微生物学报  2023, Vol. 63 Issue (9): 3335-3349   DOI: 10.13343/j.cnki.wsxb.20220940.
http://dx.doi.org/10.13343/j.cnki.wsxb.20220940
中国科学院微生物研究所,中国微生物学会

文章信息

秦飞飞, 杨晓刚, 杨立霞. 2023
QIN Feifei, YANG Xiaogang, YANG Lixia.
丝状真菌杀松材线虫代谢产物研究进展
Research progress in metabolites of filamentous fungi against Bursaphelenchus xylophilus
微生物学报, 63(9): 3335-3349
Acta Microbiologica Sinica, 63(9): 3335-3349

文章历史

收稿日期:2022-12-26
网络出版日期:2023-06-01
丝状真菌杀松材线虫代谢产物研究进展
秦飞飞 , 杨晓刚 , 杨立霞     
呼伦贝尔学院生命科学学院, 内蒙古 呼伦贝尔 021008
摘要:松材线虫病是破坏我国森林生态系统最为严重的病害,具有极强的传播性和破坏性,防治此种病害迫在眉睫。基于对物理和化学方式防治松材线虫的研究,对环境友好度最高的生物防治具有更广的研究前景。丝状真菌及其次级代谢产物,来源于自然,与传统的化学杀线虫药剂相比,对环境影响较小,针对松材线虫的致死作用更为专一,因此,从丝状真菌的次级代谢产物中分离获得杀松材线虫活性产物并测定其结构和活性,对于松材线虫病的防治具有重要意义。本文对丝状真菌产生的具有杀松材线虫活性产物的结构、活性展开综述,发现近二十年共有57个活性产物被发现,且结构多种多样,活性差别较大,为了更好地开展此领域的研究,本文对所有产物的结构和活性进行了系统总结,最后又对该领域的研究进行了总结和展望,以期对松材线虫病的生物防治和丝状真菌杀松材线虫次级代谢产物的深入研究提供参考。
关键词松材线虫    丝状真菌    杀松材线虫代谢产物    次级代谢产物结构    次级代谢产物活性    
Research progress in metabolites of filamentous fungi against Bursaphelenchus xylophilus
QIN Feifei , YANG Xiaogang , YANG Lixia     
College of Life Sciences, Hulunbuir University, Hulunbuir 021008, Inner Mongolia, China
Abstract: Pine wilt disease caused by Bursaphelenchus xylophilus is a severe disease with strong transmission and destructive damage to the forest ecosystems in China. It is therefore urgent to prevent this disease. Compared with the physical and chemical control measures of B. xylophilus, biocontrol being environmentally friendly has a wide research prospect. Filamentous fungi and their secondary metabolites have less impact on the environment and more specific lethal effects on B. xylophilus than chemical nematicides. Therefore, it is of great significance to isolate antinematodal metabolites from filamentous fungi and determine their structures and activities. This paper introduces the structures and activities of metabolites from filamentous fungi against B. xylophilus. A total of 57 metabolites against B. xylophilus have been discovered in the past two decades, with diverse structures and varied activities. This paper systematically summarizes the structures and activities of all the metabolites to facilitate the research in this field and then summarizes and prospects the research in this field. It is hoped that this review will provide reference for the biocontrol of pine wilt disease and the further research on the metabolites of filamentous fungi against B. xylophilus.
Keywords: Bursaphelenchus xylophilus    filamentous fungi    metabolites against Bursaphelenchus xylophilus    structures of secondary metabolites    activities of secondary metabolites    

松材线虫是对我国林业造成损失最为严重的外来入侵物种,其引发的松树毁灭性的传染病称为松材线虫病(pine wilt disease, PWD),又称松树萎蔫病[1]。自1979年,美国发现松材线虫可以引起松树死亡之后[2],松材线虫在全世界范围迅速传播开来[3]。先后传入日本、中国、韩国、葡萄牙、西班牙、加拿大和墨西哥等国家,其中日本、中国和韩国疫情最为严重[4]

中国是目前受松材线虫病影响最为严重的国家。1982年,松材线虫病首先在我国南京地区出现[5],随后开始向我国其他省市传播,且随着松材线虫适应能力的不断增强,其生存区域在我国逐步扩大[4]。2015年以前,松材线虫病基本发生在我国南方最适宜发生病害的区域,即我国黄河以南的广大区域,然而2016年,辽宁省发生严重松材线虫病害,且发展趋势明显不符合病害分布区北缘应有的发生状态,此次病害的发生说明松材线虫病在我国的发病范围迅速北移。已有研究结果表明我国绝大多数省区均属于松材线虫高适生区或中适生区,仅有黑龙江、内蒙古、甘肃、云南和西藏属于低适生区或非适生区,青海和新疆属于非适生区[6]。几十年来,松材线虫病在我国持续发展,病害发生区域逐渐扩大,给我国造成了严重的经济损失。虽然较以往,2021年病害发生面积和病死树数量均出现下降,但病害形势依旧十分严峻。仅2021年,松材线虫病害发生面积就为171.65万hm2,病死数目的数量为1 407.92万株,全国有19个省(自治区、直辖市) 742个县级行政区发生病害[7]

鉴于松材线虫病对我国经济和生态环境造成的巨大损失和损害,结合其在世界范围内造成的更广范围的损失,国内外为了有效控制松材线虫病,开展了众多防治措施的研究[8]。松材线虫病在某一地区的发生需满足4个关键因素,即易感松树、媒介昆虫、松材线虫和合适温湿度,媒介昆虫是松材线虫病得以快速传播的最为主要的关键因素。松材线虫的传播媒介主要为昆虫,其中携带松材线虫最多的昆虫是松墨天牛,因此松墨天牛成为松材线虫最主要的传播媒介昆虫。为更好地防治松材线虫,目前主要进行防治的是其媒介昆虫即松墨天牛[9]。而对松墨天牛防治应用最为广泛的化学防治和物理防治都存在较大缺点[10],如通过喷洒化学药剂对病虫害进行治理,不但会破坏环境,造成一定程度的环境污染,而且容易提高病毒、害虫等生物的抗药性,影响病虫害治理效果,对病虫害防治工作带来新的难题。为更好地防治松材线虫,且最大限度地保护生态环境,转换防治策略和角度,以松材线虫为防治对象,逐步利用具有杀松材线虫活性的动物、植物、微生物或其次级代谢产物开展生物防治研究[8]具有很好的研究前景。

丝状真菌作为生物防治松材线虫病的重要微生物资源,其中的食线虫真菌能够通过捕捉、寄生、定殖毒杀线虫。食线虫真菌根据其具体作用机制,可以分为3类,即捕食真菌、内寄生真菌和产毒真菌[8],三类食线虫真菌都能通过不同的生防潜力达到控制病害线虫数量的效果[11]。其中捕食真菌能够通过收缩环捕捉器套住或者三维菌网粘缠消灭松材线虫,达到杀死松材线虫的效果,如2株试验获得的Drechslerella dactyloides菌株,均表现出较高的诱捕和捕获松材线虫的能力,其中1株更是在接种后24 h内可捕获100%的线虫虫体[12];内寄生真菌的孢子能附着在松材线虫体表,待孢子萌发时能够侵入虫体内繁殖,最终杀死线虫,如第一个被报道的松材线虫内寄生真菌Esteya vermicola,其中发现的一个新菌株甚至能够在3–4 d内杀死几乎全部供试松材线虫[13];产毒真菌能通过产生的毒素杀死线虫(本文所列举次级代谢产物即为产毒真菌所产毒素)[8]。利用这类丝状真菌的防治特性,很多这类的丝状真菌已经被开发为生防制剂并在大田中进行使用,从而达到防治线虫病害的目的,但这类生防制剂具有活体生防制剂的共同通病即施用时的不稳定性和不一致性[14]。为了克服这一通病,也为了更好的防治松材线虫,在已有的活体丝状真菌生防菌剂的研究基础上,进一步对丝状真菌的次级代谢产物展开研究,并对这类产物进行深入研发已经成为目前研究的热点。本文对1993年至今丝状真菌产生杀松材线虫活性产物的结构、活性进行梳理总结,并对此领域的研究进行了展望,以期对此方面的研究提供帮助。

1 丝状真菌杀松材线虫次级代谢产物结构和活性 1.1 半知菌真菌和寄生菌属真菌杀松材线虫次级代谢产物

从属于Mycelia sterilia的半知菌菌株D1084的培养滤液中分离获得属于环酯肽(cyclodepsipeptide)的2个活性物质bursaphelocide A (1)和bursaphelocide B (2),当物质浓度为100 μg/mL时,bursaphelocide A和B对松材线虫都具有明显的致死作用[15]。寄生菌属Hypomyces sp. 丝状真菌产生的苝醌类次级代谢物hypocrellin A (3)和elsinochrome A (4)对松材线虫有致死作用,两种物质在处理18 h时的半致死率浓度分别是50 µg/mL和15 µg/mL[16]。产物1‒4结构见图 1

图 1 次级代谢产物1‒4结构 Figure 1 Structure of secondary metabolites of 1‒4.

1.2 淡水真菌杀松材线虫次级代谢产物

在淡水真菌菌株Paraniesslia sp. YMF 1.01400的菌丝培养物中分离获得2个鞘脂(sphingolipid)类活性物质,分别是(2S, 2′R, 3R, 3′E, 4E, 8E)-1-O-(β-d-glucopyranosyl)-3-hydroxyl-2-[N-2′-hydroxyl-3′-eico-sadecenoyl]amino-9-methyl-4, 8-octadecadiene (5)和(2S, 2′R, 3R, 3′E, 4E, 8E)-1-O-(β-d- glucopyranosyl)-3-hydroxyl-2-[N-2′-hydroxyl-3′-octadecenoyl]amino-9-methyl-4, 8-octadecadiene (6),在体外试验中,这2种化合物显示出对松材线虫的中等杀线虫活性,2个物质的致死中浓度(lethal concentration 50%, LC50)均为110 μg/mL[17]。淡水真菌Paraniesslia sp. 83能够产生一种物质3, 5-dicarboxyaldehyde-4-hydroxy-acetophenone (7),这种物质在处理松材线虫24 h时的半数致死量(lethal dose 50%, LD50)为200 ppm[18-19]。从淡水真菌Caryospora callicarpa YMF 1.01026具有杀线虫活性的粗提取中,分离获得4种对松材线虫有杀线虫活性的萘醌(naphthalenone)类活性产物,分别是4, 8-dihydroxy-3, 4-dihydronaphthalen-1 (2H)-one (8),4, 6-dihydroxy-3, 4-dihydronaphthalen- 1(2H)-one (9),4, 6, 8-trihydroxy-3, 4- dihydronaphthalen- 1(2H)-one) (10),和3, 4, 6, 8-tetrahydroxy-3, 4- dihydronaphthalen-1(2H)-one (cis-4-hydroxyscytalone) (11),这4种代谢产物对线虫表现出明显的生物活性,处理36 h时,4种物质的LC50依次为209.7、229.3、220.3和206.1 mg/L[20]。从淡水真菌Coelomycetes sp. YMF 1.01029的液体培养物中分离获得5个新的preussomerin类似物,分别是ymf 1029A (12)、B (13)、C (14)、D (15)和E (16),以及4个之前已知的物质,分别是preussomerin C (17)、preussomerin D (18)、(4RS)-4, 8-dihydroxy-3, 4-dihydronaphthalen-1(2H)- one (19)和4, 6, 8-trihydroxy-3, 4- dihydronaphthalen- 1(2H)-one(20),这9个物质对松材线虫都有杀线虫活性,处理24 h时,半抑制浓度(half maximal inhibitory concentration, IC50)在100‒200 µg/mL之间,9个物质中preussomerin D杀线虫效果最好[21],产物5‒20结构见图 2

图 2 次级代谢产物5‒20结构 Figure 2 Structure of secondary metabolites of 5‒20.

1.3 水生真菌杀松材线虫次级代谢产物

水生真菌Pseudohalonectria adversaria YMF 1.01019能产生两种阿扎菲酮(azaphilone)类的活性物质,命名为pseudohalonectrin A (21)和pseudohalonectrin B (22),这2个物质在100 ppm,处理松材线虫时长为24 h时,造成松材线虫的致死率大于50%[22]。水生真菌Caryospora callicarpa YMF 1.01026能够产生3种新型十四内酯(novel tetradecalactone)类活性物质,caryospomycin A (23)、caryospomycin B (24)和caryospomycin C (25),在体外试验时表明,这3个物质都具有杀松材线虫活性,对松材线虫的LC50 (处理36 h)依次为103.1、105.8和105.1 μg/mL[23]。水生真菌Ophioceras dolichostomum YMF 1.00988能够产生2种对松材线虫有致死作用的物质isoamericanoic acid A (26)和caffeic acid (27),LC50分别是133.7 µg/mL和46.8 µg/mL[24],产物21‒27结构见图 3

图 3 次级代谢产物21‒27结构 Figure 3 Structure of secondary metabolites of 21‒27.

1.4 粉红粘帚霉和树粉孢属真菌杀松材线虫次级代谢产物

Gliocladium roseum能够产生一种活性产物glioclasine (28),对松材线虫的LD50为200 µg/mL[18-19]。在Gliocladium roseum YMF 1.00133的甲醇代谢产物中分离获取2个物质单品即gliocladin C (29)和5-n-heneicosylresorcinol (30),处理24 h后,这两个物质对松材线虫的半数有效量(50% effective dose, ED50)分别是200 µg/mL和180 µg/mL[25]。2种活性产物4-hydroxyphenylacetic acid (4-HPA) (31)和oidiolactone D (32)从真菌Oidiodendron sp.中被发掘,均表现出对松材线虫的致死作用,3 mmol/L时的杀虫效率为23%和31%[26]。产物28‒32结构见图 4

图 4 次级代谢产物28‒32结构 Figure 4 Structure of secondary metabolites of 28‒32.

1.5 镰刀菌属和曲霉属真菌杀松材线虫次级代谢产物

在对Fusarium oxysporum EF119的次级代谢产物进行发掘时,发现2个物质对松材线虫具备杀线虫活性,分别是bikaverin (33)和fusaric acid (34),其中fusaric acid的活性强于bikaverin,两种物质浓度在100 μg/mL时,对松材线虫的致死率分别是50%和43%[27]。真菌Fusarium bulbicola产生的命名为beauvericin (35)的活性产物,此物质对松材线虫具有致死效果,浓度为1 mmol/L时,致死率达到46%[28]。在对Aspergillus fumigates的次级代谢产物的发掘中,共发现5种活性物质对松材线虫具有致死效果,分别是fumiquinone A (36),fumiquinone B (37),spinulosin (38),LL-S490β (39)和pseurotin A (40),300 μg/mL时的致死率分别是24%、44%、31%、42%和40%[29]。通过对Aspergillus sp.的研究,发现一种新的次级代谢活性产物,5-hydroxymethyl-2-furoic acid (41),试验结果表明,此物质与松材线虫共同处理4 d后,0.02、0.2和2 mmol/L的致死率分别是2%、6%和16%[30];3个浓度处理到14 d,致死率可达到4%、48%和73%,研究表明处理时间越长,效果越好[30]。产物33‒41结构见图 5

图 5 次级代谢产物33‒41结构 Figure 5 Structure of secondary metabolites of 33‒41.

1.6 地霉属和拟青霉属真菌杀松材线虫次级代谢产物

在真菌菌株Geotrichum sp. AL4培养物的乙酸乙酯提取物中分离获得的3种物质1-[(2R*, 4S*, 5S*)-2-chloro-4-methyl-1, 3-oxazinan-5-yl]ethanone (42)、1-[(2R*, 4S*, 5R*)-2-chloro-4-methyl-1, 3-oxazinan-5-yl]ethanone (42的差向异构体) (43)和1-(2, 4-dihydroxyphenyl)-ethanone (44),在100 μg/mL处理48 h时,对松材线虫的致死率分别是(62.3±2.4)%、(64.2±2.7)%和(54.8±2.3)%[31]Paecilomyces sp. YMF 1.01761产生一种新的杀松材线虫活性产物,命名为4-(4'-carboxy-2'-ethyl-hydroxypentyl)-5, 6-dihydro- 6-methyl-cyclobuta[b]pyridine-3, 6-dicarboxylic acid (45),其在对松材线虫处理24 h时,LD50为167.7 mg/L[32]Paecilomyces lilacinus ZBY-1的发酵产物中分离获得的cerebroside A (46)和cerebroside B (47)对松材线虫都具有致死作用,处理24 h时,cerebroside A在浓度为1 000、100和10 µg/mL的对线虫的致死率分别为100%、100%和11.1%,cerebroside B在浓度为1 000、100和10 µg/mL时的致死率分别是90.48%、11.48%和1.66%[33]Paecilomyces lilacinus PT1菌株的发酵液对松材线虫具有毒杀作用,通过对其发酵液乙酸乙酯萃取物活性组分的分离,鉴定出4种化合物,分别为pseudopelletierine (48)、n-hexadecanoic acid (49)、phthalic acid-butyl hexyl ester (50)和oleic acid (51),推测这4种分离活性物质参与其杀线虫活性[34],产物42‒51结构见图 6

图 6 次级代谢产物42‒51结构 Figure 6 Structure of secondary metabolites of 42‒51.

1.7 木霉属和链格孢属真菌杀松材线虫次级代谢产物

丝状真菌Trichoderma sp. YMF 1.00416的次级代谢分离产物6-pentyl-2H-pyran-2-one (52)在处理时间为48 h,且浓度为200 mg/L时,对松材线虫的致死率为86.67%[35]。内生真菌Alternaria sp. Samif01在其发酵物中分离获得物质alternariol 9-methyl ether (53),此物质对松材线虫的IC50为98.17 µg/mL[36]。产物52‒53结构见图 7

图 7 次级代谢产物52‒53结构 Figure 7 Structure of secondary metabolites of 52‒53.

1.8 其他丝状真菌杀松材线虫次级代谢产物

从丝状真菌Talaromyces thermophilus YM 3-4发酵产物中,分离获得的thermolide A (54)和thermolide B (55)对松材线虫具有非常强的杀线虫活性,其活性效果通过LC50的测定,发现具有和阿维菌素一样的强致死效果,即LC50为0.5‒1.0 μg/mL[37]。在对Leucostoma sp.的培养滤液的乙酸乙酯相进行分离纯化后,获得一种对松材线虫具有杀线虫活性的物质,命名为fusarentin 6, 7-methyl ether (56),是一种镰刀菌素(fusarentin)类杀虫药物,其浓度为1.0 mg/mL时,致死率达到80.68%[38]Annulohypoxylon sp. FPYF3050能够产生一种挥发有机物1, 8-cineole (57)对松材线虫具有杀线虫效果,试验结果表明,1, 8-cineole处理48 h,能够对线虫卵具有40%‒100%的抑制作用;对J2期的松材线虫,在处理24、48和96 h的致死率都超过82.9%;对不同龄期线虫的混合体的致死率在18.7%‒ 91.9%之间,具体致死率取决于处理时间[39]。产物54‒57结构见图 8

图 8 次级代谢产物54‒57结构 Figure 8 Structure of secondary metabolites of 54‒57.

2 总结与展望

全国松材线虫病疫情发生形势依然十分严峻,遏制松材线虫病疫情扩散蔓延和严重发生态势迫在眉睫。遏制松材线虫病害的最为有效的措施是采取科学治理,在根本上消除松材线虫。科学治理松材线虫的措施中,采取生物防治是最为环保且有效的防治手段。丝状真菌资源丰富,是具有研究基础的重要微生物资源,除去其本身能够寄生和杀死松材线虫外,其产生的次级代谢产物更是具有多种多样的生物活性,值得进一步地深入研究。如重要的生防丝状真菌厚垣普可尼亚菌,可以产生多种类型的代谢产物,其中产生的根壳赤霉素衍生物甚至可以抑制造成植物病害的黑腐细菌生长[40]。因此,充分利用丝状真菌这一微生物资源,深入研究其产生的活性产物,能够为生物防治松材线虫病等病害提供重要的环保型物质。

本文总结了自1993年起始,丝状真菌产生的共57个具有杀松材线虫活性的次级代谢产物。研究发现这些活性产物的产生真菌主要隶属于半知菌类和子囊菌门,其中主要属于半知菌类;在半知菌类真菌中大部分为丝孢纲真菌,子囊菌门真菌中大部分主要为粪壳菌纲真菌。代谢产物的类型更是包含聚酮类、环状多肽、醌类等多种类型产物,其中聚酮类为产物的主要类型。

其次对所有产物的活性进入深入研究(活性对比见表 1),发现有关这些产物的活性探究具有以下几个特点:(1) 衡量活性产物活性的标准不同,测定产物活性有效浓度时,浓度单位有μg/mL、ppm、mg/L和mmol/L,有些活性产物虽证明有活性但没有确定具体活性浓度;(2) 对产物活性的判断依据也有所差别,除LC50LD50IC50ED50用于衡量活性效果外,一些物质直接用固定浓度下的致死率来说明活性效果;(3) 同一真菌分离获得的产物有些属于类似物,有些则是完全不同类型的物质;当产物为结构类似物时,其活性差别一般较小,而当获取的产物结构差别较大时,其活性差别一般也差别较大;(4) 不同丝状真菌之间获得的杀松材线虫活性产物类别和活性差别较大,产物类型和活性与所属真菌之间并无明确的联系。

表 1. 丝状真菌杀松材线虫次级代谢产物及其生物活性 Table 1. Antinematodal metabolites against Bursaphelenchus xylophilus of filamentous fungi and their biological activities
The name of the secondary metabolite Source Bioactivity References
Bursaphelocide A (1)
Bursaphelocide B (2)
Imperfect fungus strain D1084 When the concentration was
100 µg/mL, it had obvious lethal effect on B. xylophilus
[15]
Hypocrellin A (3)
Elsinochrome A (4)
Hypomyces sp. After treatment for 18 h, the semi-lethal concentrations of the two substances were 50 µg/mL and 15 µg/mL [16]
(2S, 2'R, 3R, 3'E, 4E, 8E)-1-O-(β-d-glucopyranosyl)-3-
hydroxyl-2-[N-2'-hydroxyl-3'-eico-sadecenoyl]amino-
9-methyl-4, 8-octadecadiene (5)
(2S, 2'R, 3R, 3'E, 4E, 8E)-1-O-(β-d-glucopyranosyl)-3-
hydroxyl-2-[N-2'-hydroxyl-3'-octadecenoyl]amino-
9-methyl-4, 8-octadecadiene (6)
Freshwater
Fungus Paraniesslia sp. YMF 1.01400
The LC50 of both substances was 110 μg/mL [17]
3, 5-dicarboxyaldehyde-4-hydroxy-acetophenone (7) Freshwater
Fungus Paraniesslia sp. 83
The LD50 at 24 h was 200 ppm [18-19]
4, 8-dihydroxy-3, 4-dihydronaphthalen-1(2H)-one (8)
4, 6-dihydroxy-3, 4-dihydronaphthalen-1(2H)-one (9)
4, 6, 8-trihydroxy-3, 4-dihydronaphthalen-1(2H)-one) (10)
3, 4, 6, 8-tetrahydroxy-3, 4-dihydronaphthalen-1(2H)-one (cis-4-hydroxyscytalone) (11)
Freshwater
Fungus Caryospora callicarpa YMF 1.01026
After 36 h treatment, LC50 of the four substances were 209.7, 229.3, 220.3 and 206.1 mg/L [20]
Ymf 1029A (12)
Ymf 1029B (13)
Ymf 1029C (14)
Ymf 1029D (15)
Ymf 1029E (16)
Preussomerin C (17)
Preussomerin D (18)
(4RS)-4, 8-dihydroxy-3, 4-dihydronaphthalen-1(2H)-one (19)
4, 6, 8-trihydroxy-3, 4-dihydronaphthalen-1(2H)-one (20)
Freshwater
Fungus Coelomycetes sp. YMF 1.01029
After treatment for 24 h, IC50 was between 100‒200 µg/mL, and preussomerin D had the best effect [21]
Pseudohalonectrin A (21)
Pseudohalonectrin B (22)
Aquatic fungus Pseudohalonectria adversaria YMF 1.01019 When the concentration was
100 ppm and the treatment time was 24 h, the fatality rate was more than 50%
[22]
Caryospomycin A (23)
Caryospomycin B (24)
Caryospomycin C (25)
Aquatic fungus Caryospora callicarpa YMF 1.01026 After 36 h treatment, LC50 were 103.1, 105.8, 105.1 µg/mL [23]
Isoamericanoic acid A (26)
Caffeic acid (27)
Aquatic fungus Ophioceras dolichostomum YMF 1.00988 LC50 were 133.7 µg/mL and
46.8 µg/mL
[24]
Glioclasine (28) Gliocladium roseum LD50 was 200 µg/mL [18-19]
Gliocladin C (29)
5-n-heneicosylresorcinol (30)
Gliocladium roseum YMF1.00133 After treatment for 24 h, ED50 was 200 µg/mL and 180 µg/mL [25]
4-hydroxyphenylacetic acid (4-HPA) (31)
Oidiolactone D (32)
Oidiodendron sp. The nematoidal efficiency was 23% and 31% at 3 mmol/L [26]
Bikaverin (33)
Fusaric acid (34)
Fusarium oxysporum EF119 At 100 μg/mL, the fatality rates were 50% and 43% [27]
Beauvericin (35) Fusarium bulbicola At 1 mmol/L, the fatality rate reached 46% [28]
Fumiquinone A (36)
Fumiquinone B (37)
Spinulosin (38)
LL-S490β (39)
Pseurotin A (40)
Aspergillus fumigates The fatality rates at 300 µg/mL were 24%, 44%, 31%, 42% and 40% [29]
5-hydroxymethyl-2-furoic acid (41) Aspergillus sp. After 4 days of treatment, the fatality rates of 0.02, 0.2 and 2 mmol/L were 2%, 6% and 16%. The fatality rates reached 4%, 48% and 73% after 14 days of treatment with three concentrations [30]
1-[(2R*, 4S*, 5S*)-2-chloro-4-methyl-1, 3-oxazinan-5-yl]
ethanone (42)
1-[(2R*, 4S*, 5R*)-2-chloro-4-methyl-1, 3-oxazinan-5-yl]
Ethanone (an epimer of 42) (43)
1-(2, 4-dihydroxyphenyl)-ethanone (44)
Geotrichum sp. AL4 When treated with 100 µg/mL for 48 h, the fatality rates were (62.3±2.4)%, (64.2±2.7)% and (54.8±2.3)% [31]
4-(4′-carboxy-2′-ethyl-hydroxypentyl)-5, 6-dihydro-
6-methyl-cyclobuta[b]pyridine-3, 6-dicarboxylic acid (45)
Paecilomyces sp.YMF1.01761 After 24 h treatment, LD50 was 167.7 mg/L [32]
Cerebroside A (46)
Cerebroside B (47)
Paecilomyces lilacinus ZBY-1 After 24 h of treatment, cerebroside A with concentrations of 1 000, 100, and 10 µg/mL had 100%, 100%, and 11.1% fatality rates for nematodes. Cerebroside B with concentrations of 1 000, 100 and 10 µg/mL were 90.48%, 11.48% and 1.66% [33]
Pseudopelletierine (48)
n-hexadecanoic acid (49)
Phthalic acid-butyl hexyl ester (50)
Oleic acid (51)
Paecilomyces lilacinus PT1 It was speculated that these four isolated secondary metabolites were involved in the nematoidal activity [34]
6-pentyl-2H-pyran-2-one (52) Trichoderma sp. YMF 1.00416 When the treatment time was 48 h and the concentration was 200 mg/L, the fatality rate was 86.67% [35]
Alternariol 9-methyl ether (53) Alternaria sp. Samif01 IC50 was 98.17 µg/mL [36]
Thermolide A (54)
Thermolide B (55)
Talaromyces thermophilus YM 3-4 LC50 was 0.5‒1.0 μg/mL [37]
Fusarentin 6, 7-methyl ether (56) Leucostoma sp. When the concentration was 1.0 mg/mL, the fatality rate reached 80.68% [38]
1, 8-cineole (57) Annulohypoxylon sp. FPYF3050 After treatment for 48 h, it had 40%‒100% inhibition effect on the eggs of B. xylophilus. For J2 stage nematodes, the fatality rate of 24 h, 48 h and 96 h was more than 82.9%. The fatality rate of the mixture of different nematodes of different instars stage ranged from 18.7% to 91.9% [39]

再次以往研究表明次级代谢产物的结构特征与生物活性往往存在密切的关系,对比研究杀松材线虫活性的活性产物的构效关系,发现由于丝状真菌产生的杀松材线虫产物结构的复杂性,到目前为止,相关的构效关系并不明确,探究仅简单地发现一些关联性:(1) 次级代谢活性产物结构类型多种多样,不同丝状真菌的产物之间不具有统一性和规律性,但基本所有产物都为不溶于水的有机物,在活性测试时,需制备成乳浊液才能测定生物活性;(2) 大部分产物含有苯环和脂肪酸链,但并不是所有产物都具备这两种结构,只能推测含有苯环和脂肪酸链的产物拥有杀松材线虫活性的可能性更大。

通过以上研究和总结,丝状真菌杀松材线虫次级代谢产物相关的研究结果具有以下几方面问题:(1) 次级代谢物质具有多样性,活性代谢产物的结构不具有统一性,且对于具体杀松材线虫的作用机制相关的研究较少;(2) 杀松材线虫活性差别较大,且大部分均低于常用的杀线虫剂阿维菌素;(3) 分离获取的丝状真菌杀松材线虫活性产物基本都是在试验条件验证活性,并没有应用到具体的松材线虫的防治中。以上几个方面研究的欠缺导致丝状真菌杀松材线虫产物在防治松材线虫时,虽然具有较为明显的优势,如:丝状真菌来源广泛,为杀松材线虫活性产物的发掘提供了广泛的资源;产物来自于自然环境当中存在的丝状真菌,非人工合成的化学物质,对环境友好度更大,对生态环境影响较小;多种类型的活性次级代谢产物均对松材线虫具有致死作用,能够拓展科学研究思路,从多角度来发掘如何更为有效且环保地防治松材线虫。但同时活性产物在防治松材线虫时,有几个明显的缺点:(1) 丝状真菌来源广泛,种类多样,要从庞大的菌种资源中,发掘出能够产生杀松材线虫活性产物的菌种,并分离出具体的活性产物,需要消耗大量的人力物力;(2) 丝状真菌产生的杀松材线虫活性产物的产量尚未达到批量生产和应用的要求,因此,获取的产物基本全部都是在实验室环境下进行活性试验,并未真正地运用到松材线虫的实际防治中;(3) 活性产物种类多样,目前的研究,并没有发现杀松材线虫活性与产物结构之间明确的关系,加之对每种物质具体的作用机制研究也不甚透彻,因此目前运用丝状真菌活性次级代谢产物对松材线虫进行生物防治还需要进行更深层次的研究。

随着丝状真菌分离和培养技术的不断完善,以及真菌次级代谢产物分离和鉴定手段的不断成熟,充分利用丰富的丝状真菌微生物资源,获取更多且活性更高的杀松材线虫代谢产物值得进一步研究。与此同时,结合基因组学对相关代谢产物的次级代谢合成基因簇进行分析,利用基因敲除等分子生物学技术阐明活性产物的作用机制的研究也具有十分重要的意义。

虽然目前多种类型的丝状真菌产生的杀松材线虫代谢产物的机理尚不清晰,但可以肯定的是丝状真菌的次级代谢产物是生物防治松材线虫的重要资源,值得进行广泛且深入的研究。

References
[1] 叶建仁, 吴小芹. 松材线虫病研究进展[J]. 中国森林病虫, 2022, 41(3): 1-10.
YE JR, WU XQ. Research progress of pine wilt disease[J]. Forest Pest and Disease, 2022, 41(3): 1-10 (in Chinese).
[2] DROPKIN VH, FOUDIN AS. Report of the occurrence of Bursaphelenchus lignicolus-induced pine wilt disease in Missouri [Pinus sylvestris, nematodes][J]. Plant Disease Reporter, 1979, 63: 904-905.
[3] FUTAI K. Pine wood nematode, Bursaphelenchus xylophilus[J]. Annual Review of Phytopathology, 2013, 51: 61-83 DOI:10.1146/annurev-phyto-081211-172910.
[4] 潘佳亮, 姚翰文, 董瀛谦, 李娟, 秦一航, 崔永三. 2019年全国松材线虫病疫情分析[J]. 中国森林病虫, 2021, 40(1): 32-37. DOI:10.19688/j.cnki.issn1671-0886.20200042
PAN JL, YAO HW, DONG YQ, LI J, QIN YH, CUI YS. Analysis of the epidemic situation of pine wilt disease in China in 2019[J]. Forest Pest and Disease, 2021, 40(1): 32-37 (in Chinese).
[5] 孙永春. 南京中山陵发现松材线虫[J]. 江苏林业科技, 1982(4): 47-27.
SUN YC. Pine wood nematode found in Sun Yat-sen Mausoleum, Nanjing[J]. Journal of Jiangsu Forestry Science & Technology, 1982(4): 47-27 (in Chinese).
[6] 叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019, 55(9): 1-10.
YE JR. Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures[J]. Scientia Silvae Sinicae, 2019, 55(9): 1-10 (in Chinese).
[7] 李硕, 孙红, 周艳涛, 李晓冬, 于治军, 董振辉. 2021年全国主要林业有害生物发生情况及2022年发生趋势预测[J]. 中国森林病虫, 2022, 41(2): 44-47.
LI S, SUN H, ZHOU YT, LI XD, YU ZJ, DONG ZH. Occurrence of major forest pests in China in 2021 and prediction of occurrence trend in 2022[J]. Forest Pest and Disease, 2022, 41(2): 44-47 (in Chinese).
[8] 徐红梅, 赵青, 殷涛. 以松材线虫为靶标生物防治技术研究[J]. 湖北林业科技, 2018, 47(1): 51-55.
XU HM, ZHAO Q, YIN T. Advances in biological control targeting on Bursaphelenchus xylophilus[J]. Hubei Forestry Science and Technology, 2018, 47(1): 51-55 (in Chinese).
[9] 胡梅. 松材线虫病防治技术综述[J]. 现代园艺, 2020, 43(22): 35-36.
HU M. Summary of control techniques of pine wood nematode disease[J]. Xiandai Horticulture, 2020, 43(22): 35-36 (in Chinese).
[10] 李红霞, 李刚, 王克成. 松材线虫的危害与综合防治[J]. 现代农业研究, 2020, 26(10): 77-78.
LI HX, LI G, WANG KC. Damage and comprehensive control of pine wood nematode[J]. Modern Agriculture Research, 2020, 26(10): 77-78 (in Chinese).
[11] 郝昕, 王博文, 陈洁, 李洋, 马玲. 食线虫真菌防治植物寄生线虫研究进展[J]. 河南农业科学, 2021, 50(1): 1-9.
HAO X, WANG BW, CHEN J, LI Y, MA L. Research progress of nematophagous fungi against plant parasitic nematodes[J]. Journal of Henan Agricultural Sciences, 2021, 50(1): 1-9 (in Chinese).
[12] WANG Z, WANG CY, GU LJ, SUN BS, ZHANG DL, LIU L, LEE MR, WANG CL, LI Z, MO EK, SUNG CK. Variabilities of two Drechslerella dactyloides isolates in Korea and high predacity against Bursaphelenchus xylophilus[J]. Current Microbiology, 2011, 62(2): 472-478.
[13] WANG CY, FANG ZM, WANG Z, GU LJ, SUN BS, ZHANG DL, SUNG CK. High infection activities of two Esteya vermicola isolates against pinewood nematode[J]. African Journal of Microbiology Research, 2009, 3: 581-584.
[14] 刘子卿, 万宜乐, 郝玉娥. 线虫内寄生真菌资源及生防应用研究进展[J]. 应用生态学报, 2019, 30(6): 2129-2136.
LIU ZQ, WAN YL, HAO YE. Research advances on resource and biological control of endoparasitic fungi[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 2129-2136 (in Chinese).
[15] KAWAZU K, MURAKAMI T, ONO Y, KANZAKI H, KOBAYASHI A, MIKAWA T, YOSHIKAWA N. Isolation and characterization of two novel nematicidal depsipeptides from an imperfect fungus, strain D1084[J]. Bioscience, Biotechnology, and Biochemistry, 1993, 57(1): 98-101.
[16] 董锦艳, 张克勤, 赵智娴, 刘为忠, 李沁元. 苝醌类化合物的杀线虫活性[J]. 菌物系统, 2001(4): 515-519.
DONG JY, ZHANG KQ, ZHAO ZX, LIU WZ, LI QY. Nematicidal activity of perylenequinones photosensitive compounds[J]. Mycosystema, 2001(4): 515-519 (in Chinese).
[17] DONG JY, LI R, HE HP, ZHANG KQ. Nematicidal sphingolipids from the freshwater fungus Paraniesslia sp. YMF1.01400[J]. European Journal of Lipid Science and Technology, 2005, 107(11): 779-785.
[18] DONG JY. Laboratory for conservation and utilization of bio-resource[D]. Kunming: Doctor's Thesis of Yunnan University, 2005 (in Chinese).
董锦艳. 生物资源保护与利用实验室[D]. 昆明: 云南大学博士学位论文, 2005.
[19] LI GH, ZHANG KQ. Nematode-trapping Fungi, Fungal Diversity Research Series 23[M]. Dordrecht: Springer, 2014.
[20] ZHU YH, DONG JY, WANG L, ZHOU W, LI L, HE HP, LIU HY, ZHANG KQ. Screening and isolation of antinematodal metabolites against Bursaphelenchus xylophilus produced by fungi[J]. Annals of Microbiology, 2008, 58(3): 375-380.
[21] DONG JY, SONG HC, LI JH, TANG YS, SUN R, WANG L, ZHOU YP, WANG LM, SHEN KZ, WANG CR, ZHANG KQ. Ymf 1029A–E, preussomerin analogues from the fresh-water-derived fungus YMF 1.01029[J]. Journal of Natural Products, 2008, 71(6): 952-956.
[22] DONG JY, ZHOU YP, LI R, ZHOU W, LI L, ZHU YH, HUANG R, ZHANG KQ. New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF 1.01019[J]. FEMS Microbiology Letters, 2006, 264(1): 65-69.
[23] DONG JY, ZHU YH, SONG HC, LI R, HE HP, LIU HY, HUANG R, ZHOU YP, WANG L, CAO Y, ZHANG KQ. Nematicidal resorcylides from the aquatic fungus Caryospora callicarpa YMF 1.01026[J]. Journal of Chemical Ecology, 2007, 33(5): 1115-1126.
[24] DONG JY, WANG L, SONG HC, WANG LM, SHEN KZ, SUN R, LI GH, LI L, ZHANG KQ. Ophiocerol, a novel macrocylic neolignan from the aquatic fungus Ophioceras dolichostomum YMF 1.00988[J]. Natural Product Research, 2010, 24(11): 1004-1012.
[25] SONG HC, SHEN WY, DONG JY. Nematicidal metabolites from Gliocladium roseum YMF 1.00133[J]. Applied Biochemistry and Microbiology, 2016, 52(3): 324-330.
[26] OHTANI K, FUJIOKA S, KAWANO T, SHIMADA A, KIMURA Y. Nematicidal activities of 4-hydroxyphenylacetic acid and oidiolactone D produced by the fungus Oidiodendron sp.[J]. Zeitschrift Für Naturforschung C, 2011, 66(1/2): 31-34.
[27] KWON HR, SON SW, HAN HR, CHOI GJ, JANG KS, CHOI YH, LEE S, SUNG ND, KIM JC. Nematicidal activity of bikaverin and fusaric acid isolated from Fusarium oxysporum against pine wood nematode, Bursaphelenchus xylophilus[J]. The Plant Pathology Journal, 2007, 23(4): 318-321.
[28] SHIMADA A, FUJIOKA S, KOSHINO H, KIMURA Y. Nematicidal activity of beauvericin produced by the fungus Fusarium bulbicola[J]. Zeitschrift Für Naturforschung C, 2010, 65(3/4): 207-210.
[29] HAYASHI A, FUJIOKA S, NUKINA M, KAWANO T, SHIMADA A, KIMURA Y. Fumiquinones A and B, nematicidal quinones produced by Aspergillus fumigatus[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(7): 1697-1702.
[30] KIMURA Y, TANI S, HAYASHI A, OHTANI K, FUJIOKA S, KAWANO T, SHIMADA A. Nematicidal activity of 5-hydroxymethyl-2-furoic acid against plant-parasitic nematodes[J]. Zeitschrift Für Naturforschung C, 2007, 62(3/4): 234-238.
[31] LI GH, YU ZF, LI X, WANG XB, ZHENG LJ, ZHANG KQ. Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4[J]. Chemistry & Biodiversity, 2007, 4(7): 1520-1524.
[32] LIU YJ, ZHAI CY, LIU Y, ZHANG KQ. Nematicidal activity of Paecilomyces spp. and isolation of a novel active compound[J]. The Journal of Microbiology, 2009, 47(3): 248-252.
[33] 张永刚, 袁文鹏, 夏雪奎, 刘新, 孟秀梅, 王小军, 张绵松, 刘昌衡. 一株虫生真菌杀线虫活性代谢产物的分离与结构鉴定[J]. 农药学学报, 2010, 12(2): 225-228.
ZHANG YG, YUAN WP, XIA XK, LIU X, MENG XM, WANG XJ, ZHANG MS, LIU CH. Isolation and identification of the nematicidal secondary metabolites from one strain of entomogenous fungi[J]. Chinese Journal of Pesticide Science, 2010, 12(2): 225-228 (in Chinese).
[34] 张壤心, 梁英辉, 逯昕明, 宋瑞清. 杀松材线虫活性菌株筛选及活性成分分析[J]. 吉林农业大学学报, 2018, 40(2): 157-163.
ZHANG RX, LIANG YH, LU XM, SONG RQ. Screening of an active strain of Bursaphelenchus xylophilus and analysis of its active ingredients[J]. Journal of Jilin Agricultural University, 2018, 40(2): 157-163 (in Chinese).
[35] YANG Z, YU Z, LEI L, XIA Z, SHAO L, ZHANG K, LI G. Nematicidal effect of volatiles produced by Trichoderma sp.[J]. Journal of Asia-Pacific Entomology, 2012, 15(4): 647-650.
[36] LOU J, YU R, WANG X, MAO Z, FU L, LIU Y, ZHOU L. Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities[J]. Brazilian Journal of Microbiology, 2016, 47(1): 96-101.
[37] GUO JP, ZHU CY, ZHANG CP, CHU YS, WANG YL, ZHANG JX, WU DK, ZHANG KQ, NIU XM. Thermolides, potent nematocidal PKS-NRPS hybrid metabolites from thermophilic fungus Talaromyces thermophilus[J]. Journal of the American Chemical Society, 2012, 134(50): 20306-20309.
[38] LI Z. Isolation, identification and culture conditions of marine fungus H-21 with nematicidal activity against pine wood nematode and characterization of its nematicidal substances[D]. Qingdao: Master's Thesis of Qingdao University, 2015 (in Chinese).
李子. 杀松材线虫海洋真菌H-21的分离鉴定、培养条件及其活性物质研究[D]. 青岛: 青岛大学硕士学位论文, 2015.
[39] LI HC, DOU GM, GAO MG, REN F, LI RH, ZHANG XY, YAN DH. Annulohypoxylon sp. FPYF3050 produces volatile organic compounds against the pine wood nematode, Bursaphelenchus xylophilus[J]. Nematology, 2020, 22(3): 245-255.
[40] QIN FF, LI Y, LIN RM, ZHANG X, MAO ZC, LING J, YANG YH, ZHUANG X, DU SS, CHENG XY, XIE BY. Antibacterial radicicol analogues from Pochonia chlamydosporia and their biosynthetic gene cluster[J]. Journal of Agricultural and Food Chemistry, 2019, 67(26): 7266-7273.
丝状真菌杀松材线虫代谢产物研究进展
秦飞飞 , 杨晓刚 , 杨立霞