
中国科学院微生物研究所,中国微生物学会
文章信息
- 冯宝珍, 李培谦, 刘缙, 杨燕丽, 王晓静. 2024
- FENG Baozhen, LI Peiqian, LIU Jin, YANG Yanli, WANG Xiaojing.
- 番茄内生菌的分离鉴定及菌株FQ-G3抗病促生特性
- Isolation and identification of a tomato endophyte FQ-G3 and its disease-resistant and growth-promoting properties
- 微生物学报, 64(1): 208-219
- Acta Microbiologica Sinica, 64(1): 208-219
-
文章历史
- 收稿日期:2023-05-27
- 网络出版日期:2023-09-25
灰葡萄孢(Botrytis cinerea)引起的灰霉病是造成番茄采后腐烂的重要原因[1]。目前,对灰霉病的控制仍然是以化学防治为主,由此带来的食品安全和环境安全等问题已成为人们关注的重要问题[2]。生物防治已经成为植物病害控制的重要途径。大量的研究已经证实了植物内生菌有防病促生的作用。植物内生菌(endophytes)是指生活史的全部或部分阶段在植物组织内部,并且不引起植物发生明显组织病害症状的微生物。内生菌普遍存在于水生和陆生植物中,在植物的生命活动中发挥着重要作用[3]。与植物病原菌不同,植物内生菌普遍且长期栖息在宿主植物体内,并与宿主长期协同进化成为了植物微生物环境的重要组成部分[4]。
植物内生菌在促进植物生长、增强植物抗逆能力等方面都有着无限的潜力,同时,植物内生菌还可以通过生物固氮、分泌激素类物质等促进宿主植物的生长和产量。大量研究表明,内生菌对植物的促进作用主要是通过分泌生长素、赤霉素等直接促进植物生长,同时还能通过固氮、溶磷作用、产生嗜铁素等间接促进生长[5-6]。内生菌还能通过调节植物的免疫系统或者直接产生活性物质抑制病原菌来增强植物的抗病性[7-8]。植物内生细菌不仅种类多、繁殖快、代谢产物丰富,而且易于培养,现如今化学农药引起的一系列环境污染情况下,植物内生菌的研发有利于病害的生物防治、污染土壤的修复,同时还有利于减少农药的使用,更有利于促进全球农业的绿色可持续发展,因此植物内生菌的研究和开发具有非常重要的应用前景[9]。
本研究从番茄组织中分离筛选出抗病促生功能的贝莱斯芽孢杆菌,其在体内外均对灰葡萄孢具有强烈的抑制作用,并对拟南芥和番茄幼苗生长表现出促生作用。本研究丰富了番茄内生菌资源,也为灰霉病防治奠定了理论基础。
1 材料与方法 1.1 主要材料、试剂和仪器本研究中所用到的植物病原真菌灰葡萄孢B. cinerea LK7、Cladosporium sp.、Fusarium pemambucanum及Alternaria alternata等均分离于腐烂果蔬的表面,经纯化鉴定后保存于本实验室[10-11]。
试剂:细菌DNA快速提取试剂盒、真菌基因组DNA快速提取试剂盒,北京艾德莱生物科技有限公司;引物对27F/1492R、ITS1/ITS4,生工生物工程(上海)股份有限公司;2×Taq PCR MasterMix Ⅱ,TIANGEN;牛肉膏、酵母膏、蛋白胨、葡萄糖和琼脂粉等常规试剂均为国产分析纯。
仪器:BMJ-250型培养箱,上海博迅医疗生物仪器股份有限公司;Olympus CX43显微镜,奥林巴斯公司;T100TM Thermal Cycler PCR仪,伯乐公司。
1.2 番茄组织内生菌的分离从山西运城、吕梁等地采集健康番茄果实、根、茎和叶样本。参照之前的消毒方法处理标本[10],具体如下:先分别称取15 g番茄果实、根、茎和叶,经自来水冲洗晾干,再用75%酒精充分浸泡3−5 min (叶片浸泡时间偏短,根、茎和果实处理时间偏长),然后用无菌水冲洗3−5次;再用5.4%次氯酸钠溶液浸泡2−5 min,用无菌水冲洗4−5次,晾干;研钵内碾碎后移入试管中加10 mL无菌水,静止放置15−20 min,吸取100 μL研磨液,将其分别涂布于potato dextrose agar (PDA)和nutrient agar (NA)平板。平板置于25黑暗培养20 d,每天观察菌落的生长情况;最后根据菌落的颜色、形态、光泽以及大小差异等挑取单菌落,将菌落纯化后统一编号置于NA或者PDA斜面培养基中于4保存备用。消毒可靠性检验参照前人研究方法[10]进行。
1.3 内生菌株的初步鉴定选择菌落形态明显不同的菌株继续培养,提取基因组DNA。细菌用细菌基因组DNA提取试剂盒提取DNA,以细菌16S rRNA通用引物对27F/1492R[11]作为扩增引物进行PCR扩增,反应条件参照文献[11]进行。真菌用真菌基因组试剂盒,以真菌ITS通用引物ITS1/ITS4[10]进行PCR扩增,反应条件参照以报道文献[10]进行。PCR扩增产物于陕西杨凌天润奥科生物科技有限公司进行测序,序列上传GenBank。菌株序列通过NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast)在线比对分析,进行初步鉴定。
1.4 抑菌内生菌株的筛选和鉴定初筛:将病原菌接种在PDA培养基24 ℃培养5 d,用直径5 mm的打孔器在菌落边缘打取菌饼备用。内生细菌在NA平板28 ℃培养48 h,打菌饼备用。采用平板对峙法,先将病原菌饼置于PDA平板中心,在距中心2 cm的上下左右位置分别放置4块内生细菌菌饼,对峙平板置于24 ℃培养5 d。每天观察抑菌带情况,初步筛选出具有抑菌活性的候选菌株。
复筛:在PDA培养基中间划线法接种候选细菌,在距细菌2.0 cm的两侧放置病原菌菌饼,以只接病原菌菌饼为对照组,24 ℃培养5 d,测量病原菌菌落直径,待对照组病原菌菌丝长满平板后停止测量。抑菌率参照文献[7]计算,每组处理重复3次。
PCR扩增:为进一步明确候选菌株分类地位,用细菌基因组DNA提取试剂盒提取DNA,扩增DNA旋回酶亚基A基因(gyrA)和DNA拓扑异构酶亚基B基因(gyrB)并测序。gyrA和gyrB扩增引物及PCR反应条件均参照文献[11]。PCR扩增产物于陕西杨凌天润奥科生物科技有限公司进行测序,序列上传GenBank。
进化树构建:使用MEGA-X软件以邻接法(neighbour-joining, NJ)对ITS序列、gyrA和gyrB区序列构建系统发生树,分析该菌与其他菌株的亲缘关系,以确定其分类地位[12]。
1.5 菌株FQ-G3抑制灰葡萄孢侵染果实将菌株FQ-G3用NB (nutrient broth)液体培养基,28 ℃、130 r/min培养48 h得到新鲜菌液。取大小均匀,成熟度一致的健康樱桃番茄,用75%酒精消毒5 min后,用无菌水冲洗2遍,置于无菌操作台内晾干备用。用打孔器在果实赤道处打孔(深度约2 mm,直径5 mm),将20 µL FQ-G3的新鲜菌液和20 µL灰葡萄孢子悬浮液(1×106)接种至伤口处。每个处理接种10个果实,重复3次。对照组仅接种灰葡萄孢。处理后的果实置于无菌保鲜盒内,于24 ℃黑暗环境放置,观察果实发病情况,测量病斑大小。
1.6 菌株FQ-3的生理生化特性吲哚乙酸(indole acetic acid, IAA)测定:将菌株FQ-G3按2%的接种量分别接种至含5 mmol/L色氨酸的LB液体培养基中,37 ℃、130 r/min摇床培养24 h,随后将菌液于离心机中8 000 r/min离心15 min后,取上清液1 mL,加入聚合氯化硫酸铁(polyferric chloride sulfate, PC)显色剂(1 mL 0.5 mol FeCl3+80 mL 37.5% H2SO4) 4 mL混匀,避光静置30 min进行显色反应后观察颜色变化。以加入50 μL浓度为10 mg/L的植物生长激素的LB培养基为阳性对照,以含有色氨酸的LB培养基为阴性对照,每组处理重复3次。观察颜色变化,若能产生IAA其混合液在静置后会变为粉红或红色。
蛋白酶测定:将菌株FQ-G3按2%的接种量接种至LB液体培养基中,37 ℃、130 r/min摇床培养24 h,分别用三点法或稀释涂布法平板法接种至脱脂牛奶培养基[13]平板,以涂布LB培养基为对照,每组处理重复3次。将平板封口后放置于28 ℃恒温培养箱中,每天观察培养基变化。观察菌落周围是否有透明圈形成,有透明圈出现则说明菌株具有产蛋白酶能力,通过计算透明圈直径与菌落直径的比值确定菌株产蛋白酶能力大小。
几丁质酶测定:将菌株FQ-G3按2%的接种量接种至LB液体培养基中,37 ℃、130 r/min摇床培养24 h,将菌株分别用三点法和稀释涂布法接种至几丁质酶诱导固体培养基[(NH4)2SO4 3 g、K2HPO4 0.7 g、KH2PO4 0.3 g、MgSO4·7H2O 0.5 g、MgSO4·7H2O 0.1 g、胶体几丁质3 g、酵母粉3 g、琼脂13 g、蒸馏水1 000 mL,pH 7.2],以接种LB培养基为对照,每组处理重复3次,将平板封口后放置于28 ℃恒温培养箱中培养,每天观察培养基变化。观察菌落周围是否有透明圈形成,有透明圈出现则说明菌株具有产几丁质酶能力。
嗜铁素测定:将菌株FQ-G3按2%的接种量接种至LB液体培养基中,37 ℃、130 r/min摇床培养24 h,将培养好菌液在高速离心机中8 000 r/min离心15 min,取离心后的上清液和铬奥醇(chrome azurols, CAS)[14]按1:1等比例混合,避光显色2 h,观察颜色变化并记录。
溶磷测定:将菌株FQ-G3按2%的接种量接种至LB液体培养基中,37 ℃、130 r/min摇床培养24 h,将菌株分别用三点法和稀释涂布法接种至固体培养基[葡萄糖10 g、(NH4)2SO4 0.5 g、NaCl 0.3 g、KCl 0.3 g、MgSO4·7H2O 0.3 g、FeSO4·7H2O 0.03 g、MnSO4·4H2O 0.03 g、酵母粉0.4 g、Ca3PO4 10 g、琼脂20 g、蒸馏水1 000 mL,pH 7.0],以接种LB培养基为对照,每组处理重复3次,将平板封口后放置于28 ℃恒温培养箱中培养,每天观察菌落周围能否形成透明圈。
1.7 拟南芥培养试验二分隔培养皿法:参照前人研究方法[15]略加改进,分别将10 mL MS (Murashige and Skoog)和NA培养基分别倒入二分隔培养皿中,冷却后将消毒的拟南芥种子轻轻点在MS培养基上,同时用灭菌牙签将菌株GQ-G3接种到NA培养基上。以空白的MS/NA二分隔培养为对照,试验设3个重复。将处理好的培养皿置于20 ℃光照培养箱中,设置16 h/8 h (光照/黑暗)培养条件。培养21 d,测量拟南芥幼苗的鲜重、根长度以及侧根数量等参数。
1.8 番茄幼苗盆栽试验将“粉冠”番茄种子在30 ℃的水浴锅处理2 h,再用75%乙醇浸泡5 min,无菌水清洗5−6次,然后将种子置于铺有浸润的无菌滤纸的培养皿中,于28 ℃的培养箱中进行催芽。
将灭菌育苗基质装至直径16 cm,高14 cm的花盆中,每个花盆种植一颗上述方法催芽的番茄种子,覆盖基质后放入智能温室出苗。智能温室昼/夜光照为12 h/12 h,温度26−30 ℃,光照强度60 klx,相对湿度65%。播种15 d番茄长出真叶时,第一次浇灌FQ-G3发酵液(每盆10 mL,浓度108 CFU/mL)。每隔7 d浇灌1次,连续3次。每组处理8棵幼苗,重复3次。对照组浇灌无菌水,幼苗长至60 d时,将番茄苗拔出,统计株高、叶片数量、根毛数量及根长。
1.9 数据分析所有测量数据均使用SPSS 27.0进行统计分析。采用t检验比较不同处理组之间平均值,P < 0.05。
2 结果与分析 2.1 内生菌的分离鉴定从番茄植株不同部位共分离得到72株内生细菌和31株内生真菌,挑选菌落形态不同的菌株进行测序鉴定。将获得的细菌16S rRNA和真菌ITS序列通过NCBI在线比对,获得番茄内生菌株初步鉴定结果。如表 1所示,番茄内生细菌主要为芽孢杆菌属(Bacillus)和埃希菌属(Escherichia)。而内生真菌多为亚隔孢壳属(Didymella)、曲霉属(Aspergillus)、枝孢霉属(Cladosporium)和链格孢属(Alternaria)。
Classification | Isolates (accession No.) | Identity to the closest species (accession No.) |
Bacteria | FQ-G3 (MZ827471) | 99% to Bacillus velezensis (MT271916) |
FQ-G4 (MZ827472) | 99% to Bacillus velezensis (MK310268) | |
FQ-G5 (MZ827473) | 99% to Bacillus amyloliquefaciens (MT685260) | |
FQ-G6 (MZ827474) | 99% to Bacillus velezensis (KY887762) | |
FQ-G8 (MZ827475) | 99% to Bacillus subtilis (MG751326) | |
FQ-G12 (MZ827476) | 99% to Bacillus subtilis (MF136610) | |
FQ-G13 (MZ827477) | 99% to Bacillus amyloliquefaciens (MH265996) | |
FQ-G17 (MZ827478) | 99% to Escherichia fergusonii (MN208072) | |
FQ-J2 (MZ827479) | 99% to Bacillus subtilis (MF136610) | |
Fungi | FQ-B (ON045560) | 99% to Aspergillus niger (MZ819922) |
FQ-G10 (ON045555) | 99% to Didymella macrostoma (MN420662) | |
FQ-14 (ON045556) | 99% to Didymella microchlamydospora (MH862504) | |
FQ-G16 (ON045557) | 99% to Aspergillus sydowii (KU687805) | |
FQ-J1 (ON045558) | 99% to Cladosporium cladosporioides (MT367253) | |
FQ-J4 (ON045559) | 99% to Alternaria alternata (MN856355) |
2.2 抑菌内生菌的筛选及鉴定
通过初筛和复筛,得到一株对灰葡萄孢具有强烈拮抗作用的内生细菌FQ-G3,抑菌率达80.93% (表 2)。如图 1所示,FQ-G3对果蔬贮藏期病原菌Cladosporium sp.、Fusarium pemambucanum及Alternaria alternata也表现出不同程度的抑制作用,抑菌率分别为72.48%、60.69%及53.78%,说明FQ-G3具有开发为果蔬采后病害生物防治菌剂的潜力。
Plant pathogens | Colony diameter after treatment (cm) | Colony diameter of control (cm) | Inhibition rate (%) |
Botrytis cinerea | 1.23±0.08a | 4.33±0.12b | 80.93 |
Alternaria alternata | 2.21±0.22a | 4.20±0.13b | 53.78 |
Fusarium pemambucanum | 1.97±0.45a | 4.24±0.12b | 60.69 |
Cladosporium sp. | 1.54±0.21a | 4.28±0.10b | 72.48 |
Different letters indicated significant differences among values at P < 0.05. |
![]() |
图 1 菌株FQ-G3与四种病原菌对峙培养 Figure 1 Antagonistic effect of FQ-G3 on four kinds of plant pathogens. A: Q-G3 against Botrytis cinerea. B: FQ-G3 against Cladosporium sp.. C: FQ-G3 against Fusarium pemambucanum. D: FQ-G3 against Alternaria alternata. |
2.3 菌株FQ-G3的分子鉴定
扩增测序结果表明菌株FQ-G3的gyrA基因序列全长951 bp,GenBank No.: OP867063;gyrB基因序列全长1 209 bp, GenBank No.: OP867064。使用MEGA-X软件以NJ法分别对菌株16S rRNA、gyrA和gyrB序列构建系统发生树。16S rRNA序列比对,发现FQ-G3的16S rRNA (MZ827471)与模式菌株Bacillus velezensis CR-502相似度最高,为99.64%。下载相似性高的模式菌株序列与FQ-G3的16S rRNA (MZ827471)构建系统发育树,结果显示FQ-G3与Bacillus velezensis CR-502聚为一支(图 2)。如图 3所示,基于gyrA和gyrB基因的系统发生树FQ-G3均与B. velezensis聚为一支。以上结果表明FQ-G3属于B. velezensis。
![]() |
图 2 基于16S rRNA基因构建的系统发生树 Figure 2 Phylogenetic trees of FQ-G3 based on 16S rRNA gene. The ex-type strains are noted using T. GenBank accession numbers are in parentheses. Numbers at the nodes indicate the level of bootstrap values based on 1 000 replications. The scale bar indicates 0.002 substitutions per nucleotide position. |
![]() |
图 3 基于gyrA和gyrB基因构建的系统发生树 Figure 3 Phylogenetic trees of FQ-G3 based on gyrA (A) and gyrB (B) genes. GenBank accession numbers are in parentheses. Numbers at the nodes indicate the level of bootstrap values based on 1 000 replications. The scale bar indicates 0.01 substitutions per nucleotide position. |
2.4 菌株FQ-G3对灰葡萄孢的体内抑制作用
接种处理结果表明,菌株FQ-G3能够抑制灰葡萄孢对番茄果实的侵染(图 4A)。在接种5 d后,对照组果实布满灰霉菌丝,发病率100%,而处理组番茄果实依然保持完好;同时处理组果实病斑直径明显小于对照组(图 4B)。该结果说明菌株FQ-G3可以明显抑制灰葡萄孢在番茄果实上的扩展,具有活体生防潜力。
![]() |
图 4 菌株FQ-G3对灰葡萄孢的活体抑制作用 Figure 4 In vivo inhibition of strain FQ-G3 against Botrytis cinerea. A: Cherry tomatoes were mock inoculated with FQ-Q3 and B. cinerea, cherry tomatoes inoculated with B. cinerea as control. B: Average diameters of lesions of treated tomatoes. The bar and error bar represented the mean and standard error, respectively. Different letters indicated significant differences among groups (P < 0.05). |
2.5 菌株FQ-G3生理生化特性分析
如表 3所示,参试菌株FQ-G3具有产生IAA、蛋白酶、嗜铁素、蛋白酶和几丁质酶的能力。菌株FQ-G3能够产生IAA、嗜铁素,说明该菌株对植物生长具有一定促进作用。此外,该菌株能够产生蛋白酶和几丁质酶,这可能与抑菌作用有关。
Strain | Enzyme producing and plant growth-promoting attributes | ||||
IAA | Protease | Chitinase | Siderophores | Phosphate solubilization | |
CK | – | – | – | – | – |
FQ-G3 | ++ | ++ | + | ++ | – |
+: Positive; ++: Strong positive; –: Negative. |
2.6 菌株FQ-G3产生挥发性物质(volatile organic compounds, VOCs)对拟南芥的促生作用
利用二分隔培养皿将拟南芥与内生菌株共培养21 d,进一步验证B. velezensis FQ-G3的促生特性。结果显示处理组的拟南芥长势明显优于对照组,幼苗鲜重、根长及根毛数量等指标均高于对照组(P < 0.05),说明FQ-G3能够产生挥发性促生物质(图 5、图 6)。
![]() |
图 5 内生菌FQ-G3对拟南芥的促生作用 Figure 5 Promotion effect of endophytic strain FQ-G3 to Arabidopsis thaliana seedlings. A: The NA medium was used as the blank control. B: FQ-G3 was streaked on NA agar. C: A. thaliana root hairs in control group. D: A. thaliana root hairs in test group. |
![]() |
图 6 拟南芥幼苗生理指标 Figure 6 Physiological index of Arabidopsis thaliana seedlings. A: Fresh weight of A. thaliana seedlings (n=30). B: The average length of the A. thaliana roots (n=30). C: Number of A. thaliana root hairs (n=30). The bar and error bar represented the mean and standard error, respectively (n=30). Different letters indicated significant differences among groups (P < 0.05). |
2.7 番茄苗盆栽实验
经过FQ-G3发酵液灌根处理的番茄苗长势优于对照组,其株高、叶片数量、根长、侧根数量与对照组相比,均有显著提高(P < 0.05) (图 7)。
![]() |
图 7 菌株FQ-G3对番茄苗的促生作用 Figure 7 Growth-promoting effect of the strain FQ-G3 to tomato seedlings. A: FQ-G3 treated tomato plant, seedling treated with sterile water used as control. B: Number of tomato compound leaves (n=24). C: Height of tomato seedlings (n=24). D: Length of tomato seedlings taproots (n=24). E: Number of tomato seedlings lateral roots (n=24). The bar and error bar represented the mean and standard error, respectively (n=24). Different letters indicated significant differences among groups (P < 0.05). |
3 讨论与结论
本研究利用组织分离法对番茄内生细菌和真菌进行了分离鉴定,并筛选出一株具有抗病促生潜力的细菌B. velezensis FQ-G3。所分离的内生菌中细菌的数量居多,说明细菌是番茄内生菌的优势菌群,这与前人研究结果类似。番茄内生菌种类丰富,包括贝莱斯芽孢杆菌(B. velezensis)、枯草芽孢杆菌(B. subtilis)、解淀粉酶芽孢杆菌(B. amyloliquefaciens)、亚隔孢壳属(Didymella)、曲霉属(Aspergillus)、枝孢霉属(Cladosporium)和链格孢属(Alternaria)等。王梅菊等[16]发现,油菜内生细菌中芽孢杆菌属(Bacillus)、假单胞菌属(Pseudomonas)和寡养单胞菌属(Stenotrophomonas)所占比例较高。对甘蔗根茎中内生菌分离鉴定,发现其内生菌株属于6个种属[17],说明了植物内生菌多样性。
平板对峙和果实接种结果证明B. velezensis FQ-G3对灰葡萄孢表现出强烈的拮抗作用,而且FQ-G3对Cladosporium sp.、Fusarium pemambucanum及Alternaria alternata也有不同程度的抑制作用。研究表明内生芽孢杆菌属(Bacillus)菌株对很多病原菌具有抑制作用,如B. amyloliquefaciens对Fusarium oxysporum、Penicillium spp.、Colletotrichum spp.、B. cinerea和Sclerotinia sclerotiorum[18-19]。B. halotolerans能够抑制B. cinerea和F. oxysporum菌丝生长[20-21]。分离自葡萄的内生菌株Bacillus sp. K1对葡萄采后灰葡萄孢具有良好的防控效果[22]。
很多研究表明微生物通过氮素固定、ACC脱氨酶合成、激素合成(IAA、2, 3-丁二醇等)和铁载体生物合成等途径促进植物生长[7]。王红珠等[23]从植物中分离筛选出链球菌菌株GZ01,经鉴定其能够通过分泌IAA、产铁载体和溶磷等功能来促进宿主植物生长。Sukhada[24]从番石榴根际分离筛选到一株放线菌可以产生IAA和铁载体来促进植物的生长,并且能够抑制番石榴和番茄枯萎病的病原菌。Zhang等[25]从木薯根部分离出一株内生菌A02,能产生IAA,具有溶磷固氮能力,对木薯的根茎叶生长具有促进作用。从黄鸢尾叶片中获得的4株内生细菌株Pseudomonas gessardii HRT18、Brevibacterium frigoritolerans HRT8、Streptomyces atratus HRT13和Bacillus toyonensis HST13,不仅对植物病原真菌Fusarium、Rhizoctonia、Botrytis、Pythium和Alternaria表现出抗菌活性,还能产生几丁质酶、蛋白酶、葡聚糖酶、脂肪酶和IAA等物质[26]。本研究中FQ-G3能够分泌IAA、蛋白酶、嗜铁素、蛋白酶和几丁质酶等植物促生抑菌相关物质,番茄盆栽试验进一步证明了其促生效果。
二分隔培养试验表明FQ-G3菌株能够产生VOCs,并且对拟南芥和番茄幼苗的生长具有明显的促进作用。据报道很多细菌能够产生具有抗病促生活性的VOCs,主要活性物质包括2, 3-丁二醇(2, 3-butanediol)[27-28]、乙缩醛(acetoin)[27]、2-庚酮(2-heptanone)[29]和2-壬酮(2-nonnanone)[15]等。解淀粉芽孢杆菌(B. amyloliquefaciens)菌株FZB42释放的挥发性有机化合物具有抗菌活性,也能促进植物生长和增强系统抗性[30]。枯草芽孢杆菌GB03释放的VOCs主成分为乙偶姻(acetoin)和2, 3-丁二醇,能够增强拟南芥幼苗的系统抗性,并能够降低幼苗软腐病发病率[31-32]。菌株FQ-G3能够产生植物促生活性物质,但需要通过固相微萃取气相色谱-质谱法(solid-phase micro-extraction gas chromatography mass spectrometry, SPME-GC-MS)进一步鉴定该菌株主要活性成分。
内生菌在促进植物生长和生物控制剂方面具有非常大的潜力,它能够促进植物的生长和正常发育[7],还可以有效的抑制果蔬病害[33-35]。本研究分离得到的菌株FQ-G3可以作为拮抗菌预防番茄由灰葡萄孢引起的腐烂损失,为果蔬采后绿色环保的生物防治剂和植物促生剂研发提供一种可参考的新资源。但本研究对于菌株FQ-G3产生的挥发性气体成分、促生长机制和田间促生效果还待进一步的试验研究。
[1] | CHAOUACHI M, MARZOUK T, JALLOULI S, ELKAHOUI S, GENTZBITTEL L, BEN C, DJÉBALI N. Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea[J]. Postharvest Biology and Technology, 2021, 172: 111389 DOI:10.1016/j.postharvbio.2020.111389. |
[2] | ABBEY JA, PERCIVAL D, ABBEY L, ASIEDU SK, PRITHIVIRAJ B, SCHILDER A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)-prospects and challenges[J]. Biocontrol Science and Technology, 2019, 29(3): 207-228 DOI:10.1080/09583157.2018.1548574. |
[3] | POTSHANGBAM M, DEVI SI, SAHOO D, STROBEL GA. Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L.[J]. Frontiers in Microbiology, 2017, 8: 325. |
[4] | RODRIGUEZ RJ, WHITE JF Jr, ARNOLD AE, REDMAN RS. Fungal endophytes: diversity and functional roles[J]. The New Phytologist, 2009, 182(2): 314-330 DOI:10.1111/j.1469-8137.2009.02773.x. |
[5] |
刘迎雪, 赵滢, 张宝香, 杨义明, 范书田, 李昌禹, 王月, 许培磊, 秦红艳, 路文鹏. 植物内生细菌来源及生物学功能研究进展[J]. 特产研究, 2020, 42(4): 60-67.
LIU YX, ZHAO Y, ZHANG BX, YANG YM, FAN ST, LI CY, WANG Y, XU PL, QIN HY, LU WP. Research progress on the source and biological function of plant endophytic bacteria[J]. Special Wild Economic Animal and Plant Research, 2020, 42(4): 60-67 (in Chinese). |
[6] | SARAVANAN VS, MADHAIYAN M, OSBORNE J, THANGARAJU M, SA TM. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion[J]. Microbial Ecology, 2008, 55(1): 130-140 DOI:10.1007/s00248-007-9258-6. |
[7] | SANTOYO G, MORENO-HAGELSIEB G, DELC OROZCO-MOSQUEDA M, GLICK BR. Plant growth-promoting bacterial endophytes[J]. Microbiological Research, 2016, 183: 92-99 DOI:10.1016/j.micres.2015.11.008. |
[8] | HAIDAR R, FERMAUD M, CALVO-GARRIDO C, ROUDET J, DESCHAMPS A. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria[J]. Phytopathologia Mediterranea, 2016, 55(3): 301-322. |
[9] | MORALES-CEDEÑO LR, OROZCO-MOSQUEDA MDC, LOEZA-LARA PD, PARRA-COTA FI, de LOS SANTOS-VILLALOBOS S, SANTOYO G. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: fundamentals, methods of application and future perspectives[J]. Microbiological Research, 2021, 242: 126612 DOI:10.1016/j.micres.2020.126612. |
[10] |
李培谦, 药震, 冯宝珍, 师守国. 克伦生葡萄内生菌Acremonium sclerotigenum的分离鉴定及致腐能力[J]. 食品与发酵工业, 2022, 48(15): 131-136.
LI PQ, YAO Z, FENG BZ, SHI SG. Isolation and identification of endophytes Acremonium sclerotigenum in crison grape and their spoilage ability[J]. Food and Fermentation Industries, 2022, 48(15): 131-136 (in Chinese). |
[11] | FENG BZ, CHEN DD, JIN RX, LI EQ, LI PQ. Bioactivities evaluation of an endophytic bacterial strain Bacillus velezensis JRX-YG39 inhabiting wild grape[J]. BMC Microbiology, 2022, 22(1): 1-9 DOI:10.1186/s12866-021-02409-6. |
[12] | KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549 DOI:10.1093/molbev/msy096. |
[13] |
柯野, 伍嘉慧, 曾松荣, 周威. 一株产蛋白酶菌株的筛选鉴定及酶学性质分析[J]. 广东农业科学, 2015, 42(2): 137-141.
KE Y, WU JH, ZENG SR, ZHOU W. Screening and identification of a strain producing proteases and analysis on its enzymatic properties[J]. Guangdong Agricultural Sciences, 2015, 42(2): 137-141 (in Chinese). |
[14] | YESICA L. Production of siderophores by the bacterium Kosakonia radicincitans and its application to control of phytopathogenic fungi[J]. Bioresource Technology Reports, 2018, 3: 82-87 DOI:10.1016/j.biteb.2018.06.003. |
[15] | FINCHEIRA P, PARRA L, MUTIS A, PARADA M, QUIROZ A. Volatiles emitted by Bacillus sp. BCT9 act as growth modulating agents on Lactuca sativa seedlings[J]. Microbiological Research, 2017, 203: 47-56 DOI:10.1016/j.micres.2017.06.007. |
[16] |
王梅菊, 刘晨, 吴明德, 张静, 杨龙, 李国庆. 油菜内生细菌多样性分析及菌株Can L-30生防潜力评估[J]. 中国油料作物学报, 2018, 40(2): 258-268.
WANG MJ, LIU C, WU MD, ZHANG J, YANG L, LI GQ. Diversity of endophytic bacteria in Brassica napus and biocontrol potential of Bacillus subtilis Can L-30[J]. Chinese Journal of Oil Crop Science, 2018, 40(2): 258-268 (in Chinese). |
[17] | PITIWITTAYAKUL N, WONGSORN D, TANASUPAWAT S. Characterization of plant growth-promoting endophytic bacteria from sugarcane and their antagonistic activity against Fusarium moniliforme[J]. Tropical Life Sciences Research, 2021, 32(3): 97-118 DOI:10.21315/tlsr2021.32.3.6. |
[18] | YE WQ, SUN YF, TANG YJ, ZHOU WW. Biocontrol potential of a broad-spectrum antifungal strain Bacillus amyloliquefaciens B4 for postharvest loquat fruit storage[J]. Postharvest Biology and Technology, 2021, 174: 111439 DOI:10.1016/j.postharvbio.2020.111439. |
[19] | MASSAWE VC, HANIF A, FARZAND A, MBURU DK, OCHOLA SO, WU LM, TAHIR HAS, GU Q, WU HJ, GAO XW. Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum[J]. Phytopathology, 2018, 108(12): 1373-1385 DOI:10.1094/PHYTO-04-18-0118-R. |
[20] | WANG F, XIAO J, ZHANG YZ, LI RY, LIU L, DENG J. Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit[J]. Postharvest Biology and Technology, 2021, 174: 111456 DOI:10.1016/j.postharvbio.2020.111456. |
[21] | SLAMA HB, CHERIF-SILINI H, CHENARI BOUKET A, QADER M, SILINI A, YAHIAOUI B, ALENEZI FN, LUPTAKOVA L, TRIKI MA, VALLAT A, OSZAKO T, RATEB ME, BELBAHRI L. Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against Fusarium[J]. Frontiers in Microbiology, 2019, 9: 3236 DOI:10.3389/fmicb.2018.03236. |
[22] | LI PQ, FENG BZ, YAO Z, WEI BH, ZHAO YF, SHI SG. Antifungal activity of endophytic Bacillus K1 against Botrytis cinerea[J]. Frontiers in Microbiology, 2022, 13: 935675 DOI:10.3389/fmicb.2022.935675. |
[23] |
王红珠, 吴华芬, 吕高卿, 赵云磊, 黄立斌, 余敏豪, 黄长江. 耐铅植物内生菌的筛选及其促生机制研究[J]. 浙江农业科学, 2021, 62(4): 823-827.
WANG HZ, WU HF, LV GQ, ZHAO YL, HUANG LB, YU MH, HUANG CJ. Screening of endophytes from lead-tolerant plants and study on its growth-promoting mechanism[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(4): 823-827 (in Chinese). |
[24] | SUKHADA M. Guava (Psidium guajava L.) rhizosphere Glomus mosseae spores harbor actinomycetes with growth promoting and antifungal attributes[J]. Scientia Horticulturae, 2013, 150: 371-376 DOI:10.1016/j.scienta.2012.11.019. |
[25] | ZHANG X, TONG JJ, DONG MM, AKHTAR K, HE B. Isolation, identification and characterization of nitrogen fixing endophytic bacteria and their effects on cassava production[J]. Peer J, 2022, 10: e12677 DOI:10.7717/peerj.12677. |
[26] | SHURIGIN V, ALIMOV J, DAVRANOV K, GULYAMOVA T, EGAMBERDIEVA D. The diversity of bacterial endophytes from Iris pseudacorus L. and their plant beneficial traits[J]. Current Research in Microbial Sciences, 2022, 3: 100133 DOI:10.1016/j.crmicr.2022.100133. |
[27] | MENG QX, HE JH, HAO JJ. Effects of Bacillus velezensis strain BAC03 in promoting plant growth[J]. Biological Control, 2016, 98: 18-26 DOI:10.1016/j.biocontrol.2016.03.010. |
[28] | LI PS, KONG WL, WU XQ, ZHANG Y. Volatile organic compounds of the plant growth-promoting rhizobacteria JZ-GX1 enhanced the tolerance of Robinia pseudoacacia to salt stress[J]. Frontiers in Plant Science, 2021, 12: 753332 DOI:10.3389/fpls.2021.753332. |
[29] | LIAO ZH, WANG L, LI CZ, CAO MJ, WANG JN, YAO ZL, ZHOU SY, ZHOU GX, ZHANG DY, LOU YG. The lipoxygenase gene OsRCI-1 is involved in the biosynthesis of herbivore-induced JAs and regulates plant defense and growth in rice[J]. Plant, Cell & Environment, 2022, 45(9): 2827-2840. |
[30] | COMPANT S, DUFFY B, NOWAK J, CLÉMENT C, BARKA EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects[J]. Applied and Environmental Microbiology, 2005, 71(9): 4951-4959 DOI:10.1128/AEM.71.9.4951-4959.2005. |
[31] | RYU CM, FARAG MA, HU CH, REDDY MS, KLOEPPER JW, PARÉ PW. Bacterial volatiles induce systemic resistance in Arabidopsis[J]. Plant Physiology, 2004, 134(3): 1017-1026 DOI:10.1104/pp.103.026583. |
[32] | RYU CM, FARAG MA, HU CH, REDDY MS, WEI HX, PARÉ PW, KLOEPPER JW. Bacterial volatiles promote growth in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(8): 4927-4932. |
[33] | FAN D, SUBRAMANIAN S, SMITH DL. Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana[J]. Scientific Reports, 2020, 10: 12740 DOI:10.1038/s41598-020-69713-5. |
[34] | KHAN AL, GILANI SA, WAQAS M, AL-HOSNI K, AL-KHIZIRI S, KIM YH, ALI L, KANG SM, ASAF S, SHAHZAD R, HUSSAIN J, LEE IJ, AL-HARRASI A. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination, and mitigating oxidative stress[J]. Journal of Zhejiang University Science B, 2017, 18(2): 125-137 DOI:10.1631/jzus.B1500271. |
[35] | LIU XY, DOU GM, MA YC. Potential of endophytes from medicinal plants for biocontrol and plant growth promotion[J]. Journal of General Plant Pathology, 2016, 82(3): 165-173 DOI:10.1007/s10327-016-0648-9. |