism, 2022, 34(5): 747-760 DOI:10.1016/j.cmet.2022.04.008. |
[3] | OTTEN C, BRILLI M, VOLLMER W, VIOLLIER PH, SALJE J. Peptidoglycan in obligate intracellular bacteria[J]. Molecular Microbiology, 2018, 107(2): 142-163 DOI:10.1111/mmi.13880. |
[4] | PIZARRO-CERDÁ J, COSSART P. Microbe profile: Listeria monocytogenes: a paradigm among intracellular bacterial pathogens[J]. Microbiology (Reading, England), 2019, 165(7): 719-721 DOI:10.1099/mic.0.000800. |
[5] | JIAO HW, ZHOU ZX, LI BW, XIAO Y, LI MJ, ZENG H, GUO XY, GU GJ. The mechanism of facultative intracellular parasitism of Brucella[J]. International Journal of Molecular Sciences, 2021, 22(7): 3673-3686 DOI:10.3390/ijms22073673. |
[6] | NASSIF X, SO M. Interaction of pathogenic Neisseriae with nonphagocytic cells[J]. Clinical Microbiology Reviews, 1995, 8(3): 376-388 DOI:10.1128/CMR.8.3.376. |
[7] |
程宝艳, 张丹俊, 彭明义, 程帮照, 戴银. 细菌黏附素研究进展[J]. 畜牧与饲料科学, 2009, 30(2): 3-5.
DOI:10.3969/j.issn.1672-5190.2009.02.002 CHENG BY, ZHANG DJ, PENG MY, CHENG BZ, DAI Y. Research progress of bacterial adhesin[J]. Animal Husbandry and Feed Science, 2009, 30(2): 3-5 (in Chinese). |
[8] |
刘宇, 郑国侠, 王云华. 细菌黏附及其影响因素的研究进展[J]. 医学理论与实践, 2021, 34(22): 3890-3892.
DOI:10.19381/j.issn.1001-7585.2021.22.010 LIU Y, ZHENG GX, WANG YH. Research progress of bacterial adhesion and its influencing factors[J]. The Journal of Medical Theory and Practice, 2021, 34(22): 3890-3892 (in Chinese). |
[9] | PERA NP, PIETERS RJ. Towards bacterial adhesion-based therapeutics and detection methods[J]. MedChemComm, 2014, 5(8): 1027-1035 DOI:10.1039/C3MD00346A. |
[10] | IELASI FS, ALIOSCHA-PEREZ M, DONOHUE D, CLAES S, SAHLI H, SCHOLS D, WILLAERT RG. Lectin-glycan interaction network-based identification of host receptors of microbial pathogenic adhesins[J]. mBio, 2016, 7(4): e00584-e00516. |
[11] | STIRM S, ORSKOV F, ORSKOV I, BIRCH-ANDERSEN A. Episome-carried surface antigen K88 of Escherichia coli. 3. morphology[J]. Journal of Bacteriology, 1967, 93(2): 740-748 DOI:10.1128/jb.93.2.740-748.1967. |
[12] | YUE M, RANKIN SC, BLANCHET RT, NULTON JD, EDWARDS RA, SCHIFFERLI DM. Diversification of the Salmonella fimbriae: a model of macro- and microevolution[J]. Public Library of Science, 2012, 7(6): e38596-e38611. |
[13] | TOBIAS D, JOSEPH LB, ESTHER B, MAGNUS A. Unveiling molecular interactions that stabilize bacterial adhesion pili[J]. Biophysical Journal, 2022, 121(11): 2096-2106 DOI:10.1016/j.bpj.2022.04.036. |
[14] | SCAVONE P, VILLAR S, UMPIÉRREZ A, ZUNINO P. Role of Proteus mirabilis MR/P fimbriae and flagella in adhesion, cytotoxicity and genotoxicity induction in T24 and Vero cells[J]. Pathogens and Disease, 2015, 73(4): ftv017. |
[15] | DU MG, YUAN ZN, WERNEBURG GT, HENDERSON NS, CHAUHAN H, KOVACH A, ZHAO GP, JOHL J, LI HL, THANASSI DG. Processive dynamics of the usher assembly platform during uropathogenic Escherichia coli P pilus biogenesis[J]. Nature Communications, 2021, 12: 5207-5207 DOI:10.1038/s41467-021-25522-6. |
[16] | BERGSTEN G, SAMUELSSON M, WULT B, LEIJONHUFVUD I, FISCHER H, SVANBORG C. PapG-dependent adherence breaks mucosal inertia and triggers the innate host response[J]. The Journal of Infectious Diseases, 2004, 189(9): 1734-1742 DOI:10.1086/383278. |
[17] | THOMAS WE, CARLUCCI L, YAKOVENKO O, INTERLANDI G, Le TRONG I, APRIKIAN P, MAGALA P, LARSON L, SLEDNEVA Y, TCHESNOKOVA V, STENKAMP RE, SOKURENKO EV. Recombinant FimH adhesin demonstrates how the allosteric catch bond mechanism can support fast and strong bacterial attachment in the absence of shear[J]. Journal of Molecular Biology, 2022, 434(17): 167681-167681 DOI:10.1016/j.jmb.2022.167681. |
[18] | YIN LZ, DAI YY, CHEN H, HE XW, OUYANG P, HUANG XL, SUN XG, AI YR, LAI SY, ZHU L, XU ZW. Cinnamaldehyde resist Salmonella typhimurium adhesion by inhibiting type Ⅰ fimbriae[J]. Molecules (Basel, Switzerland), 2022, 27(22): 7753-7753 DOI:10.3390/molecules27227753. |
[19] | SAUER MM, JAKOB RP, LUBER T, CANONICA F, NAVARRA G, ERNST B, UNVERZAGT C, MAIER T, GLOCKSHUBER R. Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets[J]. Journal of the American Chemical Society, 2019, 141(2): 936-944 DOI:10.1021/jacs.8b10736. |
[20] | KUŹMIŃSKA-BAJOR M, GRZYMAJŁO K, UGORSKI M. Type 1 fimbriae are important factors limiting the dissemination and colonization of mice by Salmonella enteritidis and contribute to the induction of intestinal inflammation during Salmonella invasion[J]. Frontiers in Microbiology, 2015, 6: 276-286. |
[21] | BUSCH A, PHAN G, WAKSMAN G. Molecular mechanism of bacterial type 1 and P pili assembly[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373(2036): 20130153-20130153. |
[22] | ANA GTORRELLA, MERCEDES DV, PATRICIA PP, JESÚS OI, ESTRELLA RM, MARÍA DM, ANTONIO O, ÁLVARO PA, FELIPE FC. Prevalence of the fimbrial operon mrkABCD, mrkA expression, biofilm formation and effect of biocides on biofilm formation in carbapenemase-producing Klebsiella pneumoniae isolates belonging or not belonging to high-risk clones[J]. International Journal of Antimicrobial Agents, 2022, 60(4): 106663-106663 DOI:10.1016/j.ijantimicag.2022.106663. |
[23] |
李扬, 韩文瑜, 雷连成, 李志杰, 石蕾. 肺炎克雷伯菌菌毛粘附素克隆表达及其对体外培养细胞的粘附活性[J]. 微生物学报, 2009, 49(5): 639-643.
LI Y, HAN WY, LEI LC, LI ZJ, SHI L. MrkD adhesin of Klebsiella pneumoniae expression, purification and analysis of adhesive activity[J]. Acta Microbiologica Sinica, 2009, 49(5): 639-643 (in Chinese). |
[24] | KATE L, CLARA B, WILLEM MV, HANNE LP. Bridging bacteria and the gut: functional aspects of type Ⅳ pili[J]. Trends in Microbiology, 2020, 28(5): 340-348 DOI:10.1016/j.tim.2020.02.003. |
[25] | MUSCHIOL S, ERLENDSSON S, ASCHTGEN MS, OLⅣEIRA V, SCHMIEDER P, de LICHTENBERG C, TEILUM K, BOESEN T, AKBEY U, HENRIQUES-NORMARK B. Structure of the competence pilus major pilin ComGC in Streptococcus pneumoniae[J]. The Journal of Biological Chemistry, 2017, 292(34): 14134-14146 DOI:10.1074/jbc.M117.787671. |
[26] | MARTINI AM, MORICZ BS, WOODS LJ, JONES BD. Type Ⅳ pili of Streptococcus sanguinis contribute to pathogenesis in experimental infective endocarditis[J]. Microbiology Spectrum, 2021, 9(3): e0175221 DOI:10.1128/Spectrum.01752-21. |
[27] | CHINGCUANCO F, YU YJ, KUS JV, QUE L, LACKRAJ T, LÉVESQUE CM, BARNETT FOSTER D. Identification of a novel adhesin involved in acid-induced adhesion of enterohaemorrhagic Escherichia coli O157:H7[J]. Microbiology (Reading, England), 2012, 158(Pt 9): 2399-2407. |
[28] |
LI X. The roles and underlying mechanisms of uropathogenic Escherichia coli fimbrial adhesin YadC in the bacterial colonization[D]. Tianjin: Doctoral Dissertation of Tianjin Medical University, 2020 (in Chinese). 李晓. 尿道致病性大肠杆菌的菌毛黏附素YadC在细菌定殖中的作用和机制研究[D]. 天津: 天津医科大学博士学位论文, 2020. |
[29] | FRANCIUS G, PETIT F, CLÉMENT E, CHEKLI Y, GHIGO JM, BELOIN C, DUVAL JFL. On the strong connection between nanoscale adhesion of Yad fimbriae and macroscale attachment of Yad-decorated bacteria to glycosylated, hydrophobic and hydrophilic surfaces[J]. Nanoscale, 2021, 13(2): 1257-1272 DOI:10.1039/D0NR06840C. |
[30] |
HUANG FF. FlgE protein expression and the construction of flhA/flhB gene deletion mutants in Salmonella typhimurium[D]. Changsha: Master's Thesis of Hunan Normal University, 2020 (in Chinese). 黄芳芳. 鼠伤寒沙门氏菌鞭毛FlgE蛋白表达及flhA、flhB基因缺失株构建[D]. 长沙: 湖南师范大学硕士学位论文, 2020. |
[31] |
DONG X. Studies on the function of genes involved in invasion and adhesion of Edwardsiella tarda[D]. Qingdao: Master's Thesis of Ocean University of China, 2013 (in Chinese). 董雪. 迟缓爱德华氏菌侵袭与粘附相关基因的功能研究[D]. 青岛: 中国海洋大学硕士学位论文, 2013. |
[32] | KAN PW, SASAKI H, INABA K, WATANABE K, HAMADA N, MINABE M. Inhibitory effects of azithromycin on the adherence ability of Porphyromonas gingivalis[J]. Journal of Periodontology, 2019, 90(8): 903-910 DOI:10.1002/JPER.18-0559. |
[33] | VERMA S, PRESCOTT RA, INGANO L, NICKERSON KP, HILL E, FAHERTY CS, FASANO A, SENGER S, CHERAYIL BJ. The YrbE phospholipid transporter of Salmonella enterica serovar Typhi regulates the expression of flagellin and influences motility, adhesion and induction of epithelial inflammatory responses[J]. Gut Microbes, 2020, 11(3): 526-538 DOI:10.1080/19490976.2019.1697593. |
[34] | HAYASHI N, MATSUKAWA M, HORINISHI Y, NAKAI K, SHOJI A, YONEKO Y, YOSHIDA N, MINAGAWA S, GOTOH N. Interplay of flagellar motility and mucin degradation stimulates the association of Pseudomonas aeruginosa with human epithelial colorectal adenocarcinoma (Caco-2) cells[J]. Journal of Infection and Chemotherapy, 2013, 19(2): 305-315 DOI:10.1007/s10156-013-0554-4. |
[35] | ZGAIR AK, CHHIBBER S. Stenotrophomonas maltophilia flagellin is involved in bacterial adhesion and biofilm formation[J]. Microbiology, 2013, 82(5): 647-651 DOI:10.1134/S0026261713050172. |
[36] | ZENG DX, ZHANG XP, XUE F, WANG YH, JIANG LY, JIANG Y. Phenotypic characters and molecular epidemiology of Campylobacter jejuni in east China[J]. Journal of Food Science, 2016, 81(1): M106-M113 DOI:10.1111/1750-3841.13146. |
[37] | TASTEYRE A, BARC MC, COLLIGNON A, BOUREAU H, KARJALAINEN T. Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization[J]. Infection and Immunity, 2001, 69(12): 7937-7940 DOI:10.1128/IAI.69.12.7937-7940.2001. |
[38] |
LI CC. Study on the function of outer membrane protein A of pathogenic Yersinia enterocolitica[D]. Zhenjiang: Master's Thesis of Jiangsu University, 2018 (in Chinese). 李楚楚. 致病性小肠结肠炎耶尔森菌外膜蛋白A功能初步研究[D]. 镇江: 江苏大学硕士学位论文, 2018. |
[39] |
陈玉兰, 刘一朵, 周向梅. 分枝杆菌肝素结合血凝素研究进展[J]. 中国防痨杂志, 2022, 44(1): 95-101.
CHEN YL, LIU YD, ZHOU XM. A review of researches on heparin-binding adhesions of Mycobacteria[J]. Chinese Journal of Antituberculosis, 2022, 44(1): 95-101 (in Chinese). |
[40] |
周晓红. 丝状血凝素在介导百日咳杆菌粘附WiDr细胞上起主要作用[J]. 国外医学预防诊断治疗用生物制品分册, 1987, 10(3): 126-126.
ZHOU XH. Filamentous hemagglutinin plays an important role in mediating the adhesion of Bordetella pertussis to WiDr cells[J]. Foreign Medicine Section of Biological Products for Prophylaxisdiagnosisand Therapy, 1987, 10(3): 126-126 (in Chinese). |
[41] |
GUO L. The three-dimensional structure of the extracellular adhesion domain of HpaA from Helicobacter pylori[D]. Chongqing: Master's Thesis of Third Military Medical University, 2016 (in Chinese). 郭玲. 幽门螺杆菌黏附素A (HpaA)胞外黏附相关结构域的三维结构测定[D]. 重庆: 第三军医大学硕士学位论文, 2016. |
[42] |
崔飞云, 徐溢, 赵斌, 车玉兰, 刘露露. 致病菌与糖的特异性识别及其分析应用研究[J]. 分析测试学报, 2017, 36(6): 817-828.
CUI FY, XU Y, ZHAO B, CHE YL, LIU LL. Specific recognition of pathogenic bacterium towards glycan and its applications in analytical chemistry[J]. Journal of Instrumental Analysis, 2017, 36(6): 817-828 (in Chinese). |
[43] | van BELKUM A, ALMEIDA C, BARDIAUX B, BARRASS SV, BUTCHER SJ, ÇAYKARA T, CHOWDHURY S, DATAR R, EASTWOOD I, GOLDMAN A, GOYAL M, HAPPONEN L, IZADI-PRUNEYRE N, JACOBSEN T, JOHNSON PH, KEMPF VAJ, KIESSLING A, BUENO JL, MALIK A, MALMSTRÖM J, et al. Host-pathogen adhesion as the basis of innovative diagnostics for emerging pathogens[J]. Diagnostics (Basel, Switzerland), 2021, 11(7): 1259. |
[44] |
颜英俊. 细菌感染过程建立的分子机制[J]. 国外医学临床生物化学与检验学分册, 2000, 21(1): 13-15.
YAN YJ. Molecular mechanism of bacterial infection process[J]. Foreign Medical Sciences, 2000, 21(1): 13-15 (in Chinese). |
[45] | MUSYOKI AM, SHI ZY, XUAN CL, LU GW, QI JX, GAO F, ZHENG BW, ZHANG QM, LI Y, HAYWOOD J, LIU CH, YAN JH, SHI Y, GAO GF. Structural and functional analysis of an anchorless fibronectin-binding protein FBPS from Gram-positive bacterium Streptococcus suis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13869-13874. |
[46] | NADIA NCI, AMELIA MS, BRIAN HL, PAUL S, STEVEN KL. Host blood proteins as bridging ligand in bacterial aggregation as well as anchor point for adhesion in the molecular pathogenesis of Staphylococcus aureus infections[J]. Micron, 2021, 150: 103137-103137 DOI:10.1016/j.micron.2021.103137. |
[47] | de GAETANO GV, COPPOLINO F, LENTINI G, FAMÀ A, CULLOTTA C, RAFFAELE I, MOTTA C, TETI G, SPEZIALE P, PIETROCOLA G, BENINATI C. Streptococcus pneumoniae binds collagens and C1q via the SSURE repeats of the PfbB adhesin[J]. Molecular Microbiology, 2022, 117(6): 1479-1492 DOI:10.1111/mmi.14920. |
[48] | KHEMLANI AHJ, PROFT T, LOH JMS. Assays to analyze adhesion of group A Streptococcus to host cells[J]. Methods in Molecular Biology (Clifton, N J), 2020, 2136: 271-278. |
[49] | STONES DH, KRACHLER AM. Fatal attraction: how bacterial adhesins affect host signaling and what we can learn from them[J]. International Journal of Molecular Sciences, 2015, 16(2): 2626-2640 DOI:10.3390/ijms16022626. |
[50] | GELLINGS PS, McGEE DJ. Arcanobacterium haemolyticum utilizes both phospholipase D and arcanolysin to mediate its uptake into nonphagocytic cells[J]. Infection and Immunity, 2019, 87(5): e00832-e00818. |
[51] | BOUMART Z, VELGE P, WIEDEMANN A. Multiple invasion mechanisms and different intracellular behaviors: a new vision of Salmonella-host cell interaction[J]. FEMS Microbiology Letters, 2014, 361(1): 1-7 DOI:10.1111/1574-6968.12614. |
[52] | TEGTMEYER N, ROHDE M, BACKERT S. Clinical presentations and pathogenicity mechanisms of bacterial foodborne infections[M]//Food Science Text Series. New York, NY: Springer New York, 2011: 13-31. |
[53] | CRÓINÍN TO, BACKERT S. Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism?[J]. Frontiers in Cellular and Infection Microbiology, 2012, 2: 25. |
[54] | PIZARRO-CERDÁ J, COSSART P. Listeria monocytogenes: cell biology of invasion and intracellular growth[J]. Microbiology Spectrum, 2018, 6(6): 1-16. |
[55] | MENANTEAU-LEDOUBLE S, LAWRENCE ML, EL-MATBOULI M. Invasion and replication of Yersinia ruckeri in fish cell cultures[J]. BMC Veterinary Research, 2018, 14(1): 81-92 DOI:10.1186/s12917-018-1408-1. |
[56] | KOTA KP, EATON B, LANE D, ULRICH M, ULRICH R, PEYSER BD, ROBINSON CG, JAISSLE JG, PEGORARO G, BAVARI S, PANCHAL RG. Integrating high-content imaging and chemical genetics to probe host cellular pathways critical for Yersinia pestis infection[J]. PLoS One, 2013, 8(1): e55167 DOI:10.1371/journal.pone.0055167. |
[57] | DOWD GC, BHALLA M, KEAN B, THOMAS R, IRETON K. Role of host type ⅠA phosphoinositide 3-kinase pathway components in invasin-mediated internalization of Yersinia enterocolitica[J]. Infection and Immunity, 2016, 84(6): 1826-1841 DOI:10.1128/IAI.00142-16. |
[58] | MEDICI NP, BLISKA JB. Methods for detection of pyrin inflammasome assembly in macrophages infected with Yersinia spp.[J]. Methods in Molecular Biology (Clifton, N J), 2019, 2010: 241-255. |
[59] | de CÁRCER DA, CUÍV PÓ, WANG TT, KANG S, WORTHLEY D, WHITEHALL V, GORDON I, McSWEENEY C, LEGGETT B, MORRISON M. Numerical ecology validates a biogeographical distribution and gender-based effect on mucosa-associated bacteria along the human colon[J]. The ISME Journal, 2011, 5(5): 801-809 DOI:10.1038/ismej.2010.177. |
[60] | VADIA S, ARNETT E, HAGHIGHAT AC, WILSON-KUBALEK EM, TWETEN RK, SEVEAU S. The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes[J]. PLoS Pathogens, 2011, 7(11): e1002356 DOI:10.1371/journal.ppat.1002356. |
[61] | JIWANI S, WANG Y, DOWD GC, GIANFELICE A, PICHESTAPONG P, GAVICHERLA B, VANBENNEKOM N, IRETON K. Identification of components of the host type ⅠA phosphoinositide 3-kinase pathway that promote internalization of Listeria monocytogenes[J]. Infection and Immunity, 2012, 80(3): 1252-1266 DOI:10.1128/IAI.06082-11. |
[62] | COSSART P. Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19484-19491. |
[63] | HAN XL, YU RT, JI L, ZHEN DY, TAO S, LI S, SUN YS, HUANG LY, FENG Z, LI XP, HAN GG, SCHMIDT M, HAN L. InlB-mediated Listeria monocytogenes internalization requires a balanced phospholipase D activity maintained through phospho-cofilin[J]. Molecular Microbiology, 2011, 81(4): 860-880 DOI:10.1111/j.1365-2958.2011.07726.x. |
[64] | BAMBURG JR. Listeria monocytogenes cell invasion: a new role for cofilin in co-ordinating actin dynamics and membrane lipids[J]. Molecular Microbiology, 2011, 81(4): 851-854 DOI:10.1111/j.1365-2958.2011.07759.x. |
[65] | KÜHN S, ENNINGA J. The actin comet guides the way: how Listeria actin subversion has impacted cell biology, infection biology and structural biology[J]. Cellular Microbiology, 2020, 22(4): e13190. |
[66] | BAJUNAID W, HAIDAR-AHMAD N, KOTTARAMPATEL AH, OURIDA MANIGAT F, SILUÉ N, TCHAGANG CF, TOMARO K, CAMPBELL-VALOIS FX. The T3SS of Shigella: expression, structure, function, and role in vacuole escape[J]. Microorganisms, 2020, 8(12): 1933 DOI:10.3390/microorganisms8121933. |
[67] | LI SQ, HAN XF, UPADHYAY I, ZHANG WP. Characterization of functional B-cell epitopes at the amino terminus of Shigella invasion plasmid antigen B (IpaB)[J]. Applied and Environmental Microbiology, 2022, 88(15): e0038422 DOI:10.1128/aem.00384-22. |
[68] | VEENENDAAL AKJ, SUNDIN C, BLOCKER AJ. Small-molecule type Ⅲ secretion system inhibitors block assembly of the Shigella type Ⅲ secreton[J]. Journal of Bacteriology, 2009, 191(2): 563-570 DOI:10.1128/JB.01004-08. |
[69] | MOUNIER J, POPOFF MR, ENNINGA J, FRAME MC, SANSONETTI PJ, van NHIEU GT. The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells[J]. PLoS Pathogens, 2009, 5(1): e1000271 DOI:10.1371/journal.ppat.1000271. |
[70] | HU TJ, ZHANG LZ, WANG W, YANG DH, XIAO JF, ZHANG YX, LIU XH, LIU Q. Edwardsiella piscicida enters nonphagocytic cells via a macropinocytosis-involved hybrid mechanism[J]. Journal of Bacteriology, 2019, 201(5): e00548-e00518. |
[71] | GIBSON RL, LEE MK, SODERLAND C, CHI EY, RUBENS CE. Group B streptococci invade endothelial cells: type Ⅲ capsular polysaccharide attenuates invasion[J]. Infection and Immunity, 1993, 61(2): 478-485 DOI:10.1128/iai.61.2.478-485.1993. |
[72] | HULSE ML, SMITH S, CHI EY, PHAM A, RUBENS CE. Effect of type Ⅲ group B streptococcal capsular polysaccharide on invasion of respiratory epithelial cells[J]. Infection and Immunity, 1993, 61(11): 4835-4841 DOI:10.1128/iai.61.11.4835-4841.1993. |
[73] | KÄLLMAN J, KIHLSTRÖM E. Penetration of group B streptococci through polarized madin-darby canine kidney cells[J]. Pediatric Research, 1997, 42(6): 799-804 DOI:10.1203/00006450-199712000-00014. |
[74] | VALENTIN-WEIGAND P, JUNGNITZ H, ZOCK A, ROHDE M, CHHATWAL GS. Characterization of group B streptococcal invasion in HEp-2 epithelial cells[J]. FEMS Microbiology Letters, 1997, 147(1): 69-74 DOI:10.1111/j.1574-6968.1997.tb10222.x. |
[75] |
GUO ZX. Study on the mechanism of Streptococcus agalactiae invasion of bovine mammary epithelial cells[D]. Hohhot: Doctoral Dissertation of Inner Mongolia University, 2019 (in Chinese). 郭志新. 无乳链球菌入侵奶牛乳腺上皮细胞的机制研究[D]. 呼和浩特: 内蒙古大学博士学位论文, 2019. |
[76] | TYRRELL GJ, KENNEDY A, SHOKOPLES SE, SHERBURNE RK. Binding and invasion of HeLa and MRC-5 cells by Streptococcus agalactiae[J]. Microbiology (Reading, England), 2002, 148(Pt 12): 3921-3931. |
[77] | WANG B, THOMPSON KD, WANGKAHART E, YAMKASEM J, BONDAD-REANTASO MG, TATTIYAPONG P, JIAN JC, SURACHETPONG W. Strategies to enhance tilapia immunity to improve their health in aquaculture[J]. Reviews in Aquaculture, 2022, 1753: 1-16. |
[78] | KUMAR H, KAWAI T, AKIRA S. Pathogen recognition by the innate immune system[J]. International Reviews of Immunology, 2011, 30(1): 16-34 DOI:10.3109/08830185.2010.529976. |
[79] | ESCOLL P, ROLANDO M, GOMEZ-VALERO L, BUCHRIESER C. From amoeba to macrophages: exploring the molecular mechanisms of Legionella pneumophila infection in both hosts[J]. Current Topics in Microbiology and Immunology, 2013, 376: 1-34. |
[80] |
林文, 曹珈琪, 张燕, 丁磊, 崔清华. 细胞焦亡的分子机制及研究进展[J]. 中国当代医药, 2020, 27(27): 25-29.
LIN W, CAO JQ, ZHANG Y, DING L, CUI QH. Molecular mechanism and research progress of cell pyrolysis[J]. China Modern Medicine, 2020, 27(27): 25-29 (in Chinese). |
[81] |
曲一帆. 细菌感染与细胞焦亡研究进展[J]. 临床医药文献电子杂志, 2019, 6(37): 196-196.
QU YF. Research progress of bacterial infection and cell pyroptosis[J]. Electronic Journal of Clinical Medical Literature, 2019, 6(37): 196-196 (in Chinese). |
[82] | FINK SL, BERGSBAKEN T, COOKSON BT. Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11): 4312-4317. |
[83] | SUZUKI T, FRANCHI L, TOMA C, ASHIDA H, OGAWA M, YOSHIKAWA Y, MIMURO H, INOHARA N, SASAKAWA C, NUÑEZ G. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via ipaf and ASC in Shigella-infected macrophages[J]. PLoS Pathogens, 2007, 3(8): e111 DOI:10.1371/journal.ppat.0030111. |
[84] | LI C, YIN WT, YU N, ZHANG DM, ZHAO HJ, LIU JB, LIU JC, PAN YP, LIN L. MiR-155 promotes macrophage pyroptosis induced by Porphyromonas gingivalis through regulating the NLRP3 inflammasome[J]. Oral Diseases, 2019, 25(8): 2030-2039 DOI:10.1111/odi.13198. |
[85] | KATAGIRI N, SHOBUIKE T, CHANG B, KUKITA A, MIYAMOTO H. The human apoptosis inhibitor NAIP induces pyroptosis in macrophages infected with Legionella pneumophila[J]. Microbes and Infection, 2012, 14(13): 1123-1132. |
[86] |
谢士杰, 彭小薇, 冯宇, 许冠龙, 丁家波, 范学政. 布鲁氏菌逃避宿主免疫机制的研究进展[J]. 生命科学, 2019, 31(9): 871-878.
XIE SJ, PENG XW, FENG Y, XU GL, DING JB, FAN XZ. Mechanism of Brucella evading from host immune response[J]. Chinese Bulletin of Life Sciences, 2019, 31(9): 871-878 (in Chinese). |
[87] |
WANG YS. Research on the mechanism of neutrophil pyroptosis induced by Helicobacter pylori[D]. Dalian: Master's Thesis of Dalian Medical University, 2021 (in Chinese). 王玉珊. 幽门螺杆菌介导中性粒细胞焦亡启动机制的研究[D]. 大连: 大连医科大学硕士学位论文, 2021. |
[88] | SARHAN J, LIU BC, MUENDLEIN HI, LI P, NILSON R, TANG AY, RONGVAUX A, BUNNELL SC, SHAO F, GREEN DR, POLTORAK A. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(46): E10888-E10897. |
[89] | CARRERO JA, UNANUE ER. Mechanisms and immunological effects of apoptosis caused by Listeria monocytogenes[J]. Advances in Immunology, 2012, 113: 157-174. |
[90] |
宫婷. 自噬在免疫应答与微生物感染中的作用[J]. 畜牧兽医科技信息, 2022(4): 13-15.
GONG T. The role of autophagy in immune response and microbial infection[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2022(4): 13-15 (in Chinese). |
[91] |
吴移谋, 黄燕茹, 卢思敏, 王建业. 胞内菌与宿主自噬的相互作用[J]. 中南医学科学杂志, 2022, 50(2): 157-161.
WU YM, HUANG YR, LU SM, WANG JY. Intracellular bacterial interaction with host autophagy[J]. Medical Science Journal of Central South China, 2022, 50(2): 157-161 (in Chinese). |
[92] | BESTEBROER J, V'KOVSKI P, MAUTHE M, REGGIORI F. Hidden behind autophagy: the unconventional roles of ATG proteins[J]. Traffic (Copenhagen, Denmark), 2013, 14(10): 1029-1041. |
[93] | KIM J, KUNDU M, VIOLLET B, GUAN KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nature Cell Biology, 2011, 13(2): 132-141. |
[94] | HUANG J, BRUMELL JH. Bacteria-autophagy interplay: a battle for survival[J]. Nature Reviews Microbiology, 2014, 12(2): 101-114. |
[95] |
吴移谋, 王建业. 胞内寄生菌与宿主细胞凋亡的相互作用分子机制研究[J]. 中南医学科学杂志, 2021, 49(3): 249-252.
WU YM, WANG JY. Advances in molecular mechanisms of the interaction between intracellular pathogens and host cell apoptosis[J]. Medical Science Journal of Central South China, 2021, 49(3): 249-252 (in Chinese). |
[96] | ADAM JC, MARGARET EW, LINDSAY MG, WYNDHAM WL. The pla protease of Yersinia pestis degrades fas ligand to manipulate host cell death and inflammation[J]. Cell Host & Microbe, 2014, 15(4): 424-434. |
[97] | WANG J, LI BX, GE PP, LI J, WANG Q, GAO GF, QIU XB, LIU CH. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system[J]. Nature Immunology, 2015, 16(3): 237-245. |
[98] | MUSE JD, LALITA R. The role of the granuloma in expansion and dissemination of early tuberculous infection[J]. Cell, 2009, 136(1): 37-49. |
[99] |
陈鹏亮, 郭进明, 赖文杰, 李飞, 刘明. 细胞程序性坏死的研究进展[J]. 华西医学, 2016, 31(8): 1447-1452.
CHEN PL, GUO JM, LAI WJ, LI F, LIU M. The research progress of cell necroptosis[J]. West China Medical Journal, 2016, 31(8): 1447-1452 (in Chinese). |
[100] |
陈牧, 黄雷. Necroptosis信号通路与靶向治疗的研究进展[J]. 生命科学, 2012, 24(7): 666-673.
CHEN M, HUANG L. Recent advances in signal pathway of necroptosis and necroptosis targeted therapies[J]. Chinese Bulletin of Life Sciences, 2012, 24(7): 666-673 (in Chinese). |
[101] | MA WB, TUMMERS B, van ESCH EMG, GOEDEMANS R, MELIEF CJM, MEYERS C, BOER JM, van der BURG SH. Human papillomavirus downregulates the expression of IFITM1 and RIPK3 to escape from IFNγ- and TNFα-mediated antiproliferative effects and necroptosis[J]. Frontiers in Immunology, 2016, 7: 496-511. |
[102] | FRANCISCO JR, LALITA R. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species[J]. Cell, 2013, 153(3): 521-534. |
[103] | BROZ P, RUBY T, BELHOCINE K, BOULEY DM, KAYAGAKI N, DIXIT VM, MONACK DM. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1[J]. Nature, 2012, 490(7419): 288-291. |
[104] |
CAI X. Changes of pulmonary circulation and bacterial translocation in immunosuppressed Guinea pigs induced by Legionella infection[D]. Shenyang: Doctoral Dissertation of China Medical University, 2019 (in Chinese). 才旭. 军团菌感染致免疫抑制豚鼠肺循环变化及肠道细菌易位的实验研究[D]. 沈阳: 中国医科大学博士学位论文, 2019. |