微生物学报  2024, Vol. 64 Issue (10): 3571-3590   DOI: 10.13343/j.cnki.wsxb.20240175.
http://dx.doi.org/10.13343/j.cnki.wsxb.20240175
中国科学院微生物研究所,中国微生物学会

文章信息

李浩, 林任章, 孔祥聿, 任浩, 吕镇梅. 2024
LI Hao, LIN Renzhang, KONG Xiangyu, REN Hao, LU Zhenmei.
微/纳米塑料对厌氧消化系统影响的研究进展
Research progress in the effects of micro(nano)plastics on anaerobic digestion system
微生物学报, 64(10): 3571-3590
Acta Microbiologica Sinica, 64(10): 3571-3590

文章历史

收稿日期:2024-03-20
网络出版日期:2024-05-06
微/纳米塑料对厌氧消化系统影响的研究进展
李浩 , 林任章 , 孔祥聿 , 任浩 , 吕镇梅     
浙江大学 生命科学学院, 生命系统稳态与保护教育部重点实验室, 浙江 杭州 310058
摘要:生物质废弃物联合剩余活性污泥(waste activated sludge, WAS)进行厌氧消化(anaerobic digestion, AD)是WAS稳定化和产甲烷的一种有效稳定的技术,可有效减少WAS体积,提高WAS脱水效果,并且具有稳定性好、能耗低、产沼气的特点,因而被广泛应用。然而AD过程容易受到外部因素如微塑料(microplastics, MPs)或纳米塑料(nanoplastics, NPs)的影响,从而导致AD效率降低甚至崩溃。AD过程的稳定运行需要微生物菌群之间相互依存、相互作用,使其处于动态的平衡状态,噬菌体在此平衡过程占有重要的地位,其不仅能够调控污泥菌群结构和控制能量的流向,而且能够与细菌、古菌附着在MPs和NPs上进行传播,但在以往的MPs和NPs研究中往往被忽视。本文综述了不同类型、尺寸的MPs和NPs对AD系统影响的研究进展,并聚焦于厌氧系统中微生物群落间,尤其是细菌、古菌与噬菌体的生态关系,针对MPs和NPs对微生物群落的影响与改变提出了不同的见解,并展望了MPs和NPs对AD系统影响方面的未来研究方向。
关键词微塑料    纳米塑料    厌氧消化    微生物群落    噬菌体    
Research progress in the effects of micro(nano)plastics on anaerobic digestion system
LI Hao , LIN Renzhang , KONG Xiangyu , REN Hao , LU Zhenmei     
Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
Abstract: Anaerobic digestion (AD) of biomass waste combined with waste activated sludge (WAS), which is characterized by great stability, low energy consumption, and biogas production, can effectively reduce the volume and improve the dehydration of WAS and thus has been widely applied in methane production. However, the AD process is susceptible to external factors such as microplastics (MPs) or nanoplastics (NPs), which can lead to reduced efficiency or even collapse of AD. The AD system needs the interdependence and interaction of the microbial community to keep stable operation in a dynamic equilibrium state, in which phages play a key role. Phages can not only regulate the structure of the microbial community in the sludge and direct the energy flow but also attach to MPs and NPs with bacteria and archaea for transmission. Nevertheless, the effects of MPs and NPs on such a process were underestimated in previous studies. In this paper, we summarize the research progress in the effects of different types and sizes of MPs and NPs on AD systems, with focus on the ecological connections among microbial communities, especially bacteria, archaea, and phages, in anaerobic systems. Furthermore, we put forward novel viewpoints about the effects of MPs and NPs on microbial communities and make an outlook on the future research directions in this field.
Keywords: microplastics    nanoplastics    anaerobic digestion    microbial communities    phage    

据估计,中国的剩余活性污泥(waste activated sludge, WAS)量每年超过4 000万t,并以年均4.75%的速度增长。填埋和焚烧等WAS处理方式成本昂贵,可能占污水处理厂总运营成本的30%−60%[1-2]。生物质废弃物联合WAS进行厌氧消化(anaerobic digestion, AD)具有运营成本低、附加值高的优势,因此得到了广泛认可[3-4],目前全球有5 000万个微型沼气池(2−10 m3)在运行[5]。AD是指在缺氧条件下,兼性和厌氧微生物将有机物转化为富含能量的沼气的生物过程。产生的营养丰富的消化液也可用作肥料或土壤改良剂。一般认为其经过4个过程[6]:水解、酸化、产乙酸和产甲烷(图 1)。产甲烷过程是古菌利用产生的小分子酸或CO2和H2形成沼气,这个过程是由微生物驱动的敏感过程,容易受到环境因素的影响,从而影响AD的性能。

图 1 AD产甲烷的流程图 Figure 1 Flow chart of methane production in AD.

AD系统稳定运行需要4个过程中相关菌群的紧密合作。微生物群落中的微生物物种之间和微生物与生态环境之间的交互可以形成一个动态平衡状态,也称为平衡状态。病毒是世界上最小、最丰富的生物实体,是生态、进化和生物地球化学循环的主要驱动因素,负责营养物质循环和控制物种组成。噬菌体是侵染细菌和古菌的病毒,在各种生态环境中广泛分布且大量存在,基于噬菌体的普遍性及高丰度,其负责了环境中20%−40%左右的细胞裂解,对微生物群落的形成有着强烈的控制作用[7],主要体现在3个方面:(1) 调控微生物菌群丰度;(2) 挟持宿主代谢供给自身繁殖所用;(3) 促进菌群间的基因交换,赋予宿主新的代谢能力(图 2)。目前关于噬菌体对菌群的调控作用已有相关假说提出,在生态系统中丰度高的菌群感染其的噬菌体丰度也会慢慢升高,从而导致该菌群的数量减少,使得另一菌群丰度升高,如此往复循环,这就是杀死赢家模型[8]。噬菌体能够挟持宿主代谢,Ankrah等发现噬菌体感染会导致宿主细胞中多种代谢物浓度升高,对颗粒生物量中封存的碳和氮总量的定量估计表明,噬菌体将细菌中75%的营养物质重定向到噬菌体粒子中[9]。噬菌体也是细菌进化的重要驱动力,噬菌体可以整合到宿主细菌的基因组中,获得宿主细菌的部分基因,从而促进细菌间的基因交换与进化[10]。除此之外,噬菌体还可以通过重新连接宿主编码的代谢网络来操纵细胞代谢,也可以通过引入新的辅助代谢基因(auxiliary metabolic genes, AMG)来扩展被感染细胞的生存能力[11]

图 2 噬菌体调节微生物群落的方式 Figure 2 The way in which bacteriophages regulate microbial communities.

微塑料(microplastics, MPs)和纳米塑料(nanoplastics, NPs)是影响周期长、危害范围广的新型污染物,其在环境中积累已经是一个严重的全球化问题[12]。据估计,每年约480万−1 270万t塑料垃圾排入大海。根据模型预测,在2015年释放到环境中的塑料物质有41%积聚在土壤中,40%积聚在海洋中,还有15%积聚在淡水中[13]。在土壤生态系统中,MPs和NPs在土壤中积累会影响土壤的质量和功能,例如影响土壤中的碳、氮循环及微生物群落[14]。与MPs有关的污染物可能随着MPs在土壤中的迁移而进一步分散。此外,土壤动物也可能促进MPs在土壤中的迁移[15],更有可能向下渗透进入地下水系[16]。MPs和NPs是指塑料在使用或降解过程中会变成的微小颗粒[17-18],MPs是指尺寸在100 nm−5 mm之间的塑料颗粒或塑料碎片[19],NPs的尺寸则小于100 nm[18],并能够表现出相同材料在较大尺寸下未出现的特性。在早期研究中,NPs一直认为是MPs的延伸,并未进行单独分析,但调查表明,NPs在传输特性、与污染物的相互作用、物理特性、生物效应和去除行为方面与MPs有着很大的差距,因此不能一概而论[20-21]。不同规格的塑料碎片对于AD系统中的微生物群落的作用不同,MPs能够从周围的环境中捕获各种生物和非生物物质,使其成为各种微型污染物的聚集点,同时也为潜在的基因交换提供了良好的场所[22]。NPs具有高度的非均质性且尺寸接近天然蛋白质,因其足够小,可以通过被动扩散和某些内吞作用穿透生物膜,从而增加膜的通透性,并引发活性氧(reactive oxygen species, ROS)的过量产生和细胞凋亡[23]

厌氧消化器是一个高度复杂的生态体系,它的有效运行依赖于微生物之间的紧密联系,然而,这种联系易被MPs和NPs破坏。污泥与生物质废弃物中所含有的MPs和NPs类型多样,聚氯乙烯(polyvinyl chloride, PVC)、聚乙烯(polyethylene, PE)、聚丙烯(polypropylene, PP)、聚苯乙烯(polystyrene, PS)、聚酰胺(polyamide, PA)、聚酯(polyether sulfone, PES)、聚对苯二甲酸乙二酯(polyethylene terephthalate, PET)和聚乳酸(polylactic acid, PLA)等常见材料(表 1)已被证明会降低生物质废弃物联合WAS进行AD的甲烷产量。目前,已有多位研究者对该领域进行了探究[24-27],明确了MPs和NPs对AD过程能产生负面影响,但对于MPs和NPs影响AD的内在机制仍缺乏精确细致的实验证明。

表 1. AD系统中常见的塑料种类及应用 Table 1. Types and applications of plastics commonly found in AD systems
Type of plastic Chemical structure Application
PVC Pipes, toys, fiber optic sheathing, furniture, etc.
PE Film, plastic packaging bags, plastic bottles, etc.
PP Laboratory supplies, automotive components, speakers, textiles, etc.
PS Foam plastics, heat-absorbing and soundproofing materials, household appliances, etc.
PA Fishing gear, nylon, Kevlar, medical equipment, etc.
PES Heat-resistant materials, electronic and electrical components, etc.
PET Electrical and electronic appliances, mechanical industry gears, etc.
PLA Medical instruments, etc.

近年来已陆续有4篇关于MPs和NPs对AD产甲烷的影响的综述文章[24-27],其中,Liu等在2023年综述了MPs对活性污泥、好氧颗粒污泥、厌氧颗粒污泥和厌氧氨氧化污泥的去污效率和理化性质的影响[24]。Azizi等综述了MPs和NPs抑制或增强AD过程的机制及其对生化途径、关键酶、功能基因的潜在影响[25]。Manu等总结了MPs和NPs影响AD的直接机制和间接机制,并讨论了MPs在AD过程中引起抗生素耐药基因(antibiotic resistance genes, ARGs)丰度增加可能带来的风险[27]。近年来,噬菌体在AD产甲烷中的生态作用越来越得到重视,对不同AD反应器中微生物多样性的研究,揭示了噬菌体的遗传多样性和特异性[28]。噬菌体是影响原核微生物群落组成的主要生物学因素,并控制AD过程的性能[29]。然而,并无关于这方面的综述文章。本文聚焦于AD系统中噬菌体与细菌、古菌的互作关系,在总结以往研究进展的同时,还针对MPs和NPs对微生物群落的影响研究方面提出了不同的见解。

本文整理了自2018年以来发表的MPs和NPs关于厌氧消化产甲烷的文章(表 2),对研究所使用的MPs和NPs材质、浓度、研究方向进行了汇总。PS是研究中使用最多的塑料,其次是PVC与PE。PS-MPs和PS-NPs,以及不同电性的PS塑料都已被研究过。除此之外还有研究者着眼于不同龄期的塑料对AD的影响[43]。在反应器的选择上,大部分研究使用的是小于1 L的小体积的血清瓶,少数研究使用了工业场景中的序批式反应器和上流式厌氧污泥床反应器。在发酵方式上,序批式厌氧发酵是应用最多的发酵方式,连续式厌氧消化少有人采用[45]。研究内容上主要是围绕甲烷产量、污泥结构、塑料渗滤液毒性、ROS毒性、酶活性与微生物群落变化。

表 2. 当前MPs和NPs对AD产甲烷的文献汇总 Table 2. A summary of the current literature on methane production by MPs and NPs in AD
Types of plastics Diameter Concentration Reactor information Keywords References
PS-SO3H,
PS-NH2
60−80 nm (PS-SO3H) 60, 80, 100 mg/L
(PS-NH2) 5, 10, 20 mg/L
500 mL, bottle Methane production, EPS, microbial community and functional gene response [30]
PS 54.8 nm 50, 100, 200 mg/L 300 mL, bottle Methane production, microbial community [31]
PVC 1 mm 10, 20, 40, 60 particle/g TS 160 mL, bottle Methane production, leachate, microbial community, biochemical methane potential tests [32]
PE 40 μm 10, 30, 60, 100,
200 particles/g TS
160 mL, bottle Methane production, ROS, microbial community, biochemical methane potential tests [33]
PET 150 μm 10, 30, 60 particle/g TS
(0.09, 0.32, 0.66 mg/g TS)
1 L, bottle Hydrogen production, leachate, ROS, microbial community [34]
PES 200 μm 0, 1, 3, 6, 10, 30, 60, 100, 200 particles/g TS 310 mL, bottle Methane production, biochemical methane potential tests, microbial community [35]
PS 50 nm 10, 20, 50 μg/L 7 L, upflow anaerobic sludge bed (UASB) Methane production, EPS, leachate, ROS, microbial community [36]
PS 50 μm, 50 nm 0.16 g/L 300 mL, bottle Hydrogen and methane production, microbial community [37]
PS 0.5, 1, 10, 50, 75, 150 μm 75 mg/L 100 mL, bottle Methane production, leachate, microbial community [38]
PS 50 nm, 1 μm,
10 μm
50 mg/g TS 250 mL, bottle Methane production, microbial community and functional gene response [39]
PET, PP, PE, PS 150 μm 40, 80 mg/L Serum bottle EPS, microbial community, hydrogen production [40]
PS 100 μm,
100 nm
1, 20, 100 mg/L 1.6 L, sequencing batch reactor (SRB) Nitrogen metabolic pathways, metagenomic analysis [41]
PVC 0.1−0.3 mm 0, 1, 10, 30 particles/g TS 500 mL, bottle Methane production, cadmium [42]
PE, PET, PVC, PLA and aged PE, PET, PVC, PLA (PLA) 150 μm
(PE, PET, PVC, PLA) less than 300 μm
60 particles/g TS 250 mL, bottle Leachate, aged plastics, microbial community [43]
PS 110 nm 0, 1, 0.5, 1, 5 g/L 500 mL, bottle EPS, sludge flocculation, surface thermodynamics [44]
PS 50 μm, 100 nm 1, 20, 100 mg/L 13.8 L, bottle Nitrogen transformation process, metagenomic analysis [45]
PE 40−48 μm 10, 1 000 μg/L 200 mL, bottle EPS, biofilm, electron transfer nitrogen removal [46]
PET 0.3 mm 0.1, 0.2, 0.5, 1.0 g/L 100 mL, bottle Anammox, microbial community and functional gene response [47]
PS 120 nm 0.1, 0.5, 1.0 g/L 500 mL, bottle Anammox, sludge structure, EPS [48]
PS 80−160 μm 0, 0.5, 5, 50 mg/L 3 L, SBR Antibiotics resistance genes, functional genes, ARG transmission [49]
PS 1 mm, 100 μm,
1 μm
30, 200 mg/g TS 120 mL, bottle Food waste, microbiom and enzymology response, ROS [50]
PVC 75, 150,
3 000 μm
0.024, 0.24, 2.4 g/g VS 200 mL, bottle Dissolved organic matter, leaching compounds microbial community [51]

1 AD系统中MPs和NPs的来源

AD系统中的MPs和NPs来源可以分为2个途径:(1) 由污水处理厂在污水处理过程中沉积携带;(2) 存在于消化底物中。据估计,全球每年产生的生活和城市污水约达360 km3,其中污水处理厂中每年处理190 km3 (52.8%)[52]。全球约有30%的塑料被用于包装材料[53],2015年,联合国环境规划署(UN environment program, UNEP),发布过一篇倡导禁止将塑料颗粒用于个人护理及化妆品中的报告[54],其中列举了大部分含有塑料颗粒的个人护理用品和化妆品(表 3),如牙膏等[55-56]。在我们日常洗护过程中,这些塑料颗粒成为生活污水的一部分进入污水处理厂。另一方面,生活污水和工业废水中含有的来自工业生产过程和物理磨损的MPs也全部进入污水处理厂中[23, 57]。作为阻断塑料颗粒向环境传播的重要渠道[58],污水处理厂能捕获80%以上的塑料颗粒。这些被捕获的塑料颗粒存在于污泥中进入AD系统[59]

表 3. 个人护理产品和化妆品中常用的符合MPs和NPs定义的聚合物成分及其功能 Table 3. Polymer components and their functions that meet the definition of MPs and NPs commonly used in personal care products and cosmetics
Polymer Examples of functions in PPCP formulations
Nylon-12 (polyamide-12) Bulking, viscosity controlling, opacifying (e.g. wrinkle creams)
Nylon-6 Bulking agent, viscosity controlling
Poly(butylene terephthalate) Film formation, viscosity controlling
Poly(ethylene isoterephthalate) Bulking agent
Poly(ethylene terephthalate) Adhesive, film formation, hair fixative, viscosity controlling, aesthetic agent (e.g. glitters in bubble bath, makeup)
Poly(methyl methylacrylate) Sorbent for delivery of active ingredients
Poly(pentaerythrityl terephthalate) Film formation
Poly(propylene terephthalate) Emulsion stabilizing skin conditioning
Polyethylene Abrasive, film forming, viscosity controlling, binder for powders
Polypropylene Bulking agent, viscosity increasing agent
Polystyrene Film formation
Polytetrafluoroethylene (teflon) Bulking agent, slip modifier, binding agent, skin conditioner
Polyurethane Film formation (e.g. facial masks, sunscreen, mascara)
Polyacrylate Viscosity controlling
Acrylates copolymer Binder, hair fixative, film formation, suspending agent
Allyl stearate/vinyl acetate copolymers Film formation, hair fixative
Ethylene/propylene/styrene copolymer Viscosity controlling
Ethylene/methylacrylate copolymer Film formation
Ethylene/acrylate copolymer Film formation in waterproof sunscreen, gellant (e.g. lipstick, stick products, hand creams)
Butylene/ethylene/styrene copolymer Viscosity controlling
Styrene acrylates copolymer Aesthetic, coloured microspheres (e.g. makeup)
Trimethylsiloxysilicate (silicone rosin) Film formation (e.g. colour cosmetics, skin care, sun care)

参与AD过程的有机废物种类繁多,大致可分为餐厨垃圾[60]、禽畜废物[61]和农作物废料[62]。餐厨垃圾中的MPs颗粒主要来源于食品包装的磨损、食品加工过程中的塑料释放以及食品废物的粗糙回收过程。塑料包装在即食食品行业中被广泛应用,Hussain等探究了塑料容器在不同使用场景下释放MPs和NPs的数量,与冷藏或室温下使用相比,微波加热导致MPs和NPs释放到食品中的数量最高,每平方厘米容器中会释放出超过400万个MPs和20亿个NPs[63]。除此之外,因为各种原因(过期、不合格、被污染等)被浪费的食材,仍旧处于包装之中,然而无论使用机械还是人工方法,都无法将其完美分离。Porterfield等使用不同的机械拆包机拆分塑料包装与食材后进行AD,发现即使使用不同的方法,在消化液中都能检测到MPs的存在,并指出这种浓度的MPs会潜在的影响AD的效率[64]

2 MPs和NPs对AD系统性能的影响 2.1 MPs和NPs对AD产甲烷量的影响

MPs和NPs颗粒性质是影响AD甲烷产量的方式之一。塑料对AD的毒性随粒径减小而增加,在53 d的AD过程中,甲烷产量随添加MPs粒径(1 mm、100 μm和1 μm)减小而减少[50]。NPs由于体积更小,并能够表现出与相同材料在较大尺寸下未出现的不同特性,对甲烷产量的影响更大。相同浓度下1 μm和10 μm的PS对甲烷产量无明显的毒性作用,而50 nm PS则使甲烷产量下降了15%[39]。Wang等利用50 μm和50 nm的塑料小球研究了其对厌氧制氢的影响,结果表明50 μm MPs使氢气产量增加而50 nm MPs使氢气产量下降[37]。在不同的厌氧体系中,NPs对体系产生负面影响的起效浓度要比MPs低得多[31-32, 36, 42]。塑料的材质对甲烷的影响也不同,Wang等考察了不同材质的塑料及不同龄期的塑料对甲烷产量的影响,发现经紫外光老化过的MPs (PE、PET、PVC)对甲烷产量的负面影响要比未经老化过程的MPs小[43]。MPs和NPs的表面电性,也是其影响厌氧体系的重要特征之一。阳离子的PS-NPs (PS-NH2)对甲烷生成的抑制能力强于阴离子PS-NPs (PS-SO3H)[30],因为带正电的NPs能够和细胞膜表现出更有利的静电相互作用,促使其形成膜孔,从而破坏细菌细胞膜,同时积累的带正电荷的NPs也可以通过诱导更高水平的ROS来触发更多的细胞应激反应[65]

2.2 MPs和NPs对AD污泥结构的破坏作用

污泥形态多样,结构复杂,不同类型反应器污泥往往有不同的絮体或颗粒单体性质,污泥在反应器中通常以2种形态存在:(1) 絮凝污泥[66];(2) 厌氧颗粒污泥(anaerobic granular sludge, AnGS)[67]。研究发现NPs对2种结构的污泥都会产生负面影响。厌氧污泥在暴露于PS-NPs (1−5 g/L)之后,污泥絮凝能力最高降低了69.3%[44],扫描电镜观察到NPs吸附于污泥表面,改变了污泥的表面结构,对暴露于NPs的污泥进行zeta电位分析,显示NPs增强了污泥的电负性,这是阻止污泥絮凝的主要原因。AnGS技术广泛应用于高强度废水处理,用于回收废水中的甲烷。与絮凝污泥相比,AnGS通常具有独特的分层结构:水解菌和产酸菌位于外层,产甲烷菌分布在AnGS的内层[68]。Wei等使用荧光标记的NPs观察其对AnGS的影响,随着NPs的暴露时间增长,大量的NPs在外层聚集,使得AnGS的整体孔隙率下降了8.1%,然后向内层移动,干扰了颗粒污泥的沼气产生和营养物质运输,并对微生物产生了直接的毒害作用[36]。Wang等使用0.5−150 μm的PS-MPs实验,观察到PS-MPs存在时,AnGS体积比对照组要小,甚至出现了破碎,而且PS-MPs粒径越大对AnGS的完整性的破坏性越强[38]。胞外聚合物(extracellular polymeric substance, EPS)也是组成污泥结构的重要部分[69],其可以将细胞结合在一起,形成一个微环境,保护微生物。低剂量NPs能够刺激EPS的产生,高剂量NPs则会破坏EPS的稳定性。它的破坏主要体现在NPs的表面基团能够与EPS的氢键、C−H和C−O等官能团相互作用,改变蛋白质的结构,使EPS的疏水性降低,结构变得松散[30, 33, 44]。MPs和NPs对污泥絮凝过程、AnGS和EPS形成过程的抑制与破坏,损坏了微生物的定殖场所,从而破坏了AD体系的有效运行。

3 MPs和NPs影响AD系统的内在机制 3.1 MPs和NPs浸出液对AD系统的影响

MPs和NPs在制作过程中,会使用有毒性的添加剂来提高塑料的性能,在厌氧处理过程这些添加剂会浸出从而对体系产生负面作用,双酚A (bisphenol A, BPA)是PVC塑料中的常用添加剂,Wei等探究了BPA从PVC-MPs的浸出水平和其对甲烷产量的影响,结果显示BPA的浓度与PVC的含量呈正相关关系,使用不同PVC含量的浸出液进行产甲烷实验,得到结果与MPs的实验基本吻合,因而指出BPA是导致甲烷产量下降的主要原因[32]。十二烷基磺酸钠(sodium dodecyl sulfate, SDS)是PS的主要浸出物,也是PS导致甲烷产量降低的部分原因[36]。然而,并非所有的塑料浸出物都会造成甲烷产量下降,乙酰基柠檬酸三丁酯为PE-MPs的主要浸出物,但并不影响甲烷产量[43]。综上所述,塑料浸出液只是微塑料颗粒影响甲烷产量的部分原因,MPs和NPs对AD的影响是多方面的。

3.2 MPs和NPs诱导产生的ROS对AD系统的影响

NPs通常具有单位质量的大表面积,导致更大比例的活性基团显示在表面,促进了更多的自由基与分子双氧的催化反应,从而加剧了ROS的产生,这一过程引起细胞的氧化应激反应,导致细胞凋亡。在当前的MPs和NPs研究中,都能观察到活性氧水平的升高,如斑马鱼[70]、黄鳝[71]等。ROS也是导致AD效率降低的主要原因[33, 36, 38, 43]。Huang等检测污泥中的ROS水平,在PE-MPs浓度超过200颗粒g/Ts时,观察到ROS显著升高,细胞活力降低和细胞死亡率升高[41]。Li等在研究PS-NPs对AnGS的作用时,也观察到ROS的毒害作用[48]。Jeong等研究表明PS-NPs通过诱导产生ROS,引起氧化应激致单子叶轮虫(Brachionus koreanus)膜功能障碍[72]。Wei等以胞外乳酸脱氢酶(lactate dehydrogenase, LDH)为细胞膜完整的指标,探究了ROS对细胞膜的毒性作用,在添加超氧化物歧化酶去除ROS的毒性后,LDH的释放量减少,以此证明了ROS对细胞膜的破坏作用[36]。此外,从PS中浸出的SDS也能够抑制抗氧化酶的活性,从而进一步加剧PS所导致的ROS的危害[36]。MPs和NPs能够引起AD过程中ROS的产生,并破坏细胞膜导致细胞活力降低与细胞死亡。

3.3 MPs和NPs对AD系统关键酶活性与关键基因表达的影响

微生物能够分泌各种酶来分解有机物供给自身,研究厌氧消化器中的酶动力学能够揭示MPs和NPs对产甲烷各阶段的影响。蛋白酶和纤维素酶分别负责蛋白和多糖的降解,乙酰辅酶A可以被乙酸激酶(acetate kinase, AK)转换为乙酸,F420是产甲烷的关键酶。Wei等研究发现蛋白酶、F420酶和AK随PVC-MPs的添加量增加而活性降低,而纤维素酶活性变化并不显著,暗示MPs会影响产甲烷过程的酸化与产甲烷阶段[32]。Wang等以PS为研究材料也观察到酸化过程中的AK活性降低[39]。关于酶活性降低的原因,目前还无统一的定论,一方面可能是塑料渗滤液的毒性作用,Wang等关于PE、PVC渗滤液的抑制作用实验中,也观察到蛋白酶活性显著降低[43];另一方面可能是由于体系氧化还原平衡被破坏,电子传递能力是微生物在厌氧条件下通过呼吸作用维持其氧化还原状态的必要条件,Zhang等在使用PS-NPs和PS-MPs研究塑料颗粒大小对AnGS脱氮效率的抑制作用时发现,NPs实验组中参与电子传递过程的基因相对丰度降低,猜测NPs比MPs对电子传递的抑制作用更大[45]。推测其原因也可能是MPs和NPs能够与细胞膜结合,引起细胞损伤。MPs和NPs与细胞膜结合,对厌氧氨氧化污泥的关键酶、代谢中间体产物和代谢终产物具有急性抑制作用。此外,MPs会损伤细胞,破坏物质交换通道和DNA结构[73]。总而言之,MPs和NPs的添加会降低产甲烷过程中的酸化产甲烷相关酶活性,其导致酶活性降低的方式可能是由于对相关功能菌的直接破坏或者对其电子传递系统的阻碍作用。

3.4 MPs和NPs对微生物群落的影响

MPs和NPs对菌株本身的影响主要与其粒径大小和表面基团的电性有关,Fu等以纯培养的产氢拟醋杆菌(Acetobacteroides hydrogenigenes)为模型厌氧微生物探究了纳米塑料对纯培养菌株的影响,结果表明,0.2 g/L的PS-NPs降低了体系的产氢量,扫描电镜显示A. hydrogenigenes的细胞膜上附着有PS-NPs颗粒,并出现大量的纳米大小的孔隙[31],塑料颗粒对细菌的破坏作用是其影响氢气产量的原因。塑料颗粒在经历某些物理或化学过程时,如光照射和摩擦,可能会使其表面带有电性。Dai等使用经表面基团修饰的带电PS颗粒探究了大肠杆菌和枯草芽孢杆菌与不同电性PS颗粒的作用模式,结果表明,带正电的PS (PS-NH2)颗粒显著降低了2种细菌的生存能力,而且小尺寸(< 80 nm)的PS-NH2颗粒能够被内吞进入细菌细胞内并在其中积累,大尺寸(> 200 nm)的PS-NH2颗粒和带负电的PS (PS-COOH)颗粒则只是嵌入在细胞膜表面[65]。PS-NH2可以很容易地克服界面水的屏障和磷脂分子之间的自相互作用而与细胞膜高度结合,这也会导致细胞膜表面张力增大,使细胞膜变形[74]。此外,更大尺寸MPs能够成为其他污染物的载体,从而对菌株产生危害。Li等的研究发现MPs进入污水处理厂后,其表面出现很多空隙且MPs表面的C−O和O−H基团增加,这提升了其吸附Cd等重金属能力[75]

MPs和NPs的加入会导致微生物群落向不利于水解酸化的方向进行。Feng等使用PS-NPs进行了序批式产甲烷实验,加入PS-NPs之后,互营杆菌属(Syntrophobacter)、糖发酵菌属(Saccharofermentans)、密螺旋体属(Treponema)、乳酸弧菌属(Lactivibrio)和栖泥沼杆菌属(Paludibacter)的丰度显著下降,这些属的细菌能够利用碳水化合物和糖生产乙酸,表明NPs使体系向不利于产酸的方向转变[30]。同样,Wei等使用PET进行实验时,发现水解菌拟杆菌属(Bacteroides)和产酸产氢菌蒂西耶氏菌属(Tissierella)、温泉胞菌属(Fonticella)的丰度都低于空白组[34]。Wang等在探究50 nm PS-NPs对厌氧产甲烷的影响时,检测到纤细杆菌属(Gracilibacter)、有益杆菌属(Diaphorobacter)、Candidatus Cloacimonas和斯密斯氏互养菌属(Smithella)等与水解酸化有关的细菌丰度降低至对照组的80.1%[37]。Wang等研究显示当PS的粒径从0.5 μm增加到150 μm时,优势产酸菌Candidatus Caldatribacterium的丰度比对照减少了14.8%−39.7%[38]

在古菌群落水平上,Sun等研究发现,在添加PVC后的第120天,氢营养型产甲烷菌如甲烷杆菌属(Methanobacterium)和甲烷短杆菌属(Methanobrevibacter)的丰度分别比对照组高40.0%和4.0%;氢营养型产甲烷菌利用H2和CO2或甲酸生产甲烷,由于其更高的比生长率和更好的毒性适应能力,在恶劣条件下比乙酸型产甲烷菌更具竞争力[51]。Wang等也注意到产甲烷菌在MPs胁迫下古菌群里优势菌属从乙酸型产甲烷菌转变为氢营养型产甲烷菌[76]。Li等发现高浓度的MPs浓度使氢营养型甲烷菌甲烷袋状菌属(Methanoculleus)的相对丰度上升[50]。菌株之间可能通过互作来减轻环境胁迫带来的压力,Wang等研究发现铜绿假单胞菌(Pseudomonas aeruginosa) ZM03能够增强烟草节杆菌(Arthrobacter nicotianae) ZM05在低pH下降解塑料添加剂邻苯二甲酸二丁酯的效率[77]。乙酸互营氧化菌(syntrophic acetate oxidation bacteria, SAOB)与氢营养型产甲烷古菌之间形成的合作关系能够增强AD系统在氨抑制条件下的产甲烷能力[78]。在氨抑制的条件下,Dyksma等研究表明氢营养型产甲烷菌在高温厌氧消化器能够取代乙酸型产甲烷菌成为主要的产甲烷贡献者[79]。综上所述,MPs和NPs的加入会抑制菌群水解酸化的能力,并减少乙酸型产甲烷菌的产甲烷潜力,增强氢营养型古菌的产甲烷能力,并且氢营养型产甲烷古菌与SAOB能够形成伙伴关系,SAOB与氢营养型产甲烷菌或可成为抵抗MPs和NPs胁迫的关键。

4 噬菌体在AD系统中的生态角色 4.1 AD系统中噬菌体丰度与多样性

活性污泥是噬菌体丰度最高的场所之一,这种生物工程反应器中有着密集的生物质,能够长期保持在均匀、相对稳定的条件,这使其成为噬菌体的理想狩猎场。据估计,污水处理厂中每毫升污泥中大概有108−109个噬菌体[80]。远比海洋环境中的噬菌体浓度要高[81],并且噬菌体在产甲烷反应器中以每天至少5.2×107个/L的速度繁殖[82]。这些高浓度的噬菌体也具有高度的多样性和新颖性。Calusinska等通过宏基因组学方法探究了9个反应器中污泥样本的dsDNA噬菌体与RNA病毒的多样性,在与数据库进行对比时,只有48.5%的噬菌体contig被命中,此外稀释曲线末端斜率未趋向于0,说明还有大量的噬菌体序列未被检测到[28]。Fan等[83]对餐厨厌氧消化器(anaerobic digestion of food waste, ADFW)中的噬菌体进行研究,也有46.8%的噬菌体群落无法被注释,随后,通过构建基因共享网络与NCBI上的噬菌体参考基因组进行比对以研究噬菌体群落的特点,结果表明ADFW中的噬菌体中有64.48%的病毒操作分类单位(viral operational taxonomic units, vOTU)是单独聚集的,说明其中含有大量未被发现的厌氧特异性噬菌体。在这些噬菌体中长尾噬菌体科(Siphoviridae) (32.7%)、肌尾噬菌体科(Myoviridae) (11.9%)和短尾噬菌体科(Podoviridae) (3.0%)是主要的分类科,归属于有尾噬菌体目(Caudovirales)。Willenbücher等从中温厌氧消化器中也得到了同样的结果,并且还鉴定出丝杆噬菌体科(Inoviridae)和Tectiviricetes科的成员[84]。有尾噬菌体目(Caudovirales)归属于有尾噬菌体纲(Caudoviricetes),该类噬菌体多次在关于厌氧产甲烷消化器的文章中被报道,占据噬菌体的主要生态位[85-87]

4.2 AD系统中噬菌体-原核生物动力学

噬菌体-原核生物的动力学和相互作用被认为是控制微生物组组成和生态系统功能的重要因素。Zhang等[29]在4个厌氧消化池中对噬菌体与原核生物进行了为期一年的观测,使用组学与统计学分析相结合的方法,探究了噬菌体变化与原核生物变化之间的相关性,结果显示,噬菌体的存在能够解释40.6%的原核生物群落组成变化,远大于非生物因素的影响,证明噬菌体是控制原核生物组成和过程性能的主要生物因素且可能发挥更大的影响。针对噬菌体与原核生物之间的相互作用机制,Heyer等[87]利用元蛋白组学技术对厌氧消化器中微生物蛋白进行了探究,通过CRISPR蛋白序列确定了噬菌体的主要宿主为杆菌科、肠杆菌科、梭菌科和古菌Methanocococaldacaea;噬菌体的数量是细胞的20−30倍,通过对其构建代谢模型,指出噬菌体能够通过裂解细胞来控制反应器中的营养流向。关于厌氧消化器中噬菌体与细菌之间的寄生关系,Centurion等[85]进行了进一步的探究,他们通过鉴定CRISPR研究噬菌体与宿主相互作用时发现,虽然大多数噬菌体只有一个宿主,但也有例外,Herelleviridae科的噬菌体与细菌Candidatus Anammoximicrobium之间有40个不同的间隔序列连接,这暗示了它们可能进行了漫长的共同进化。

对于厌氧消化器中的古菌群落,甲烷热杆菌属(Methanothermobacter)和甲烷八叠球菌属(Methanosarcina)是受侵染最多的,占所有记录的噬菌体-古菌相互作用的70%[85]。Ding等分离获得的Methanothermo bactermarburgensis DX01是氢营养型产甲烷古菌,仅能够利用H2和CO2产生甲烷[88]Methanosarcina也是厌氧消化器中被广泛研究的产甲烷古菌,为混合营养型,能够利用乙酸、甲酸、CO2产甲烷[89]。前噬菌体从溶原到裂解状态的转变称为诱导,也是一种噬菌体控制微生物群落的方式,但前噬菌体的这种自发转变概率极低。通常是宿主遇到危机时才会发生。然而,在几种感染细菌和古菌的噬菌体中,这种现象会随着宿主DNA损伤胁迫而增加[90]。Lu等发现与噬菌体复制有关的基因在深海石油泄漏造成的羽流中高度富集[91]。Rossi等在对厌氧消化器进行氧化应激实验时,发现yopX基因高表达,该基因可以调节前噬菌体的生命周期[92]。氧化应激是MPs和NPs引起AD系统效率降低的原因之一。噬菌体与细菌、古菌之间的紧密相关性与广泛的宿主范围,说明厌氧消化器发生的变化不能仅靠二者之一来解释,而是需要综合考量。

4.3 AD系统中辅助代谢基因的重要作用

辅助代谢基因通常被定义为噬菌体通过偶然的基因转移事件从宿主基因组中获得的代谢基因,这些基因与宿主同源且具有相同功能,并能随噬菌体一起进化。噬菌体可以通过AMG的表达帮助宿主与自身生存,改变生态系统的生产力流向[93]。Yuan等从活性污泥的宏基因组中拼接得到了752个高置信度的噬菌体基因组,并鉴定出了101个参与多种代谢途径的AMG,通过系统发育分析探究了噬菌体参与碳、氮、硫和磷酸盐代谢的进化历史,提出噬菌体可能通过AMG影响碳、氮、硫的化学循环[86]。Fan等对全球范围内的活性污泥中噬菌体多样性进行了探究,噬菌体的群落结构与功能受周围环境因素主导,在活性污泥中携带和传播与多糖降解、硫酸盐还原、反硝化和有机磷酸酯水解相关的AMG,以及控制生物地球化学循环的关键功能微生物的裂解是噬菌体调节活性污泥功能的2种主要方式。除此之外,还在噬菌体序列中鉴定出13类355种ARGs,强调了噬菌体作为ARGs主要宿主的重要性[94]。Wang等发现侵染厌氧甲烷氧化古菌(anaerobic methane oxidizing archaea, ANME)的噬菌体携带有编码磷酸腺苷磷酸硫酸还原酶的cysH基因,其是同化硫酸盐还原途径的关键酶,能够增强同化硫酸盐的能力来合成有机硫,进一步研究发现cysH基因可能来源于硫酸盐还原菌(sulfate-reducing bacteria, SRB),ANME通常与SRB共生,大多数ANME的生存依赖于SRB的共生相互作用[95-96]。该发现暗示了在环境胁迫条件下,噬菌体可能通过从其他宿主的基因组中获得AMG来协助另一个宿主抵抗环境胁迫。

5 MPs和NPs可以作为微生物的载体

MPs和NPs可能作为微生物的载体,携带与生物膜相关的机会性细菌和ARGs[97],这种微生物在MPs和NPs上定殖的现象,叫作塑际圈(plastisphere)[98]。塑际圈微生物群受环境因素的影响较小,Li等通过冗余分析(redundancy analysis, RDA)得知,塑际圈内的微生物群落受环境因子的约束性要比水生环境中的微生物群落更小[99],这将使MPs和NPs能够充当微生物群的保护伞,将微生物从其他环境带到AD系统中。不同塑料材质上定殖的微生物群落是不同的。Bhagwat等使用宏基因组测序技术检测了4种MPs上微生物群落,结果显示,4种塑料上都含有高丰度的红细菌科(Rhodobacteraceae),除此之外盐屋埼假交替单胞菌(Pseudoalteromonas shioyasakiensis)是PS上最多的菌群,而食脂肪族烃脱硫酸盐杆菌(Desulfatibacillum aliphaticivorans)和食烃烯脱硫酸盐杆菌(Desulfatibacillum alkenivorans)则是聚己内酯塑料上丰度最高的菌群[100]。塑际圈中微生物的基因表达模式也与周围环境有所差异,Li等对农用地残留塑料膜上的微生物群落进行研究,其中与反硝化和硫酸盐还原活性相关的基因丰度显著高于土壤中的,这可能会导致氮、硫元素损失的风险[101]。噬菌体能够吸附在MPs和NPs上,这有可能提高噬菌体的存活与传播效率。Lu等以PS-MPs为载体,T2噬菌体为噬菌体模型,通过紫外侧散射/绿色荧光双门流式细胞术探究了噬菌体在MPs上的吸附能力,结果表明,在AD过程中的MPs可吸附高达(98.6±0.2)%的噬菌体,其吸附量取决于MPs的大小和表面官能团,通过zeta电位测试指出静电相互作用是与噬菌体吸附相关的主要吸附机制,而且塑料经过紫外线老化后会增强MPs对噬菌体的吸附能力[102]。MPs和NPs或许能够成为微生物,尤其是噬菌体高度聚集的场所。

6 总结与展望

MPs和NPs引起AD系统甲烷产量降低的潜在机制(图 3),研究者们已用相关数据证实,包括:(1) 影响AD过程中污泥的絮凝;(2) 破坏已经形成的AnGS结构;(3) 渗出的塑料添加剂毒害细胞;(4) 诱导产生ROS引起细胞损伤;(5) 直接破坏细胞结构;(6) 通过表面电荷或渗滤出的有毒物质破坏酶结构;(7) 作为细菌与噬菌体的载体,促进噬菌体侵染细菌,加速群落间的基因水平转移,特别是ARGs的传播。

图 3 MPs和NPs影响AD甲烷产量的主要机制 Figure 3 The main mechanisms by which MPs and NPs affect the methane yield of AD.

污泥的好氧消化也是减少WAS处理量的重要方法,但二者的目的不同,好氧消化是为了使微生物有机体自身氧化分解,减少污泥产量,生物质废弃物联合WAS进行AD则是为了将有机物转化甲烷。AD中含有大量的油脂等物质,这可能导致MPs和NPs的聚集,所以与AD相比,除本文所述的影响外,MPs和NPs对好氧消化的影响可能具有更低的起效阈值。

生物质废弃物联合WAS进行AD产甲烷是当前垃圾处理与活性污泥处理的最经济有效的方式。厘清MPs和NPs对AD的影响机制并找出治理办法能够促进该行业的发展,也能为MPs和NPs对其他场所的污染提供借鉴意义。长期运行的厌氧消化器中的活性污泥是一个复杂生态体系,其运行不仅仅依靠细菌与古菌的驱动,噬菌体在其中的生态作用也是不能忽视的因素。

结合目前的研究现状,尚有以下3个待解决的问题。(1) 多篇文章已经证实ROS的产生与甲烷产量降低相关,但MPs和NPs如何导致AD系统中的ROS产生,以及ROS如何对微生物产生毒害作用,尚缺乏严谨的实验设计与数据证实。(2) NPs与MPs相比,有着不同的物理化学特征,能够表现出不同的表面性质与聚集状态。目前的研究中虽然进行了NPs与MPs的同步实验,但并未从NPs的性质与引起的现象来区分二者的不同。(3) 噬菌体在活性污泥中的丰度比其他场所中高,并在不同的污染场景中担任重要的生态角色,与微生物群落的改变有着密切联系,塑料也是噬菌体的载体之一,但在之前的关于NPs研究中并未涉及噬菌体的生态作用,这需要在未来的研究中解答。

References
[1] YANG G, ZHANG GM, WANG HC. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78: 60-73 DOI:10.1016/j.watres.2015.04.002.
[2] WEI LL, ZHU FY, LI QY, XUE CH, XIA XH, YU H, ZHAO QL, JIANG JQ, BAI SW. Development, current state and future trends of sludge management in China: based on exploratory data and CO2-equivaient emissions analysis[J]. Environment International, 2020, 144: 106093 DOI:10.1016/j.envint.2020.106093.
[3] FENG YH, ZHANG YB, CHEN S, QUAN X. Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode[J]. Chemical Engineering Journal, 2015, 259: 787-794 DOI:10.1016/j.cej.2014.08.048.
[4] GARRIDO-BASERBA M, MOLINOS-SENANTE M, ABELLEIRA-PEREIRA JM, FDEZ-GÜELFO LA, POCH M, HERNÁNDEZ-SANCHO F. Selecting sewage sludge treatment alternatives in modern wastewater treatment plants using environmental decision support systems[J]. Journal of Cleaner Production, 2015, 107: 410-419 DOI:10.1016/j.jclepro.2014.11.021.
[5] KARKI R, CHUENCHART W, SURENDRA KC, SHRESTHA S, RASKIN L, SUNG S, HASHIMOTO A, KUMAR KHANAL S. Anaerobic co-digestion: current status and perspectives[J]. Bioresource Technology, 2021, 330: 125001 DOI:10.1016/j.biortech.2021.125001.
[6] LI Y, CHEN YG, WU J. Enhancement of methane production in anaerobic digestion process: a review[J]. Applied Energy, 2019, 240: 120-137 DOI:10.1016/j.apenergy.2019.01.243.
[7] GAZITÚA MC, VIK DR, ROUX S, GREGORY AC, BOLDUC B, WIDNER B, MULHOLLAND MR, HALLAM SJ, ULLOA O, SULLIVAN MB. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters[J]. The ISME Journal, 2021, 15: 981-998 DOI:10.1038/s41396-020-00825-6.
[8] BREITBART M, BONNAIN C, MALKI K, SAWAYA NA. Phage puppet masters of the marine microbial realm[J]. Nature Microbiology, 2018, 3: 754-766 DOI:10.1038/s41564-018-0166-y.
[9] ANKRAH NYD, MAY AL, MIDDLETON JL, JONES DR, HADDEN MK, GOODING JR, LeCLEIR GR, WILHELM SW, CAMPAGNA SR, BUCHAN A. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition[J]. The ISME Journal, 2014, 8(5): 1089-1100 DOI:10.1038/ismej.2013.216.
[10] HOWARD-VARONA C, HARGREAVES KR, ABEDON ST, SULLIVAN MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages[J]. The ISME Journal, 2017, 11(7): 1511-1520 DOI:10.1038/ismej.2017.16.
[11] ROUX S, BRUM JR, DUTILH BE, SUNAGAWA S, DUHAIME MB, LOY A, POULOS BT, SOLONENKO N, LARA E, POULAIN J, PESANT S, KANDELS-LEWIS S, DIMIER C, PICHERAL M, SEARSON S, CRUAUD C, ALBERTI A, DUARTE CM, GASOL JM, VAQUÉ D, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses[J]. Nature, 2016, 537: 689-693 DOI:10.1038/nature19366.
[12] JAMBECK JR, GEYER R, WILCOX C, SIEGLER TR, PERRYMAN M, ANDRADY A, NARAYAN R, LAW KL. Marine pollution[J]. Science, 2015, 347(6223): 768-771 DOI:10.1126/science.1260352.
[13] HOSEINI M, BOND T. Predicting the global environmental distribution of plastic polymers[J]. Environmental Pollution, 2022, 300: 118966 DOI:10.1016/j.envpol.2022.118966.
[14] MAZZON M, GIOACCHINI P, MONTECCHIO D, RAPISARDA S, CIAVATTA C, MARZADORI C. Biodegradable plastics: effects on functionality and fertility of two different soils[J]. Applied Soil Ecology, 2022, 169: 104216 DOI:10.1016/j.apsoil.2021.104216.
[15] XU BL, LIU F, CRYDER Z, HUANG D, LU ZJ, HE Y, WANG HZ, LU ZM, BROOKES PC, TANG CX, GAN J, XU JM. Microplastics in the soil environment: occurrence, risks, interactions and fate: a review[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(21): 2175-2222 DOI:10.1080/10643389.2019.1694822.
[16] BLÄSING M, AMELUNG W. Plastics in soil: analytical methods and possible sources[J]. The Science of the Total Environment, 2018, 612: 422-435 DOI:10.1016/j.scitotenv.2017.08.086.
[17] CÓZAR A, ECHEVARRÍA F, GONZÁLEZ-GORDILLO JI, IRIGOIEN X, UBEDA B, HERNÁNDEZ-LEÓN S, PALMA AT, NAVARRO S, GARCÍA-DE-LOMAS J, RUIZ A, FERNÁNDEZ-DE-PUELLES ML, DUARTE CM. Plastic debris in the open ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10239-10244.
[18] WRIGHT SL, KELLY FJ. Plastic and human health: a micro issue?[J]. Environmental Science & Technology, 2017, 51(12): 6634-6647.
[19] THOMPSON RC, OLSEN Y, MITCHELL RP, DAVIS A, ROWLAND SJ, JOHN AWG, McGONIGLE D, RUSSELL AE. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838 DOI:10.1126/science.1094559.
[20] GAYLARDE CC, BAPTISTA NETO JA, da FONSECA EM. Nanoplastics in aquatic systems: are they more hazardous than microplastics?[J]. Environmental Pollution, 2021, 272: 115950 DOI:10.1016/j.envpol.2020.115950.
[21] GIGAULT J, EL HADRI H, NGUYEN B, GRASSL B, ROWENCZYK L, TUFENKJI N, FENG SY, WIESNER M. Nanoplastics are neither microplastics nor engineered nanoparticles[J]. Nature Nanotechnology, 2021, 16: 501-507 DOI:10.1038/s41565-021-00886-4.
[22] LI Y, SHI XW, ZENG M, QIN PQ, FU MY, LUO SY, TANG CJ, MO CJ, YU FM. Effect of polyethylene microplastics on antibiotic resistance genes: A comparison based on different soil types and plant types[J]. Journal of Hazardous Materials, 2024, 472: 134581 DOI:10.1016/j.jhazmat.2024.134581.
[23] DUAN JJ, LI Y, GAO JN, CAO RZ, SHANG EX, ZHANG W. ROS-mediated photoaging pathways of nano- and micro-plastic particles under UV irradiation[J]. Water Research, 2022, 216: 118320 DOI:10.1016/j.watres.2022.118320.
[24] LIU ST, SU CY, LU YY, XIAN YC, CHEN ZP, WANG YC, DENG X, LI XJ. Effects of microplastics on the properties of different types of sewage sludge and strategies to overcome the inhibition: a review[J]. The Science of the Total Environment, 2023, 902: 166033 DOI:10.1016/j.scitotenv.2023.166033.
[25] AZIZI SMM, HAI FI, LU WJ, AL-MAMUN A, RANJAN DHAR B. A review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion[J]. Bioresource Technology, 2021, 329: 124894 DOI:10.1016/j.biortech.2021.124894.
[26] HE ZW, YANG WJ, REN YX, JIN HY, TANG CC, LIU WZ, YANG CX, ZHOU AJ, WANG AJ. Occurrence, effect, and fate of residual microplastics in anaerobic digestion of waste activated sludge: a state-of-the-art review[J]. Bioresource Technology, 2021, 331: 125035 DOI:10.1016/j.biortech.2021.125035.
[27] MANU MK, LUO LW, KUMAR R, JOHNRAVINDAR D, LI DY, VARJANI S, ZHAO J, WONG J. A review on mechanistic understanding of microplastic pollution on the performance of anaerobic digestion[J]. Environmental Pollution, 2023, 325: 121426 DOI:10.1016/j.envpol.2023.121426.
[28] CALUSINSKA M, MARYNOWSKA M, GOUX X, LENTZEN E, DELFOSSE P. Analysis of dsDNA and RNA viromes in methanogenic digesters reveals novel viral genetic diversity[J]. Environmental Microbiology, 2016, 18(4): 1162-1175 DOI:10.1111/1462-2920.13127.
[29] ZHANG JY, GAO Q, ZHANG QT, WANG TX, YUE HW, WU LW, SHI J, QIN ZY, ZHOU JZ, ZUO JE, YANG YF. Bacteriophage-prokaryote dynamics and interaction within anaerobic digestion processes across time and space[J]. Microbiome, 2017, 5(1): 57 DOI:10.1186/s40168-017-0272-8.
[30] FENG Y, FENG LJ, LIU SC, DUAN JL, ZHANG YB, LI SC, SUN XD, WANG SG, YUAN XZ. Emerging investigator series: inhibition and recovery of anaerobic granular sludge performance in response to short-term polystyrene nanoparticle exposure[J]. Environmental Science: Water Research & Technology, 2018, 4(12): 1902-1911.
[31] FU SF, DING JN, ZHANG Y, LI YF, ZHU R, YUAN XZ, ZOU H. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system[J]. The Science of the Total Environment, 2018, 625: 64-70 DOI:10.1016/j.scitotenv.2017.12.158.
[32] WEI W, HUANG QS, SUN J, WANG JY, WU SL, NI BJ. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A[J]. Environmental Science & Technology, 2019, 53(5): 2509-2517.
[33] WEI W, HUANG QS, SUN J, DAI XH, NI BJ. Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge[J]. Environmental Science & Technology, 2019, 53(16): 9604-9613.
[34] WEI W, ZHANG YT, HUANG QS, NI BJ. Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms[J]. Water Research, 2019, 163: 114881 DOI:10.1016/j.watres.2019.114881.
[35] LI L, GENG SX, LI ZY, SONG K. Effect of microplastic on anaerobic digestion of wasted activated sludge[J]. Chemosphere, 2020, 247: 125874 DOI:10.1016/j.chemosphere.2020.125874.
[36] WEI W, HAO Q, CHEN ZJ, BAO T, NI BJ. Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater[J]. Water Research, 2020, 182: 116041 DOI:10.1016/j.watres.2020.116041.
[37] WANG C, WEI W, CHEN ZJ, WANG Y, CHEN XM, NI BJ. Polystyrene microplastics and nanoplastics distinctively affect anaerobic sludge treatment for hydrogen and methane production[J]. The Science of the Total Environment, 2022, 850: 158085 DOI:10.1016/j.scitotenv.2022.158085.
[38] WANG C, WEI W, ZHANG YT, DAI XH, NI BJ. Different sizes of polystyrene microplastics induced distinct microbial responses of anaerobic granular sludge[J]. Water Research, 2022, 220: 118607 DOI:10.1016/j.watres.2022.118607.
[39] WANG J, MA DM, FENG K, LOU Y, ZHOU HH, LIU BF, XIE GJ, REN NQ, XING DF. Polystyrene nanoplastics shape microbiome and functional metabolism in anaerobic digestion[J]. Water Research, 2022, 219: 118606 DOI:10.1016/j.watres.2022.118606.
[40] WEI W, ZHANG YT, WANG C, GUO WS, NGO HH, CHEN XM, NI BJ. Responses of anaerobic hydrogen-producing granules to acute microplastics exposure during biological hydrogen production from wastewater[J]. Water Research, 2022, 220: 118680 DOI:10.1016/j.watres.2022.118680.
[41] HUANG SC, ZHANG B, ZHAO ZW, YANG C, ZHANG B, CUI FY, LENS PNL, SHI WX. Metagenomic analysis reveals the responses of microbial communities and nitrogen metabolic pathways to polystyrene micro(nano)plastics in activated sludge systems[J]. Water Research, 2023, 241: 120161 DOI:10.1016/j.watres.2023.120161.
[42] LIU XR, DENG Q, DU MT, LU Q, ZHOU WN, WANG DB. Microplastics decrease the toxicity of cadmium to methane production from anaerobic digestion of sewage sludge[J]. The Science of the Total Environment, 2023, 869: 161780 DOI:10.1016/j.scitotenv.2023.161780.
[43] WANG XY, ZHANG Y, ZHAO YP, ZHANG L, ZHANG XX. Inhibition of aged microplastics and leachates on methane production from anaerobic digestion of sludge and identification of key components[J]. Journal of Hazardous Materials, 2023, 446: 130717 DOI:10.1016/j.jhazmat.2022.130717.
[44] QU JW, LI HX, XU SS, HUANG J, LIU ZP, LONG M, GUO JS, FANG F. Acute exposure to polystyrene nanoplastics inhibits the flocculation of activated sludge[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109794 DOI:10.1016/j.jece.2023.109794.
[45] ZHANG B, HUANG SC, WU L, GUO Y, SHI WX, LENS PNL. Micro(nano)plastic size and concentration co-differentiate the treatment performance and toxicity mechanism in aerobic granular sludge systems[J]. Chemical Engineering Journal, 2023, 457: 141212 DOI:10.1016/j.cej.2022.141212.
[46] WANG S, JIN B, SU YY, ZHANG YF. Long-term effect of polyethylene microplastics on the bioelectrochemical nitrogen removal process[J]. Chemical Engineering Journal, 2023, 466: 143172 DOI:10.1016/j.cej.2023.143172.
[47] HONG XT, NIU BX, SUN HW, Zhou X. Insight into response characteristics and inhibition mechanisms of anammox granular sludge to polyethylene terephthalate microplastics exposure[J]. Bioresource Technology, 2023, 385: 129355 DOI:10.1016/j.biortech.2023.129355.
[48] LI HX, XU SS, FU L, CHEN YP, YAN P, GUO JS, FANG F. Revealing the effects of acute exposure of polystyrene nanoplastics on the performance of anammox granular sludge[J]. Journal of Water Process Engineering, 2022, 50: 103241 DOI:10.1016/j.jwpe.2022.103241.
[49] REN ZY, GUO H, JIN HK, WANG YJ, ZHANG GD, ZHOU J, QU GZ, SUN QH, WANG TC. P, N, and C-related functional genes in SBR system promoted antibiotics resistance gene transmission under polystyrene microplastics stress[J]. Water Research, 2023, 235: 119884 DOI:10.1016/j.watres.2023.119884.
[50] LI Y, LI XN, WANG PL, SU YL, XIE B. Size-dependent effects of polystyrene microplastics on anaerobic digestion performance of food waste: focusing on oxidative stress, microbial community, key metabolic functions[J]. Journal of Hazardous Materials, 2022, 438: 129493 DOI:10.1016/j.jhazmat.2022.129493.
[51] SUN M, XIAO KK, ZHU YW, OU B, YU WB, LIANG S, HOU HJ, YUAN SS, GAN FM, MI RX, YANG JK. Deciphering the role of microplastic size on anaerobic sludge digestion: changes of dissolved organic matter, leaching compounds and microbial community[J]. Environmental Research, 2022, 214(Pt 3): 114032.
[52] JONES ER, van VLIET MTH, QADIR M, BIERKENS MFP. Country-level and gridded estimates of wastewater production, collection, treatment and reuse[J]. Earth System Science Data, 2021, 13(2): 237-254 DOI:10.5194/essd-13-237-2021.
[53] GANESH KUMAR A, ANJANA K, HINDUJA M, SUJITHA K, DHARANI G. Review on plastic wastes in marine environment-biodegradation and biotechnological solutions[J]. Marine Pollution Bulletin, 2020, 150: 110733 DOI:10.1016/j.marpolbul.2019.110733.
[54] SUN Q, REN SY, NI HG. Incidence of microplastics in personal care products: an appreciable part of plastic pollution[J]. The Science of the Total Environment, 2020, 742: 140218 DOI:10.1016/j.scitotenv.2020.140218.
[55] PROTYUSHA GB, Kavitha B, ROBIN RS, Nithin A, INEYATHENDRAL TR, SHIVANI SS, Anandavelu I, SIVASAMY S, SAMUEL VD, Purvaja R. Microplastics in oral healthcare products (OHPs) and their environmental health risks and mitigation measures[J]. Environmental Pollution, 2024, 343: 123118 DOI:10.1016/j.envpol.2023.123118.
[56] USTABASI GS, BAYSAL A. Bacterial interactions of microplastics extracted from toothpaste under controlled conditions and the influence of seawater[J]. The Science of the Total Environment, 2020, 703: 135024 DOI:10.1016/j.scitotenv.2019.135024.
[57] LI L, LIU D, SONG K, ZHOU YW. Performance evaluation of MBR in treating microplastics polyvinylchloride contaminated polluted surface water[J]. Marine Pollution Bulletin, 2020, 150: 110724 DOI:10.1016/j.marpolbul.2019.110724.
[58] MASON SA, GARNEAU D, SUTTON R, CHU Y, EHMANN K, BARNES J, FINK P, PAPAZISSIMOS D, ROGERS DL. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent[J]. Environmental Pollution, 2016, 218: 1045-1054 DOI:10.1016/j.envpol.2016.08.056.
[59] CYDZIK-KWIATKOWSKA A, MILOJEVIC N, JACHIMOWICZ P. The fate of microplastic in sludge management systems[J]. The Science of the Total Environment, 2022, 848: 157466 DOI:10.1016/j.scitotenv.2022.157466.
[60] REN YY, YU M, WU CF, WANG QH, GAO M, HUANG QQ, LIU Y. A comprehensive review on food waste anaerobic digestion: research updates and tendencies[J]. Bioresource Technology, 2018, 247: 1069-1076 DOI:10.1016/j.biortech.2017.09.109.
[61] WANG Q, SHA H, CAO SX, ZHAO B, WANG G, ZHENG PF. Tourmaline enhanced methane yield via regulating microbial metabolic balance during anaerobic co-digestion of corn stover and cow manure[J]. Bioresource Technology, 2022, 359: 127470 DOI:10.1016/j.biortech.2022.127470.
[62] XIE ZJ, CAO Q, CHEN YC, LUO YP, LIU XF, LI D. The biological and abiotic effects of powdered activated carbon on the anaerobic digestion performance of cornstalk[J]. Bioresource Technology, 2022, 343: 126072 DOI:10.1016/j.biortech.2021.126072.
[63] HUSSAIN KA, ROMANOVA S, OKUR I, ZHANG D, KUEBLER J, HUANG X, WANG B, FERNANDEZ-BALLESTER L, LU YF, SCHUBERT M, LI YS. Assessing the release of microplastics and nanoplastics from plastic containers and reusable food pouches: implications for human health[J]. Environmental Science & Technology, 2023, 57(26): 9782-9792.
[64] PORTERFIELD KK, SCARBOROUGH MJ, ROY ED. Organics recycling tradeoffs: biogas potential and microplastic content of mechanically depackaged food waste[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(28): 10422-10429.
[65] DAI S, YE R, HUANG JX, WANG BQ, XIE ZM, OU XW, YU N, HUANG C, HUA YJ, ZHOU RH, TIAN B. Distinct lipid membrane interaction and uptake of differentially charged nanoplastics in bacteria[J]. Journal of Nanobiotechnology, 2022, 20(1): 191 DOI:10.1186/s12951-022-01321-z.
[66] WEI H, GAO BQ, REN J, LI AM, YANG H. Coagulation/flocculation in dewatering of sludge: a review[J]. Water Research, 2018, 143: 608-631 DOI:10.1016/j.watres.2018.07.029.
[67] NANCHARAIAH YV, KIRAN KUMAR REDDY G. Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2018, 247: 1128-1143 DOI:10.1016/j.biortech.2017.09.131.
[68] LV LY, CHEN JR, LIU XY, GAO WF, SUN L, WANG PF, REN ZJ, ZHANG GM, LI WG. Roles and regulation of quorum sensing in anaerobic granular sludge: research status, challenges, and perspectives[J]. Bioresource Technology, 2023, 387: 129644 DOI:10.1016/j.biortech.2023.129644.
[69] LI YF, YUAN XZ, WU ZB, WANG H, XIAO ZH, WU Y, CHEN XH, ZENG GM. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process[J]. Chemical Engineering Journal, 2016, 303: 636-645 DOI:10.1016/j.cej.2016.06.041.
[70] UMAMAHESWARI S, PRIYADARSHINEE S, KADIRVELU K, RAMESH M. Polystyrene microplastics induce apoptosis via ROS-mediated p53 signaling pathway in zebrafish[J]. Chemico-Biological Interactions, 2021, 345: 109550 DOI:10.1016/j.cbi.2021.109550.
[71] LV WW, GU HT, HE DF, LIU ZQ, YAO CX, HUANG WW, YUAN Q, ZHOU WZ. Polystyrene nanospheres-induced hepatotoxicity in swamp eel (Monopterus albus): from biochemical, pathological and transcriptomic perspectives[J]. The Science of the Total Environment, 2023, 893: 164844 DOI:10.1016/j.scitotenv.2023.164844.
[72] JEONG CB, KANG HM, LEE YH, KIM MS, LEE JS, SEO JS, WANG MH, LEE JS. Nanoplastic ingestion enhances toxicity of persistent organic pollutants (POPs) in the monogonont rotifer Brachionus koreanus via multixenobiotic resistance (MXR) disruption[J]. Environmental Science & Technology, 2018, 52(19): 11411-11418.
[73] HUANG DQ, FU JJ, LI ZY, FAN NS, JIN RC. Inhibition of wastewater pollutants on the anammox process: a review[J]. The Science of the Total Environment, 2022, 803: 150009 DOI:10.1016/j.scitotenv.2021.150009.
[74] ROSSI G, BARNOUD J, MONTICELLI L. Polystyrene nanoparticles perturb lipid membranes[J]. The Journal of Physical Chemistry Letters, 2014, 5(1): 241-246 DOI:10.1021/jz402234c.
[75] LI XW, MEI QQ, CHEN LB, ZHANG HY, DONG B, DAI XH, HE CQ, ZHOU J. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process[J]. Water Research, 2019, 157: 228-237 DOI:10.1016/j.watres.2019.03.069.
[76] WANG S, WANG XT, FESSLER M, JIN B, SU YY, ZHANG YF. Insights into the impact of polyethylene microplastics on methane recovery from wastewater via bioelectrochemical anaerobic digestion[J]. Water Research, 2022, 221: 118844 DOI:10.1016/j.watres.2022.118844.
[77] WANG XJ, WU H, WANG XY, WANG HX, ZHAO KK, MA B, LU ZM. Network-directed isolation of the cooperator Pseudomonas aeruginosa ZM03 enhanced the dibutyl phthalate degradation capacity of Arthrobacter nicotianae ZM05 under pH stress[J]. Journal of Hazardous Materials, 2021, 410: 124667 DOI:10.1016/j.jhazmat.2020.124667.
[78] WANG H, FOTIDIS IA, ANGELIDAKI I. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria[J]. FEMS Microbiology Ecology, 2015, 91(11): fiv130 DOI:10.1093/femsec/fiv130.
[79] DYKSMA S, JANSEN L, GALLERT C. Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste[J]. Microbiome, 2020, 8(1): 105 DOI:10.1186/s40168-020-00862-5.
[80] OTAWA K, LEE SH, YAMAZOE A, ONUKI M, SATOH H, MINO T. Abundance, diversity, and dynamics of viruses on microorganisms in activated sludge processes[J]. Microbial Ecology, 2007, 53(1): 143-152 DOI:10.1007/s00248-006-9150-9.
[81] DANOVARO R, Dell'ANNO A, TRUCCO A, SERRESI M, VANUCCI S. Determination of virus abundance in marine sediments[J]. Applied and Environmental Microbiology, 2001, 67(3): 1384-1387 DOI:10.1128/AEM.67.3.1384-1387.2001.
[82] PARK MO, IKENAGA H, WATANABE K. Phage diversity in a methanogenic digester[J]. Microbial Ecology, 2007, 53(1): 98-103 DOI:10.1007/s00248-006-9053-9.
[83] FAN L, PENG W, DUAN HW, LÜ F, ZHANG H, HE PJ. Presence and role of viruses in anaerobic digestion of food waste under environmental variability[J]. Microbiome, 2023, 11(1): 170 DOI:10.1186/s40168-023-01585-z.
[84] WILLENBÜCHER K, WIBBERG D, HUANG LR, CONRADY M, RAMM P, GÄTCKE J, BUSCHE T, BRANDT C, SZEWZYK U, SCHLÜTER A, BARRERO CANOSA J, MAUS I. Phage genome diversity in a biogas-producing microbiome analyzed by Illumina and nanopore GridION sequencing[J]. Microorganisms, 2022, 10(2): 368 DOI:10.3390/microorganisms10020368.
[85] CENTURION VB, ROSSI A, ORELLANA E, GHIOTTO G, KAKUK B, MORLINO MS, BASILE A, ZAMPIERI G, TREU L, CAMPANARO S. A unified compendium of prokaryotic and viral genomes from over 300 anaerobic digestion microbiomes[J]. Environmental Microbiome, 2024, 19(1): 1 DOI:10.1186/s40793-023-00545-2.
[86] YUAN L, JU F. Potential auxiliary metabolic capabilities and activities reveal biochemical impacts of viruses in municipal wastewater treatment plants[J]. Environmental Science & Technology, 2023, 57(13): 5485-5498.
[87] HEYER R, SCHALLERT K, SIEWERT C, KOHRS F, GREVE J, MAUS I, KLANG J, KLOCKE M, HEIERMANN M, HOFFMANN M, PÜTTKER S, CALUSINSKA M, ZOUN R, SAAKE G, BENNDORF D, REICHL U. Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants[J]. Microbiome, 2019, 7(1): 69 DOI:10.1186/s40168-019-0673-y.
[88] DING X, YANG WJ, MIN H, PENG XT, ZHOU HY, LU ZM. Isolation and characterization of a new strain of Methanothermobacter marburgensis DX01 from hot springs in China[J]. Anaerobe, 2010, 16(1): 54-59 DOI:10.1016/j.anaerobe.2009.04.001.
[89] ZHI SL, LI Q, YANG FX, YANG ZJ, ZHANG KQ. How methane yield, crucial parameters and microbial communities respond to the stimulating effect of antibiotics during high solid anaerobic digestion[J]. Bioresource Technology, 2019, 283: 286-296 DOI:10.1016/j.biortech.2019.03.083.
[90] NANDA AM, THORMANN K, FRUNZKE J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions[J]. Journal of Bacteriology, 2015, 197(3): 410-419 DOI:10.1128/JB.02230-14.
[91] LU ZM, DENG Y, van NOSTRAND JD, HE ZL, VOORDECKERS J, ZHOU AF, LEE YJ, MASON OU, DUBINSKY EA, CHAVARRIA KL, TOM LM, FORTNEY JL, LAMENDELLA R, JANSSON JK, D'HAESELEER P, HAZEN TC, ZHOU JZ. Microbial gene functions enriched in the deepwater horizon deep-sea oil plume[J]. The ISME Journal, 2012, 6(2): 451-460 DOI:10.1038/ismej.2011.91.
[92] ROSSI A, MORLINO MS, GASPARI M, BASILE A, KOUGIAS P, TREU L, CAMPANARO S. Analysis of the anaerobic digestion metagenome under environmental stresses stimulating prophage induction[J]. Microbiome, 2022, 10(1): 125 DOI:10.1186/s40168-022-01316-w.
[93] HURWITZ BL, U'REN JM. Viral metabolic reprogramming in marine ecosystems[J]. Current Opinion in Microbiology, 2016, 31: 161-168 DOI:10.1016/j.mib.2016.04.002.
[94] FAN XY, JI MZ, MU DS, ZENG XH, TIAN Z, SUN KL, GAO RF, LIU Y, HE XY, WU LW, LI Q. Global diversity and biogeography of DNA viral communities in activated sludge systems[J]. Microbiome, 2023, 11(1): 234 DOI:10.1186/s40168-023-01672-1.
[95] WANG L, WANG YZ, HUANG XY, MA RJ, LI JT, WANG FP, JIAO NZ, ZHANG R. Potential metabolic and genetic interaction among viruses, methanogen and methanotrophic archaea, and their syntrophic partners[J]. ISME Communications, 2022, 2(1): 50 DOI:10.1038/s43705-022-00135-2.
[96] WANG YZ, WEGENER G, RUFF SE, WANG FP. Methyl/alkyl-coenzyme M reductase-based anaerobic alkane oxidation in archaea[J]. Environmental Microbiology, 2021, 23(2): 530-541 DOI:10.1111/1462-2920.15057.
[97] HAFFIEZ N, ZAKARIA BS, MOHAMMAD MIRSOLEIMANI AZIZI S, RANJAN DHAR B. Antibiotic resistance genes proliferation under anaerobic degradation of polylactic acid and polyhydroxy butyrate bioplastics[J]. Environment International, 2023, 175: 107938 DOI:10.1016/j.envint.2023.107938.
[98] ZETTLER ER, MINCER TJ, AMARAL-ZETTLER LA. Life in the "plastisphere": microbial communities on plastic marine debris[J]. Environmental Science & Technology, 2013, 47(13): 7137-7146.
[99] LI CC, WANG LF, JI SP, CHANG MJ, WANG LF, GAN YD, LIU J. The ecology of the plastisphere: microbial composition, function, assembly, and network in the freshwater and seawater ecosystems[J]. Water Research, 2021, 202: 117428 DOI:10.1016/j.watres.2021.117428.
[100] BHAGWAT G, ZHU QY, O'CONNOR W, SUBASHCHANDRABOSE S, GRAINGE I, KNIGHT R, PALANISAMI T. Exploring the composition and functions of plastic microbiome using whole-genome sequencing[J]. Environmental Science & Technology, 2021, 55(8): 4899-4913.
[101] LI ZL, FENG CH, LEI JM, HE XK, WANG QX, ZHAO Y, QIAN YB, ZHAN XM, SHEN ZY. Farmland microhabitat mediated by a residual microplastic film: microbial communities and function[J]. Environmental Science & Technology, 2024, 58(8): 3654-3664.
[102] LU J, YU ZG, NGIAM L, GUO JH. Microplastics as potential carriers of viruses could prolong virus survival and infectivity[J]. Water Research, 2022, 225: 119115 DOI:10.1016/j.watres.2022.119115.
微/纳米塑料对厌氧消化系统影响的研究进展
李浩 , 林任章 , 孔祥聿 , 任浩 , 吕镇梅