微生物学报  2024, Vol. 64 Issue (8): 2623-2647   DOI: 10.13343/j.cnki.wsxb.20240032.
http://dx.doi.org/10.13343/j.cnki.wsxb.20240032
中国科学院微生物研究所,中国微生物学会

文章信息

马成军, 刘静静, 焦敏, 杨洪早, 陈红伟. 2024
MA Chengjun, LIU Jingjing, JIAO Min, YANG Hongzao, CHEN Hongwei.
大肠埃希菌生物被膜基因调控研究进展
Research progress in gene regulation of Escherichia coli biofilm formation
微生物学报, 64(8): 2623-2647
Acta Microbiologica Sinica, 64(8): 2623-2647

文章历史

收稿日期:2024-01-09
网络出版日期:2024-03-28
大肠埃希菌生物被膜基因调控研究进展
马成军1,2 , 刘静静1,2 , 焦敏1,2 , 杨洪早1,2,3 , 陈红伟1,2,3     
1. 西南大学动物医学院, 重庆 402460;
2. 国家生猪技术创新中心, 重庆 402460;
3. 西南大学医学研究院免疫学研究中心, 重庆 402460
摘要:大肠埃希菌(Escherichia coli)是一种兼性厌氧、有鞭毛的革兰氏阴性短杆菌,常寄生于人和动物肠道内,是常见的人畜共患病病原之一。大肠埃希菌易形成生物被膜,这是一种由细菌群落分泌能够包裹自身的胞外基质与细菌结合形成的特殊聚集体,也是临床细菌感染疾病难以治愈的主要原因。生物被膜的形成不仅帮助细菌逃避宿主的防御系统,还可以降低或阻止药物发挥作用,从而诱发生物被膜相关感染(biofilm-associated infections, BAI)。本文从生物被膜形成的基因调控系统和相关调控蛋白等角度,归纳总结调控大肠埃希菌生物被膜形成的分子机制,并对防治BAI的策略进行了概述,为寻找合适的药物靶点以及防治BAI提供参考。
关键词大肠埃希菌    生物被膜    基因调控    生物被膜相关感染    
Research progress in gene regulation of Escherichia coli biofilm formation
MA Chengjun1,2 , LIU Jingjing1,2 , JIAO Min1,2 , YANG Hongzao1,2,3 , CHEN Hongwei1,2,3     
1. College of Veterinary Medicine, Southwest University, Chongqing 402460, China;
2. National Center of Technology Innovation for Pigs, Chongqing 402460, China;
3. Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
Abstract: Escherichia coli, a facultative anaerobic, flagellated, Gram-negative rod bacterium commonly parasitic in the intestines of humans and animals, is one of the common zoonotic pathogens. E. coli is easy to form biofilms, which are special aggregates formed by bacterial cells attached to each other and encased with self-produced extracellular matrix. Biofilm formation is a major reason for the difficulty in curing bacterial infectious diseases in clinical practice. It not only helps bacteria evade the host defense system but also reduces or prevents drugs from working, thereby inducing biofilm-associated infections (BAIs). This review introduces the molecular mechanism of E. coli biofilm formation from the perspective of the gene regulatory system and related regulatory proteins and summarizes the strategies for the prevention and treatment of BAIs, providing references for finding appropriate drug targets and preventing BAIs.
Keywords: Escherichia coli    biofilm    gene regulation    biofilm-associated infections    

大肠埃希菌(Escherichia coli)是肠道的一种正常菌群,致病性大肠埃希菌侵入人和动物机体可引起细菌感染,导致腹泻、溶血性尿毒症综合征,甚至死亡[1]。由于大肠埃希菌聚集在一起,形成“生物被膜”难以根除,从而引起了一系列感染[2]。细菌生物被膜是细菌黏附在生物或者非生物表面并被分泌的蛋白质、胞外DNA (extracellular DNA, eDNA)和胞外多糖复合物(extracellular polymeric substances, EPS)包裹的特殊聚集体[3]。生物被膜是细菌为适应生存环境而形成的一种特殊生存形式,生物被膜的生长阶段分为可逆黏附和不可逆黏附阶段、形成阶段、成熟阶段和分散阶段(图 1),该过程主要由双组分系统(two-component system, TCS)、群体感应(quorum sensing, QS)系统和3, 5-环二鸟苷单磷酸(cyclic dimeric guanosine monophosphate, c-di-GMP)系统、毒素-抗毒素(toxin-antitoxin, TA)系统、转录调节蛋白和自主转运蛋白(autotransporters, AT)等多种信号系统以及相关蛋白参与调控(图 2)。

图 1 生物被膜细菌的不同生长阶段[4-5] Figure 1 Different growth stages of biofilm bacteria[4-5].

图 2 参与调节大肠埃希菌生物被膜形成和运动性的信号通路 Figure 2 Signaling pathways involved in the regulation of biofilm formation and motility in Escherichia coli.

大肠埃希菌从浮游状态转为生物被膜的过程中,通过各个生物系统的调控,关闭了鞭毛的合成,诱导卷曲菌毛(curli)和EPS的合成进而形成生物被膜;与浮游菌相比,生物被膜细菌可将耐药性提高约1 000倍[6]。复杂的因素会影响大肠埃希菌中生物被膜的形成,这使得消灭生物被膜内的大肠埃希菌变得困难;此外,生物被膜可以使细菌逃避先天性免疫防御,使疾病的治疗变得更加棘手。虽然使用抗生素可以在一定程度上发挥作用,但无法达到预期的治疗效果,特别是生物被膜成熟之后,部分药物几乎失去了作用,这加重了细菌耐药性的发展,严重威胁到人类与动物健康,给公共卫生、食品业和畜牧业等带来了巨大的经济损失。因此,迫切地需要找到防治生物被膜相关感染(biofilm-associated infections, BAI)的有效策略。

本文结合课题组研究进展,从大肠埃希菌生物被膜形成的调控机制和防治BAI的策略进行了系统的概述,为深入研究大肠埃希菌生物被膜分子机制、寻找合适的药物靶点以及防治BAI奠定理论依据。

1 大肠埃希菌生物被膜的调控系统 1.1 双组分系统

TCS广泛存在于微生物中,可感知和转导环境信息,以触发适当的细胞反应,该系统由细胞质反应调节因子RcsB以及膜相关蛋白RcsC和RcsD组成,传感器激酶RcsC可检测膜破坏和渗透压变化,因此对大肠埃希菌生物被膜的正常生长至关重要[7-9]。此外,TCS也包含组氨酸激酶ArcB和反应调节因子ArcA,ArcA与操纵子bcs、启动子bssS结合,它们分别编码与合成纤维素和形成生物被膜相关的蛋白酶,当编码ArcB和ArcA的基因缺失时,可导致细胞的运动性、生物被膜形成和细菌毒力的表型发生变化[10]。CpxRA TCS由传感器膜蛋白CpxA和细胞质调节蛋白CpxR组成,该系统可响应包膜应激,显著地激活编码蛋白酶基因的表达,例如dsbAdegP,因此,Cpx途径的激活参与了细菌对环境压力的适应;同时,Cpx系统的组成部分能诱导大肠埃希菌生物被膜成熟,该系统通过激活外膜蛋白OmpC来改变细胞表面的化学含量,从而有助于抑制趋化和鞭毛活性[11]。卷曲菌毛支持细菌在非生物表面形成生物被膜,CpxR通过与编码卷曲菌毛的操纵子csgBAC-csgDEFG结合进而调控卷曲菌毛的表达;同时,与生物被膜相关的主要调节因子CsgD也调控卷曲菌毛的表达[12]。Ma等研究表明,cpxRA的缺失对大肠埃希菌生物被膜的形成有一定的抑制作用,生物被膜形成量比野生型显著减少[13]。因此,Cpx途径的诱导可能通过影响细菌与非生物表面之间的初始黏附,在生物被膜的成熟阶段发挥重要作用。EnvZ/OmpR TCS可以在转录水平上调控与外部渗透压变化相关的外膜蛋白OmpC和OmpF[14],当外部渗透压增加时,可抑制鞭毛基因表达,并可通过在初级黏附后激活卷曲菌毛来促进黏附;磷酸化的OmpR可以通过激活调节因子CsgD,进而诱导卷曲菌毛表达,这说明卷曲菌毛表达间接受到OmpR的调控[7, 15-16]。此外,内膜蛋白MzrA可通过调节EnvZ来影响OmpR的磷酸化水平[17]。CsgA是一种卷曲蛋白,由操纵子csgBAC基因编码,CsgD对该卷曲蛋白的表达至关重要,yccT不仅可以编码由CsgD调节的某种周质蛋白,也可以作为OmpR磷酸化调节剂和CsgA聚合抑制剂;Sano等研究发现,转染YccT过表达质粒的envZ缺失菌株,可以使YccT失去对CsgD表达的抑制,因此,推测YccT对CsgD表达的抑制可能是通过EnvZ/OmpR TCS进行调控[18]

综上所述,TCS在大肠埃希菌生物被膜形成和运动性等方面是一个非常重要的调控系统,推测OmpR可能是CpxRA和EnvZ/OmpR这2条途径的交叉点(图 2),共同调控大肠埃希菌生物被膜的形成,但需要更深入的研究去验证,以此发现大肠埃希菌生物被膜基因调控的具体机制或主要调控靶点,为控制BIA奠定理论基础。

1.2 群体感应系统

QS系统是实现细菌之间化学信息交换的过程,它可以使细菌群落同步改变其行为,以适应相邻群落的种群密度和物种变化[19]。LuxS是一种代谢酶,主要参与核糖基同型半胱氨酸转化为同型半胱氨酸和4, 5-二羟基-2, 3-戊二酮,这是自诱导信号分子-2 (autoinducer-2, AI-2)的前体。大肠埃希菌在生长的过程中,会分泌由luxS家族基因编码的AI-2,该信号因子会介导单个细菌发生不能独立完成的一系列生理反应,如大肠埃希菌形成生物被膜以应对周围的不利因素[20]。在大肠埃希菌DE17菌株中,敲除luxS基因后,其黏附能力显著降低,而且fimC的转录水平也显著降低,但大肠埃希菌生物被膜的形成几乎没有变化,这可能是通过其他调控生物被膜形成的途径以代偿的方式降低了LuxS对大肠埃希菌DE17生物被膜的影响[21]。此外,AI-2可通过复杂的级联反应调节大肠埃希菌生物被膜的形成,即运动性QS系统调节因子MqsR通过诱导鞭毛操纵子,进而激活QseBC TCS调控大肠埃希菌的游泳运动[22-23];YgiU是QS系统中AI-2的调节因子,它能够显著增加生物被膜量;其次,YgiU不仅可以通过QseBC TCS调节鞭毛运动,而且可以通过Ⅰ类鞭毛操纵子flhDC刺激MotA和FliA,进而激活QseB,从而促进生物被膜形成并控制细菌的运动[24] (图 2)。同样地,毒素Hha和全局调节因子CsrA可显著增加flhDC的转录表达水平,进而调控生物被膜的形成与分散[25-26]。YdgG是由生物被膜诱导基因编码的蛋白,该蛋白可以在基因ycePbssR参与的级联反应下,将AI-2分子输出到细胞外,进而调节生物被膜的形成[27];在含有葡萄糖的Luria-Bertani培养基中,ydgG的缺失不仅能够促进生物被膜形成,也能增加细胞内AI-2的水平[28]

综上,控制AI-2合成的过程可能是控制生物被膜形成的关键。QseBC系统与大肠埃希菌鞭毛运动紧密相关,鞭毛运动合成基因fliA和运动类型基因motA调节细菌运动,而操纵子运动由fliA控制,这进一步影响了生物被膜的形成。研究表明,QseBC TCS参与调控大肠埃希菌O157:H7的定殖、运动和毒力基因表达,同时QseBC TCS在大肠埃希菌MG1655生物被膜形成中也发挥着重要作用[29-30]。以上研究表明,大肠埃希菌的QseB/QseC系统和TCS信号系统相互协调,共同调控大肠埃希菌生物被膜的形成。

1.3 3, 5-环二鸟苷单磷酸系统

c-di-GMP是细菌中一种无处不在的第二信使,其合成由二鸟苷酸环化酶(diguanylate cyclase, DGCs,带有GGDEF基序的蛋白质)催化,其降解由含有EAL结构域和具有特异性磷酸二酯酶(phosphodiesterase, PDEs)活性的蛋白质调控。大肠埃希菌中含有多种DGCs和PDEs,在其基因组中可检测到多种GGDEF蛋白和EAL蛋白,这些蛋白可能在细胞的不同区域调节c-di-GMP的浓度。研究表明,在大肠埃希菌生物被膜形成的过程中可以检测到高浓度的c-di-GMP,而在运动过程中可以检测到低浓度的c-di-GMP[31-33];此外,本课题组Zhang等[34]用鼠源抗微生物肽(cathelicidin related antimicrobial peptide, CRAMP)干预了铜绿假单胞菌PAO1成熟生物被膜,发现CRAMP降低了PAO1生物被膜细胞中c-di-GMP的浓度,减少了胞外多糖量(特别是藻酸盐),改善了细菌鞭毛运动,增加了鼠李糖脂含量,进而促进了成熟生物被膜分散,这进一步支持了c-di-GMP的浓度对大肠埃希菌生物被膜的影响。

c-di-GMP可参与调节细菌的运动性、生长周期和生物被膜形成等多种生理功能[35]。在浮游细菌生长周期中,高磷酸化水平的c-di-GMP可通过调控其效应子HfsK和结合蛋白YcgR,进而调节胞外多糖和黏附素的合成,从而促进生物被膜的形成[36];此外,c-di-GMP也在大肠埃希菌鞭毛运动以及箭毒和纤维素的合成中发挥着重要作用,鞭毛运动不仅由c-di-GMP控制,也由YcgR蛋白控制,即表明高水平的c-di-GMP可激活YcgR并阻断鞭毛运动蛋白表达,导致细菌无法移动;而PdeH则能使YcgR失活,导致c-di-GMP水平降低,激活鞭毛,使细菌再次移动(图 2),从而诱导生物被膜分散[37-38]。FixJ/LuxR家族蛋白CsgD的活性由c-di-GMP的浓度进行调节,它是大肠埃希菌卷曲菌毛表达和生物被膜形成的主要调节因子,有推断表明,调节因子CsgD可调控DGCs编码的adrA表达,这被认为是大肠埃希菌用于激活纤维素产生的独特途径[39-41]。因此,c-di-GMP可能是潜在的抗生物被膜靶点。

c-di-GMP可直接或间接地参与大肠埃希菌生物被膜生长的不同阶段,其中EPS直接影响生物被膜量,EPS的合成和分泌受到操纵子pgaABCD的调控,PgaC的活性依赖于PgaD;而PgaC和PgaD的复合物作为受体与c-di-GMP结合,从而促进生物被膜的形成,即表明pga操纵子家族介导c-di-GMP信号通路调控生物被膜[42-43]。在大肠埃希菌中,c-di-GMP与QS系统之间可能存在着一定的关系,共同调控生物被膜的形成,即c-di-GMP可以通过影响自身诱导合成酶的表达来调节QS系统;同样地,QS系统通过影响编码具有DGCs和PDEs活性的蛋白质基因来调节c-di-GMP的浓度[44-45]。然而由于调控生物被膜形成的方式有很多种,因此,需综合各系统与c-di-GMP的表达水平,从而阐明c-di-GMP调控大肠埃希菌生物被膜形成的具体作用机制。

1.4 毒素-抗毒素系统

TA系统是由稳定的毒素成分和抗毒素组成的复合物,其最早于1983年在低拷贝质粒上发现,并广泛存在于细菌和古菌的基因组和质粒中,主要调控细菌的生理活动,如促进抗生素压力下持留细胞的形成、生物被膜的形成或分散和维持基因组的稳定性等[46-47]。目前根据抗毒素的性质和TA系统的组成,将其分为8种类型[48],如HicAB TA系统可以调节肠外致病性大肠埃希菌生物被膜的形成[49];YefM/YoeB TA系统可以促进肺炎链球菌生物被膜的形成[50];PrrT/A TA系统可以调节铜绿假单胞菌生物被膜的形成[51];MqsR/YgiT TA系统可以调节大肠埃希菌生物被膜的形成[52]等。MqsR/MqsA TA系统是第一个与大肠埃希菌生物被膜形成有关的TA系统,其能够将由AI-2调控的QS系统、运动调节和生物被膜形成串联起来[53];此外,MqsA可抑制RpoS和CsgD的表达,导致生物被膜形成减少[54]。赵俊桥研究发现,大肠埃希菌TA系统中hipBA基因可以影响eDNA的释放,进而影响生物被膜的形成[55]。虽然有很多研究发现TA系统在调控生物被膜的过程中非常重要,但未来可以将TA系统中维持基因组的稳定性与调控生物被膜形成的特性结合进行研究,能否发现一种新的途径来调控大肠埃希菌生物被膜形成的分子机制。

综上所述,4种主要的调控系统均参与生物被膜生长的不同阶段,它们相互协调、共同调控卷曲菌毛、鞭毛及其他表型,推测OmpR可能是4个调控系统的关键枢纽蛋白,但这需要进一步的研究去证实,且c-di-GMP对调控生物被膜的形成和分散生物被膜发挥着关键作用,虽然部分试验已证实了其作用,但研究证据仍不充分,未来需要更深入地了解调控c-di-GMP浓度的通路与TCS、QS系统、TA系统和其他相关系统通路的交叉点,以找到关键的调控靶点,为防治BAI奠定理论基础。

2 大肠埃希菌生物被膜的调控蛋白 2.1 转录调节蛋白

转录调节蛋白是指通过直接或间接结合RNA聚合酶,识别DNA序列中的顺式作用元件而调节启动转录的一类蛋白。很多转录调节蛋白已被发现,如大肠埃希菌的McbR、AriR、Hha和YbaJ等蛋白,在大肠埃希菌的多种生命活动中发挥着至关重要的作用。

2.1.1 McbR蛋白

McbR是大肠埃希菌基因表达的一个转录调节蛋白,属于DNA结合蛋白GntR/FCD超家族[56],其N末端有一个螺旋-超螺旋结构域,C末端有一个结合效应器,在生物被膜形成的过程中发挥了重要的作用[57];转录因子mcbR通过调节周质蛋白YbiM的表达来影响生物被膜的形成[58];此外,研究证实McbR通过调控生物被膜相关基因bcsAfliCfimA的转录影响生物被膜的形成[59]。鉴于McbR与DNA结合有关,可以考虑分析McbR蛋白结构,验证该蛋白是否有残基介导DNA结合,这有望为发现靶向生物被膜的新型治疗药物提供一个参考思路。

2.1.2 AriR蛋白

AriR是一个全局转录调节蛋白,主要与细菌生物被膜形成、运动和酸耐性的调控有关,其编码的YmgB对大肠埃希菌生物被膜形成和耐酸性至关重要,该蛋白可通过保护细胞免受酸刺激、降低细胞的运动性来调控大肠埃希菌形成生物被膜[60]。Attila等研究表明,使用尿嘧啶类似物5-氟尿嘧啶(5-fluorouracil, 5-FU)干预ariR基因缺失的大肠埃希菌K-12菌株,发现5-FU不会抑制其形成生物被膜,但可抑制正常大肠埃希菌K-12菌株形成生物被膜,说明5-FU通过AriR抑制了大肠埃希菌K-12形成生物被膜[61]

2.1.3 Hha蛋白

Hha是一个溶血素表达调节蛋白,属于Hha-YmoA家族,该蛋白控制生物被膜形成。组蛋白样类核结构蛋白(histone-like nucleoid structural proteins, H-NS)是Hha的蛋白伴侣,其与Hha的4个环状α螺旋结合,可导致Hha表面和疏水核心的构象发生变化,从而增强对生物被膜的分散。在大肠埃希菌中,Hha可以调控稀有密码子tRANs的表达,以此抑制卷曲菌毛基因fimAihfAD的转录,导致卷曲菌毛和初始生物被膜的形成减少[62];Hha还可以激活噬菌体裂解基因rzpDyfjZalpA,而且可引起ClpP/ClpX蛋白酶降解抗毒素而激活毒素,最终导致细胞裂解和生物被膜分散。Sharma等[63]证明了Hha通过差异调节FlhDC和CsgD的表达,进而调节大肠埃希菌O157:H7中生物被膜的形成,结果表明Hha是生物被膜产生的负调节因子;此外,由Hha-TomB组成的双蛋白系统,不仅控制了卷曲菌毛的产生和运动,而且参与了生物被膜的形成;当hha缺失时,可通过刺激卷曲菌毛生成,进而诱导生物被膜形成;当hha过表达时,可抑制生物被膜形成并导致细胞裂解和分散[64]。Kalidasan等研究发现,Hha和YbaJ可通过TA模式使二者编码的蛋白相互拮抗,共同实现对大肠埃希菌生物被膜的调控作用[65]

2.1.4 YbaJ蛋白

抗毒素YbaJ蛋白由124个氨基酸组成,其由稳定期信号诱导。当YbaJ与H-NS相互作用时,其活性可受到影响,ybaJ缺失可能会消除对Hha的抑制,导致H-NS活性增加,从而影响卷曲菌毛的产生和生物被膜形成[66]。此外,YbaJ不仅能够与hha突变菌株中噬菌体内溶素基因ybcS结合,进而减弱Hha的毒性,也能够与调节生物被膜形成的耐酸基因ariR结合,证明它是一种结构性Hha类似物。García-Contreras等研究表明,ybaJ菌株在培养基中形成的生物被膜量与hha突变菌株相同,推测敲除ybaJ可能会使hha失活并导致生物被膜形成增加,表明YbaJ有诱导生物被膜形成和抵消Hha毒性的作用[64]。总之,YbaJ在大肠埃希菌生物被膜形成和卷曲菌毛的合成中发挥重要作用,其缺失可降低生物被膜在不同生长阶段的适应性。

总之,转录调节蛋白在大肠埃希菌生物被膜的调控中至关重要,有望成为新的药物靶点,但目前针对药物干预生物被膜转录调节蛋白的研究较少,这为探索抗生物被膜策略提供了一个新的方向。

2.2 自主转运蛋白

自主转运蛋白是一种独立于辅助蛋白存在而定位于外膜的蛋白质,也是革兰氏阴性菌中Ⅴ型分泌系统的代表,其初级序列可以引导跨细菌膜系统的转运并最终到达细胞表面。在致病性大肠埃希菌表达的细胞表面结构中,多种自主转运蛋白已被证明有助于大肠埃希菌的附着和定殖,如抗原43 (antigen 43, Ag43)、Upa家族蛋白、EspP、Eha家族蛋白、YeeJ、AidA和TibA等,它们也可以引起细菌细胞聚集并促进生物被膜形成。

2.2.1 Ag43蛋白

Ag43是一种自我识别的表面自主转运蛋白,参与促进细菌细胞间黏附和自聚集,从而促进生物被膜的形成[67]。在大肠埃希菌细胞外膜中发现了一种由流感基因agn43编码的Ag43蛋白,该蛋白受到2种蛋白质的调节,一种是抑制agn43转录的全局调节因子OxyR,另外一种是甲基化GATC序列,其不仅可以阻断OxyR结合,而且可以允许agn43的脱氧腺苷甲基化酶发生转录[68-70]。Heras等研究表明,Ag43蛋白可在液体培养物中,通过Ag43-Ag43相互作用实现细菌细胞聚集,从而有助于生物被膜成熟[71];同时,Ag43可以促进大肠埃希菌和铜绿假单胞菌等混合细菌生物被膜的形成。一般情况下,在毒力较强的大肠埃希菌中可以发现自主转运蛋白的表达,目的是支持其在非生物表面形成生物被膜[72]。由于Ag43蛋白在生物被膜成熟过程中发挥着重要的作用,可以考虑将其作为一个靶点,使用药物干预或技术干扰手段影响该蛋白的表达,进而在成熟阶段控制生物被膜。

2.2.2 Upa家族蛋白

Upa家族包括UpaB、UpaC、UpaH和UpaI蛋白,这些蛋白可在一定程度上促进细菌细胞聚集、生物被膜形成和对细胞外基质蛋白的黏附[73]。UpaB由upaB基因编码,其转录受激活因子AutA和阻遏蛋白AutR的控制[74],主要促进泌尿致病性大肠埃希菌生物被膜形成和细菌细胞聚集,还可以促进与鸡胚成纤维细胞的黏附和鸭模型早期的定植[75]。由H-NS调节的UpaC蛋白,不仅可以协调抑制泌尿致病性大肠埃希菌中多种毒力因子,而且可以促进生物被膜形成,但hns基因的突变可以缓解H-NS对UpaC的抑制[76]。UpaH是由upaH基因编码的自主转运蛋白,其乘客结构域包含50个不完全重复的序列,并且可以由H-NS进行转录调控,UpaH蛋白不仅可以促进细菌细胞聚集、黏附在膀胱上皮细胞,还可以极大地促进生物被膜形成[77]。UpaI具有典型长度的N端信号序列,其乘客结构域与Pertactin Pfam结构域有一定的同源性,并且它们的易位结构域与AT Pfam结构域相匹配,Zude等研究表明,upaI的过表达可以弥补大肠埃希菌MG1655 fim缺失菌株中Ag43和Ⅰ型卷曲菌毛的缺失,并可以恢复该突变体形成生物被膜的能力[73]

2.2.3 EspP蛋白

EspP是由espP基因编码的一种毒力因子,该基因普遍存在于肠出血性大肠埃希菌中,其由55 aa N端信号肽、分泌的乘客结构域和C端β结构域组成[78],EspP属于肠杆菌科丝氨酸蛋白酶自主转运蛋白,可能通过聚合成绳状结构,从而有助于生物被膜的形成[79]。研究人员发现EspP可直接参与肠出血性大肠埃希菌对T84肠上皮细胞黏附和生物被膜的形成[80];此外,Xicohtencatl-Cortes等[81]证明了EspC和EspP蛋白可以寡聚成具有细胞黏附性的宏观绳索状结构,作为细菌生物被膜形成的基质,从而保护细菌免受外来物质的侵害。

2.2.4 Eha家族蛋白

EhaA、EhaB、EhaC和EhaD蛋白是肠出血性大肠埃希菌中最普遍的自主转运蛋白,EhaA表达可以促使肠出血性大肠埃希菌对肠道上皮细胞的黏附,而EhaB表达能特异性与细胞外基质成分结合[82]。研究发现,EhaA不仅能促进肠出血性大肠埃希菌聚集,也能促进其生物被膜形成;而EhaB、EhaC和EhaD均未能诱导细菌细胞聚集,EhaB和EhaD可以促进生物被膜形成[83-84]。然而目前关于EhaC和EhaD的研究较少,具体的作用机制需要进一步探索。

2.2.5 其他AT

YeeJ不仅是一种来自大肠埃希菌的反向自主转运蛋白,也是一种内膜样蛋白,既存在于细菌表面,也存在于细菌上清液中,其LysM结构域与肽聚糖结合,参与黏附到不同的非生物表面[85],虽然yeeJ基因的缺失不影响细菌在非生物表面的黏附,但YeeJ与肽聚糖结合显著地促进了生物被膜的形成[86]。AidA是大肠埃希菌分离株的质粒编码蛋白,这种自主转运蛋白黏附素介导弥漫性黏附表型,促进细菌细胞聚集和非生物表面生物被膜形成,这促进了细菌在宿主细胞表面的定殖和持久化,因此在细菌感染中发挥重要作用[87-88]。TibA是一种多功能蛋白,与多种毒力表型相关,在大肠埃希菌中,TibA蛋白是一种由产毒侵袭位点B编码的自主转运蛋白黏附素,其由一个C端转位结构域和一个N端乘客结构域组成,tibC基因位于tibA基因上游,该基因通过添加糖基残基来修饰TibA蛋白[89-90]。Sherlock等研究表明,TibA蛋白可以引起细菌细胞聚集和生物被膜形成,以促进肠上皮细胞定殖,并保护细菌免受宿主免疫因子和抗菌药物的干扰[91]

综上所述,自主转运蛋白对于调控大肠埃希菌聚集和生物被膜的形成至关重要,这些蛋白可以作为相关靶点,用于控制生物被膜形成,但具体的作用机制仍需进一步研究。

3 防治生物被膜相关感染的策略 3.1 中药活性物

针对当前养殖业凸显的耐药性问题,已有大量数据表明,中药及其有效成分对抗生素耐药性细菌表现出潜在的阻断能力,为逆转抗生素耐药性提供了新的治疗思路,而细菌耐药性与生物被膜的形成有一定的关系,因此,使用中药活性物干预生物被膜的形成或清除成熟生物被膜已成为当前逆转细菌耐药性的研究热点之一。解光艳等[92]使用黄芩苷干预大肠埃希菌生物被膜,通过蛋白质组学分析发现,亚最小抑菌浓度的黄芩苷可以影响与大肠埃希菌生物被膜形成的相关蛋白(以参与代谢活动和具有催化作用的蛋白质为主);Lee等和Li等[93-94]通过使用银杏酸干预线粒体功能,从而杀死软体动物,并发现能显著抑制大肠埃希菌生物被膜的形成;其次,银杏酸C15:1可抑制肠出血性大肠埃希菌中卷曲菌毛基因和噬菌体基因的表达,从而导致卷曲菌毛和生物被膜减少[93];Wang等[95]通过使用1, 8-桉叶素抑制了大肠埃希菌QS系统的luxS基因表达,进而抑制了大肠埃希菌生物被膜的形成;Bai等[96]通过使用银杏叶素降低了卷曲菌毛相关基因(csgAcsgD)、鞭毛形成基因(flhCflhDfliCfliM)和QS相关基因(luxSlsrBlsrKlsrR)的转录,最终抑制了大肠埃希菌生物被膜的形成和EPS的产生。总之,中药活性物主要通过干预调控细菌生物被膜形成的相关基因,进而影响其蛋白的表达,达到抑制生物被膜形成的效果,这为开发新型、绿色的抗生物被膜药物提供了理论参考(表 1)。目前,大量研究主要使用中药活性物单体干预细菌生物被膜,虽然有逆转抗生素耐药性和抗生物被膜的效果,但其活性成分的特殊性有待进一步验证。未来,可以考虑使用中药活性物单体复方干预细菌生物被膜,这可能为防治BAI提供一种新的治疗方法。

表 1. 中药活性物对大肠埃希菌生物被膜的影响 Table 1. Effects of Chinese medicine active compounds on Escherichia coli biofilm
Item Chemical structure Causes affecting biofilms Reference
Ginkgolic acid Ginkgolic acid inhibits curli genes and prophage genes [93]
1, 8-cineole 1, 8-cineole inhibits the biofilm formation and reduce the pathogenicity of Escherichia coli O101 by inhibiting the expression of luxS gene [95]
Ginkgetin Ginkgetin inhibits AI-2 signaling molecule production [96]
Berberine Berberine inhibits biofilm formation by inhibiting the QS system [97]
Gallic acid Gallic acid inhibits biofilm formation by regulating pgaABCD genes [98]
Curcumin Curcumin inhibits the formation of biofilm by interfering with the signal molecule-based QS system [99]
Cinnamomum camphora essential oil Cinnamomum camphora essential oil could penetrate the biofilm and inhibit bacterial proliferation to reduce the biofilm formation [100]
Isolimonic acid Isolimonic acid inhibits QS pathway by inhibiting QseBC operon [101]
Naringenin Naringenin inhibits QS system [102]
Baicalin Baicalin inhibits the QS via decreasing the AI-2 secretion [103]
Rosa rugosa tea polyphenol Rosa rugosa tea polyphenol inhibits the QS system and swarming migration [104]
Cinnamon bark oil Cinnamon bark oil down-regulated curli genes [105]
Honokiol Honokiol inhibits the mRNA expression of Luxs/AI-2 system and reduces the secretion of AI-2 [106]
Tannic acid Tannic acid exert anti-biofilm activity by attenuating QS communication [107]
Proanthocyanidins Proanthocyanidins inhibits QS system and reduces the complexity in biofilm architecture [108]

3.2 抗微生物肽

抗微生物肽(antimicrobial peptides, AMP,也称抗菌肽)是一类富含净正电荷和疏水性氨基酸残基的小分子多肽,通常由12−50个氨基酸残基组成。AMP能与细菌生物被膜的各组分相互作用,如生物被膜中的蛋白质、EPS和eDNA等,从而达到抑制和清除生物被膜的效果,因此又被称为抗生物被膜肽(anti-biofilm peptides, ABP)[109-110]。本课题组自主改良的AMP-CRAMP能显著降低PAO1生物被膜中c-di-GMP浓度,并抑制EPS尤其是鼠李糖脂的合成,还能促进细菌鞭毛的运动并增加藻酸盐的分泌[34]。同样有诸多学者研究表明,不同类型的AMP均能显著抑制生物被膜的形成,如4MIC AMP-Q4-15a-1通过破坏细胞膜的完整性来抑制细菌生长,从而可达到清除99.9%大肠埃希菌生物被膜的效果,这表明AMP-Q4-15a-1具有良好的抗生物被膜潜力[111];esculentin-1衍生肽干预了鞭毛合成相关基因flhDCfliC的表达,从而抑制了大肠埃希菌生物被膜形成和分散成熟生物被膜[112];Saporito等[113]研究了一组以AMP-GN-2为模型的类肽和肽对大肠埃希菌的抗菌和抗生物被膜特性,发现类肽类化合物增强的抗生物被膜特性与疏水性降低和内膜穿透性增加有关,这表明类肽特征的灵活性,从而在穿透细菌膜的能力中发挥作用;Vergis等[114]研究了天蚕素A (1-7)-蜂毒肽杂合肽对多重耐药肠聚集性大肠埃希菌分离株的作用,发现天蚕素A (1-7)-蜂毒肽主要通过“环孔模型”的作用机制,发挥其抗生物被膜特性。Morroni等[115]评估了AMP-LL-37作为抗菌剂对耐多药大肠埃希菌的疗效,结果表明LL-37对携带mcr-1的超广谱β内酰胺酶和碳青霉烯酶大肠埃希菌表现出良好的活性,1/2MIC浓度的LL-37能够减少生物被膜的形成。总之,AMP利用其广谱的抗菌且不易产生耐药性和独特的抗生物被膜作用机制,有望成为一种新型、绿色的生物被膜分散剂或抑制剂(表 2),以预防和控制未来人类或动物的BAI。AMP虽然有抗菌和抗生物被膜的特性,但是大部分AMP毒性高、不稳定且合成费用高等,限制了其在生产实践中的应用。由于很多种类的AMP易被体内的蛋白酶水解,这是目前临床面临的主要困难,未来可以考虑使用纳米球将AMP包裹,当纳米球被递送到靶器官后,根据其特性,释放包裹的AMP,这样可以减少AMP被蛋白酶水解的可能性,以便更好地发挥药物的效果。

表 2. 抗微生物肽对大肠埃希菌生物被膜的影响 Table 2. Effects of antimicrobial peptides on Escherichia coli biofilm
Item Amino acid sequence Causes affecting biofilms Reference
Derivatives of esculentin-1 peptides GIFSKLAGKKIKNLLISGLKG Derivatives of esculentin-1 peptides inhibition of biofilm formation is likely due to the increased expression of flhDC and fliC gene [112]
GN-2 derived peptides HKWKKWWKWI GN-2 derived peptides reduce hydrophobicity and increase penetration of the inner membrane, thus reducing the biofilm formation [113]
Cecropin A (1-7)-melittin (CAMA) KWKLFKKIGAVLKVL CAMA acts mainly by way of the ‘toroidal’ pores mechanism [114]
Omw1 KDRPKKPGLCPLIWWLIIKVG Omw1 may be the formation of pores in the lipid component of EPS [116]
Melittin GIGAVLKVLTTGLPALISWIKRKRQQ Melittin inhibits the adhesion and colonisation of bacteria [117]
Cathelicidin LL-37 LLGFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES LL-37 inhibits curli-mediated biofilm formation in vitro and inhibits biofilm formation by direct interference with CsgA assembly [118]
Dermaseptin K4S4 ALWKTLLKKVLKAAAKAALNAVLVGANA Dermaseptin K4S4 decreases the viability of planktonic and surface-attached bacteria and inhibits biofilm formation [119]
Cecropin A KWKIFKKIEKAGRNIRDGIIKAGPAVSVVGEAATIYKTG The dispersion of biofilms is promoted by the suppression of efflux, the uptake of more cecropin A, and its ability to bind eDNA [120]
Fly larvae immune peptides 7 (FLIP7) Amino acid sequence is not clear yet FLIP7 has strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli biofilms [121]
MF18 MRKKAVKVKHVKRREKKF The cause is not clear yet [122]
YS12 Amino acid sequence is not clear yet YS12 inhibits biofilm formation by inhibiting bacterial growth via regulating bactericidal growth action and prohibiting the attachment of bacterial cells [123]
Ultrashort cinnamic acid peptide derivatives Amino acid sequence is not clear yet Ultrashort cinnamic acid peptide derivatives via inhibition of oligopeptides and acylated homoserine lactones [124]
Brevinin-1GHa FLGAVLKVAGKLVP AAICKISKKC The cause is not clear yet [125]
[D]hBTD-1 PIFTKIQGTYRGKAKRIGRRIC [D]hBTD-1 induces precipitation of EPS and removes a large amount of EPS from biofilm matrix [126]
Magainin 2 (MAG2) GIGKWLHSAKKFGKAFVGEIMNS MAG2 reduce bacterial adhesion, but the mechanism involved is not clear yet [127]

3.3 联合治疗

联合治疗,即以协调的方式使用多种治疗或干预措施,通过针对疾病的多个方面来提高治疗的疗效,可以降低耐药性发展的风险,增强治疗对生物被膜的渗透,改善宿主的免疫应答,进而提高抗菌药的有效性,最大程度发挥药物的作用,以应对BAI。本课题组采用CRAMP联合万古霉素、罗红霉素和阿奇霉素时均表现出显著的协同作用,尤其是与万古霉素联用时,仅在3 h内就杀灭了全部生物被膜细菌[128];梁俐等[129]通过苦参与左氧氟沙星联合使用,对大肠埃希菌的生物被膜起到了显著的抑制作用,比单用左氧氟沙星有更好的抑制作用;Bai等[96]通过联合使用抗生物被膜抑制剂银杏叶素与抗生素(庆大霉素、大肠杆菌素B和大肠杆菌素E),不仅提高了银杏叶素的抗生物被膜作用,而且表现出显著的抗菌协同作用,克服了大肠埃希菌的抗生素耐药性;Thappeta等[130]将AMP-CSM5-K5与链霉素和四环素联合应用,发现联合治疗对多重耐药大肠埃希菌生物被膜的抑制率达到99%;周志远[131]通过氟苯尼考联合双黄连注射液的试验,证明了联合治疗对大肠埃希菌生物被膜有更好的抑制效果。总之,联合治疗是一种控制BAI策略的新兴领域,克服个别治疗的局限性,充分发挥了药物的作用,因此需要更多的研究成果验证其潜在的抗生物被膜能力。

3.4 偶联其他物质

使用药物与某些物质进行偶联,可以提高部分药物的药效和稳定性,从而达到对生物被膜的影响。为了进一步提高AMP-CRAMP (专利号:201810701474.7)在生物被膜中的穿透性,本课题组拟将壳聚糖(chitosan, CS)通过聚乙二醇(polyethylene glycol, PEG)侨联CRAMP,合成CS-PEG-CRAMP偶联物,增加其穿透细菌生物被膜的能力和蛋白酶稳定性,有望成为开发抗BAI的新型制剂。根除细菌成熟生物被膜的关键是克服细菌产生的EPS屏障,促进药物在生物被膜内扩散,有研究者将复合微针(compound microneedling, MNs)的针状特性与CS和Zn2+的抗菌性能结合起来组成CS-Zn[Ⅱ] MNs,用于干预大肠埃希菌生物被膜,发现MNs可以通过刺穿EPS,运输CS和Zn2+进入细菌生物被膜,表现出极强的抗菌能力(抑制效果达到100%)和生物被膜根除特性[132];Nosran等[133]通过水解酯键化学合成绿脓螯素-姜酮缀合物的研究发现,绿脓螯素-姜酮缀合物比单用姜酮对铜绿假单胞菌生物被膜的形成有更好的效果,偶联方法能够有效地抑制生物被膜的形成;Ortiz-Gómez等[134]将阴离子疏水AMP-Maximin H5 C末端脱氨亚型(MH5C)在C端(MH5C-Cys)用半胱氨酸修饰,并与不同尺寸的PEG聚合物偶联,用作表面保护涂层,发现该偶联物具有抑制大肠埃希菌生物被膜形成和清除大肠埃希菌成熟生物被膜的作用;Barbosa等[135]通过铜催化的叠氮化物-炔烃环加成反应合成的Dhvar-5-CS偶联物干预大肠埃希菌,可观察到更高的抗菌和抗生物被膜活性。因此,偶联方法不仅能够弥补一些药物的缺陷,更能够充分发挥药物的优势作用,达到治疗效果,有望应用于治疗大肠埃希菌的BAI。

3.5 其他策略

在治疗由大肠埃希菌生物被膜引起的细菌感染中,除了使用药物干预外,还可以使用一些技术干扰生物被膜相关基因的表达,从而调控生物被膜相关信号通路,达到防治BAI。

3.5.1 CRISPR技术

基于成簇的规则间隔短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)-Cas系统的基因编辑技术给生命科学领域带来了革命性的突破。在细菌相关研究方面,基于CRISPR-Cas开发的一系列无痕敲除技术促进了相关基因功能的研究,该技术在上调(CRISPR activation, CRISPRa)和下调(CRISPR interference, CRISPRi)基因表达方面也有其自身的作用,并作为基因调控系统的替代物。此外,由于该技术成功地通过细胞介导的转移在细菌系统中传递,因此显示出优于其他基因操纵技术的优势[136]。许多基因(luxSqseBqseCcsrA)参与大肠埃希菌群体感应机制,例如,luxS是活化甲基循环的一部分,参与AI-2的产生,进而诱导生物被膜形成的初始阶段[137]。Zuberi等[138]首次使用CRISPRi系统,通过靶向群体感应基因luxS,从而抑制了大肠埃希菌生物被膜的形成;Alshammari等[139]研究证实了使用CRISPR/Cas9-HDR方法分别敲除luxSfimHbolA基因,可以干扰黏附和QS系统机制,进而减少大肠埃希菌生物被膜的形成。OmpR/EnvZ是一个全局性的TCS,是响应环境渗透压变化的转录调控机制之一,该系统通过卷曲菌毛调节生物被膜,使用CRISPRi抑制临床分离大肠埃希菌ompR基因的表达,从而进一步抑制了fimH基因,导致生物被膜量显著减少[140];Gou等研究采用CRISPR-Cas9系统构建大肠埃希菌MG1655 qseB缺失菌株,并测定了qseB基因对野生型菌株的运动性和生物被膜形成变化的影响,发现qseB缺失菌株诱导了fimA的下调,导致大肠埃希菌的运动和生物被膜形成之间的表型变化不同步,为QseB在调节细胞运动和生物被膜形成中的重要性提供了新的见解[29]。CRISPR技术是一种新兴的方法,可以利用其优势,通过影响靶向生物被膜形成的相关基因,进而调控生物被膜的形成,这为防治BAI开辟了新的前景。然而,CRISPR技术可能会出现脱靶效应、编辑效率低和Cas9蛋白本身引发的免疫反应等问题,这些都亟待进一步研究解决。

3.5.2 纳米技术

纳米技术具有独特的物理、化学和生物学特性,随着该技术的兴起,已涌现出一大批纳米材料,包括有机、无机和混合颗粒,现广泛被用于处理细菌生物被膜。由于生物被膜的孔径平均约为50 nm,尺寸低于该值的纳米材料可以穿过生物被膜基质并轻松到达其内部。纳米技术可以携带药物进入到细菌内部,并可减少药物的使用剂量,从而降低相应药物的毒性,达到治疗作用。纳米材料的扩散功能也在生物被膜内发挥作用,带正电的纳米材料具有更好地穿透带负电基质的生物被膜,疏水性颗粒在生物被膜内的分布比亲水性颗粒更好[141]。此外,可以利用纳米材料的物理特性抑制生物被膜的形成,一些无机纳米材料的内在细胞毒性或一些纳米材料局部发热的能力,可以导致细菌死亡。Pourhajibagher等[142]使用纳米大黄素的声动力疗法干预多种细菌的生物被膜,发现其对细菌生物被膜的形成有一定的抑制作用;Cui等[143]使用碳基纳米材料作为抗生物被膜制剂,干预QS系统,进而抑制细菌生物被膜的形成;Ceylan等[144]研究证实了聚乙烯亚胺包覆的纳米颗粒PEIMnF和PEINF对大肠埃希菌表现出优异的抗生物被膜活性,发挥其作用可能是聚乙烯亚胺和磁性纳米颗粒协同作用的结果;Ribeiro等[145]通过固定Fe3O4-氨基硅烷核壳纳米颗粒修饰中心静脉导管,以此依赖于clavanin A的天然活性破坏细菌脂质膜,进而破坏大肠埃希菌形成生物被膜的能力;Shafreen等[146]使用淡水硅藻(nitzschia palea)合成的银纳米颗粒(AgNPs)干预能产生超广谱β-内酰胺酶的大肠埃希菌,发现AgNPs可以分散其成熟生物被膜。总之,使用纳米技术包装抗生素等药物,可以提高药物的靶向性和稳定性,缩短其释放时间,增强其在细胞或生物被膜中的渗透和保留,并减少对机体的副作用,从而为防治BAI提供了一种重要的参考依据。然而,由于纳米技术制备过程复杂、价格昂贵和对环境危害等问题,还需要进一步研究其在临床BAI中的应用。

3.5.3 噬菌体疗法

噬菌体疗法已被用作控制生物被膜形成的替代方法之一,该方法通过使EPS去极化而发挥作用,导致生物被膜破裂[147]。Pires等[148]发现使用具有抗菌剂噬菌体可以显著清除成熟生物被膜,例如,联用T4噬菌体和头孢噻肟可以体现出其清除大肠埃希菌生物被膜的协同效应[149];vB_EcoP-EG1 (T7样足病毒科)噬菌体具有暴发尺寸大、无毒性、裂解周期短和宿主范围更广的特征,该噬菌体可成功裂解多重耐药尿路致病性大肠埃希菌,并减少敏感和多重耐药分离株中的生物被膜量;此外,该噬菌体对浮游状态和生物被膜中的尿路致病性大肠埃希菌都显示出极强的裂解能力[150];Manoharadas等[151]评估了噬菌体在缓解预制单细菌生物被膜和混合细菌生物被膜方面的效率,发现特异性噬菌体ɸ44AHJD和ɸX174在孵育72 h后,可以完全破坏大肠埃希菌成熟生物被膜的结构;噬菌体DW-EC是从食品dawet中分离得到的,其产生的几种酶有抑制生物被膜形成和清除成熟生物被膜的作用,比如,解聚酶分解生物被膜中的EPS从而导致生物被膜破损,而内溶素和T4溶菌酶类似物可以裂解并杀死细菌细胞,从而阻止生物被膜形成[152-153]。总之,噬菌体疗法在清除生物被膜方面显示出良好的特性,因为它们可以产生特定的酶,使它们能够主动渗透和破坏生物被膜;其次,该疗法侧重于裂解噬菌体,因为它们会破坏细菌宿主。此外,噬菌体的其他优势还体现在多重性、高特异性、避免副作用的出现以及进化的能力等方面。

3.5.4 光动力治疗

光动力疗法(photodynamic therapy, PDT)在消除与创面相关的BAI方面具有广阔的应用前景。PDT包括使用光和一种光敏剂来破坏生物被膜,经常与其他治疗方法联合使用(如抗生素或化合物),以提高其疗效。Ronqui等[154]研究发现,PDT作为单一疗法时,通过扫描电子显微镜可以清楚地观察到PDT对生物被膜的破坏作用,当使用PDT协同环丙沙星治疗后,显著减少了大肠埃希菌的生物被膜;Paramanantham等[155]将孔雀石绿(malachite green, MG)封装在介孔二氧化硅纳米颗粒(mesoporous silica nanoparticles, MSN)上,发现使用MG-MSN干预大肠埃希菌后,MG产生的活性氧会与生物被膜中存在的蛋白质、胞外多糖、eDNA等相互作用,从而破坏了生物被膜基质;在光热效应的基础上,二硫化钼(molybdenum disulfide, MoS2)纳米颗粒用于将季铵化聚乙烯亚胺(quaternary ammonium polyethylenimine, QPEI)、二氢卟啉e6 (dihydroporphyrin e6, Ce6)和三七皂苷(panax notoginseng saponins, PNS)连接在沸石咪唑酸盐骨架-8 (zeolite imidazolate backbone-8, ZIF-8)中,构建了对pH值和近红外光具有双重响应的多功能纳米平台(MQCP@ZIF-8),具有光动力协同抗菌效果和有效抑制耐药菌的生物被膜[156]。与传统治疗相比,PDT具有显著优势,因为该疗法是一种非侵入性、生物刺激和抗感染的辅助疗法,光敏剂可以选择性地与细菌、病毒和真菌结合,而宿主细胞不受影响,由于其安全性、无副作用及非手术治疗方式更容易被接受。因此,PDT治疗正成为一种有前途且有效的防治BAI策略。

综上所述,中药活性物和抗微生物肽可能是当前替代抗生素产品中2种主要的药物,因其对细菌具有独特的作用机制,可以考虑将其应用于临床治疗由细菌生物被膜引起的疾病,但其副作用有待进一步的研究;偶联其他物质、CRISPR、纳米技术、噬菌体疗法和光动力治疗等这些新兴的治疗手段,不仅可以从基因层面上解决问题,还可以借助多学科交叉的平台,如化学、物理和计算机等,为进一步防治BAI提供了有力的支撑。

4 展望

当前,细菌生物被膜相关感染亟待攻克,在医学临床领域,细菌可在心脏起搏器、导尿管、气管等医疗器械上形成生物被膜,而且清除难度很大,从而引起严重的心内膜炎、尿道感染和慢性肺部感染等。另外,在养殖行业,自“减抗” “禁抗”政策实施以来,与生物被膜相关的细菌性疾病出现明显反弹,给养殖业造成了巨大的经济损失。因此,迫切需要加大对生物被膜形成的调控机制研究以及针对BAI的新型替抗产品的开发。

目前,很多研究者主要从生物被膜形成的调控系统和分子机制方面进行探究,如TCS、QS系统、c-di-GMP系统、TA系统、转录调节蛋白和自主转运蛋白等,这些主要在生物被膜生长的不同阶段发挥非常重要作用,但由于环境的复杂性和基因易突变等多方面的影响,可能会造成各个调控系统之间的协调关系发生变化,从而导致调控生物被膜形成的通路出现新的药物靶点。虽然对大肠埃希菌生物被膜形成的相关机制已研究了很多,并且研究主要集中在黏附和形成阶段,但仍存在生物被膜难以得到有效控制的问题;如果生物被膜已经成熟且未能得到及时有效的清除,在生物被膜内部处于休眠状态的细菌会逃避抗生素的作用,这样可能加大细菌耐药性的发展;此外,大多数实验室主要研究单一细菌的生物被膜,但对于多种细菌混合在一起形成的生物被膜研究较少,不同的细菌在形成生物被膜过程中是否会产生相互促进或抑制的作用,这需要进一步的探索。因此,结合本文对生物被膜形成或分散阶段的调控机制,可采用CRISPR技术干扰生物被膜形成或分散的关键基因或基因簇,从而降低生物被膜量;可采用药物干扰细菌间的信号通讯传导,如c-di-GMP和AI-2,从而达到控制生物被膜的效果;可依托生物仿生学和靶向黏附的表面修饰技术,防止细菌黏附以及形成生物被膜。另外,开发生物被膜分散剂,作为新型抗菌增效剂与抗菌药物联合使用,从而将生物被膜细菌提前分散出去,恢复成更易被抗菌药物抑杀的浮游菌,将成为防治BAI非常有前景的新方向。总之,充分阐明生物被膜的相关调控机制至关重要,为研究BAI防控策略提供理论依据,另外未来可以考虑多学科交叉,将更多先进的技术应用于该领域的研究。

References
[1] ZHOU F, WANG DH, HU JM, ZHANG Y, TAN BK, LIN SL. Control measurements of Escherichia coli biofilm: a review[J]. Foods, 2022, 11(16): 2469 DOI:10.3390/foods11162469.
[2] DANESE PN, PRATT LA, KOLTER R. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture[J]. Journal of Bacteriology, 2000, 182(12): 3593-3596 DOI:10.1128/JB.182.12.3593-3596.2000.
[3] HASHEM YA, AMIN HM, ESSAM TM, YASSIN AS, AZIZ RK. Biofilm formation in enterococci: genotype-phenotype correlations and inhibition by vancomycin[J]. Scientific Reports, 2017, 7: 5733 DOI:10.1038/s41598-017-05901-0.
[4] 程鹏, 熊静, 李会, 王士源, 张阳, 梅翠, 伍雪晴, 何玉张, 陈红伟. 植物提取物及其活性成分抑制细菌生物被膜的研究进展[J]. 生物工程学报, 2022, 38(5): 1753-1767.
CHENG P, XIONG J, LI H, WANG SY, ZHANG Y, MEI C, WU XQ, HE YZ, CHEN HW. Using plant extracts and their active ingredients to inhibit bacterial biofilms[J]. Chinese Journal of Biotechnology, 2022, 38(5): 1753-1767 (in Chinese).
[5] AHMAD RATHER M, GUPTA K, MANDAL M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies[J]. Brazilian Journal of Microbiology, 2021, 52(4): 1701-1718 DOI:10.1007/s42770-021-00624-x.
[6] VISHWAKARMA A, DANG F, FERRELL A, BARTON HA, JOY A. Peptidomimetic polyurethanes inhibit bacterial biofilm formation and disrupt surface established biofilms[J]. Journal of the American Chemical Society, 2021, 143(25): 9440-9449 DOI:10.1021/jacs.1c02324.
[7] BELOIN C, ROUX A, GHIGO JM. Escherichia coli biofilms[J]. Current Topics in Microbiology and Immunology, 2008, 322: 249-289.
[8] FERRIÈRES L, CLARKE DJ. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface[J]. Molecular Microbiology, 2003, 50(5): 1665-1682 DOI:10.1046/j.1365-2958.2003.03815.x.
[9] ZSCHIEDRICH CP, KEIDEL V, SZURMANT H. Molecular mechanisms of two-component signal transduction[J]. Journal of Molecular Biology, 2016, 428(19): 3752-3775 DOI:10.1016/j.jmb.2016.08.003.
[10] LV MF, YE SX, HU M, XUE Y, LIANG ZB, ZHOU XF, ZHANG LH, ZHOU JN. Two-component system ArcBA modulates cell motility and biofilm formation in Dickeya oryzae[J]. Frontiers in Plant Science, 2022, 13: 1033192 DOI:10.3389/fpls.2022.1033192.
[11] KHAN F, TABASSUM N, PHAM DTN, OLOKETUYI SF, KIM YM. Molecules involved in motility regulation in Escherichia coli cells: a review[J]. Biofouling, 2020, 36(8): 889-908 DOI:10.1080/08927014.2020.1826939.
[12] LIU Z, NIU H, WU SY, HUANG R. CsgD regulatory network in a bacterial trait-altering biofilm formation[J]. Emerging Microbes & Infections, 2014, 3(1): e1.
[13] MA K, WANG H, LV ZF, HU YT, WANG HL, SHU F, ZHU CF, XUE T. The two-component system CpxRA affects antibiotic susceptibility and biofilm formation in avian pathogenic Escherichia coli[J]. Animals: an Open Access Journal from MDPI, 2023, 13(3): 383.
[14] KENNEY LJ, ANAND GS. EnvZ/OmpR two-component signaling: an archetype system that can function noncanonically[J]. EcoSal Plus, 2020, 9(1): 10.1128/ecosalplus.ESP-10.1128/ecosalplus0001-2019.
[15] JUBELIN G, VIANNEY A, BELOIN C, GHIGO JM, LAZZARONI JC, LEJEUNE P, DOREL C. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli[J]. Journal of Bacteriology, 2005, 187(6): 2038-2049 DOI:10.1128/JB.187.6.2038-2049.2005.
[16] ÖZTÜRK FY, DARCAN C, KARIPTAŞ E. The determination, monitoring, molecular mechanisms and formation of biofilm in E. coli[J]. Brazilian Journal of Microbiology, 2023, 54(1): 259-277 DOI:10.1007/s42770-022-00895-y.
[17] GERKEN H, CHARLSON ES, CICIRELLI EM, KENNEY LJ, MISRA R. MzrA: a novel modulator of the EnvZ/OmpR two-component regulon[J]. Molecular Microbiology, 2009, 72(6): 1408-1422 DOI:10.1111/j.1365-2958.2009.06728.x.
[18] SANO K, KOBAYASHI H, CHUTA H, MATSUYOSHI N, KATO Y, OGASAWARA H. CsgI (YccT) is a novel inhibitor of curli fimbriae formation in Escherichia coli preventing CsgA polymerization and curli gene expression[J]. International Journal of Molecular Sciences, 2023, 24(5): 4357 DOI:10.3390/ijms24054357.
[19] MUKHERJEE S, BASSLER BL. Bacterial quorum sensing in complex and dynamically changing environments[J]. Nature Reviews Microbiology, 2019, 17: 371-382 DOI:10.1038/s41579-019-0186-5.
[20] XAVIER KB, BASSLER BL. LuxS quorum sensing: more than just a numbers game[J]. Current Opinion in Microbiology, 2003, 6(2): 191-197 DOI:10.1016/S1369-5274(03)00028-6.
[21] GOU Y. The mechanism of QseBC two-component system involved in regulation of Escherichia coli motility and biofilm formation[D]. Shanghai: Master's Thesis of Shanghai Ocean University, 2020 (in Chinese).
苟怡. QseBC双组分系统参与调控大肠杆菌运动和生物被膜形成的机制研究[D]. 上海: 上海海洋大学硕士学位论文, 2020.
[22] GONZÁLEZ BARRIOS AF, ZUO RJ, HASHIMOTO Y, YANG L, BENTLEY WE, WOOD TK. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022)[J]. Journal of Bacteriology, 2006, 188(1): 305-316 DOI:10.1128/JB.188.1.305-316.2006.
[23] REN D, BEDZYK LA, THOMAS SM, YE RW, WOOD TK. Gene expression in Escherichia coli biofilms[J]. Applied Microbiology and Biotechnology, 2004, 64(4): 515-524 DOI:10.1007/s00253-003-1517-y.
[24] SHARMA G, SHARMA S, SHARMA P, CHANDOLA D, DANG S, GUPTA S, GABRANI R. Escherichia coli biofilm: development and therapeutic strategies[J]. Journal of Applied Microbiology, 2016, 121(2): 309-319 DOI:10.1111/jam.13078.
[25] WEI BL, BRUN-ZINKERNAGEL AM, SIMECKA JW, PRÜSS BM, BABITZKE P, ROMEO T. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli[J]. Molecular Microbiology, 2001, 40(1): 245-256 DOI:10.1046/j.1365-2958.2001.02380.x.
[26] TIMMERMANS J, van MELDEREN L. Post-transcriptional global regulation by CsrA in bacteria[J]. Cellular and Molecular Life Sciences, 2010, 67(17): 2897-2908 DOI:10.1007/s00018-010-0381-z.
[27] DOMKA J, LEE J, WOOD TK. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling[J]. Applied and Environmental Microbiology, 2006, 72(4): 2449-2459 DOI:10.1128/AEM.72.4.2449-2459.2006.
[28] HERZBERG M, KAYE IK, PETI W, WOOD TK. YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport[J]. Journal of Bacteriology, 2006, 188(2): 587-598 DOI:10.1128/JB.188.2.587-598.2006.
[29] GOU Y, LIU WQ, WANG JJ, TAN L, HONG B, GUO LX, LIU HQ, PAN YJ, ZHAO Y. CRISPR-Cas9 knockout of qseB induced asynchrony between motility and biofilm formation in Escherichia coli[J]. Canadian Journal of Microbiology, 2019, 65(9): 691-702 DOI:10.1139/cjm-2019-0100.
[30] SHARMA VK, CASEY TA. Escherichia coli O157: H7 lacking the qseBC-encoded quorum-sensing system outcompetes the parental strain in colonization of cattle intestines[J]. Applied and Environmental Microbiology, 2014, 80(6): 1882-1892 DOI:10.1128/AEM.03198-13.
[31] SIMM R, FETHERSTON JD, KADER A, RÖMLING U, PERRY RD. Phenotypic convergence mediated by GGDEF-domain-containing proteins[J]. Journal of Bacteriology, 2005, 187(19): 6816-6823 DOI:10.1128/JB.187.19.6816-6823.2005.
[32] AHMAD I, CIMDINS A, BESKE T, RÖMLING U. Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium[J]. BMC Microbiology, 2017, 17(1): 27 DOI:10.1186/s12866-017-0934-5.
[33] SUCHANEK VM, ESTEBAN-LÓPEZ M, COLIN R, BESHAROVA O, FRITZ K, SOURJIK V. Chemotaxis and cyclic-di-GMP signalling control surface attachment of Escherichia coli[J]. Molecular Microbiology, 2020, 113(4): 728-739 DOI:10.1111/mmi.14438.
[34] ZHANG Y, CHENG P, WANG SY, LI XF, PENG LC, FANG RD, XIONG J, LI H, MEI C, GAO JY, SONG ZH, XU DF, FU LZ, LI CH, WU XQ, HE YZ, CHEN HW. Pseudomonas aeruginosa biofilm dispersion by the mouse antimicrobial peptide CRAMP[J]. Veterinary Research, 2022, 53(1): 80 DOI:10.1186/s13567-022-01097-y.
[35] RUMBAUGH KP, SAUER K. Biofilm dispersion[J]. Nature Reviews Microbiology, 2020, 18: 571-586 DOI:10.1038/s41579-020-0385-0.
[36] 沈紫竹, 李昱龙, 孙志敏, 樊奔, 赵银娟. 细菌生物被膜分散及分子调控机制研究进展[J]. 微生物学通报, 2021, 48(5): 1800-1809.
SHEN ZZ, LI YL, SUN ZM, FAN B, ZHAO YJ. Bacterial biofilm dispersion and molecular regulation mechanism: a review[J]. Microbiology China, 2021, 48(5): 1800-1809 (in Chinese).
[37] VALENTINI M, FILLOUX A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria[J]. The Journal of Biological Chemistry, 2016, 291(24): 12547-12555 DOI:10.1074/jbc.R115.711507.
[38] RÖMLING U, GALPERIN MY, GOMELSKY M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger[J]. Microbiology and Molecular Biology Reviews, 2013, 77(1): 1-52 DOI:10.1128/MMBR.00043-12.
[39] ZOGAJ X, BOKRANZ W, NIMTZ M, RÖMLING U. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract[J]. Infection and Immunity, 2003, 71(7): 4151-4158 DOI:10.1128/IAI.71.7.4151-4158.2003.
[40] SOLANO C, GARCÍA B, VALLE J, BERASAIN C, GHIGO JM, GAMAZO C, LASA I. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose[J]. Molecular Microbiology, 2002, 43(3): 793-808 DOI:10.1046/j.1365-2958.2002.02802.x.
[41] PESAVENTO C, BECKER G, SOMMERFELDT N, POSSLING A, TSCHOWRI N, MEHLIS A, HENGGE R. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli[J]. Genes & Development, 2008, 22(17): 2434-2446.
[42] ITOH Y, RICE JD, GOLLER C, PANNURI A, TAYLOR J, MEISNER J, BEVERIDGE TJ, PRESTON JF 3rd, ROMEO T. Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-beta-1, 6-N-acetyl-D-glucosamine[J]. Journal of Bacteriology, 2008, 190(10): 3670-3680 DOI:10.1128/JB.01920-07.
[43] STEINER S, LORI C, BOEHM A, JENAL U. Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction[J]. The EMBO Journal, 2013, 32(3): 354-368.
[44] JOHNSON MR, MONTERO CI, CONNERS SB, SHOCKLEY KR, BRIDGER SL, KELLY RM. Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima[J]. Molecular Microbiology, 2005, 55(3): 664-674 DOI:10.1111/j.1365-2958.2004.04419.x.
[45] WANG ZH. Effects of c-di-GMP metabolic genes and quorum sensing system on biological characteristics of avian pathogenic Escherichia coli[D]. Hefei: Master's Thesis of Anhui Agricultural University, 2019 (in Chinese).
王志豪. 环二鸟苷酸代谢基因及群体感应系统对禽致病性大肠杆菌生物学特性的影响[D]. 合肥: 安徽农业大学硕士学位论文, 2019.
[46] 侯博, 王晨燕, 周伦江. 毒素-抗毒素系统在细菌生物被膜形成中的作用及调控机制[J]. 畜牧兽医学报, 2022, 53(10): 3326-3334.
HOU B, WANG CY, ZHOU LJ. The roles and regulatory mechanisms of toxin-antitoxin system in bacterial biofilm formation[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3326-3334 (in Chinese).
[47] OGURA T, HIRAGA S. Mini-F plasmid genes that couple host cell division to plasmid proliferation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(15): 4784-4788.
[48] EROSHENKO DV, POLYUDOVA TV, PYANKOVA AA. VapBC and MazEF toxin/antitoxin systems in the regulation of biofilm formation and antibiotic tolerance in nontuberculous mycobacteria[J]. International Journal of Mycobacteriology, 2020, 9(2): 156-166 DOI:10.4103/ijmy.ijmy_61_20.
[49] HOU B, WANG CY, LI SW, ZHOU LJ, CHE YL, CHEN QY. Effects of toxin-antitoxin system HicAB on biofilm formation by extraintestinal pathogenic E. coli[J]. Current Microbiology, 2022, 80(1): 50.
[50] CHAN WT, DOMENECH M, MORENO-CÓRDOBA I, NAVARRO-MARTÍNEZ V, NIETO C, MOSCOSO M, GARCÍA E, ESPINOSA M. The Streptococcus pneumoniae yefM-yoeB and relBE toxin-antitoxin operons participate in oxidative stress and biofilm formation[J]. Toxins, 2018, 10(9): 378 DOI:10.3390/toxins10090378.
[51] SHMIDOV E, LEBENTHAL-LOINGER I, ROTH S, KARAKO-LAMPERT S, ZANDER I, SHOSHANI S, DANIELLI A, BANIN E. PrrT/A, a Pseudomonas aeruginosa bacterial encoded toxin-antitoxin system involved in prophage regulation and biofilm formation[J]. Microbiology Spectrum, 2022, 10(3): e0118222 DOI:10.1128/spectrum.01182-22.
[52] KASARI V, KURG K, MARGUS T, TENSON T, KALDALU N. The Escherichia coli mqsR and ygiT genes encode a new toxin-antitoxin pair[J]. Journal of Bacteriology, 2010, 192(11): 2908-2919 DOI:10.1128/JB.01266-09.
[53] KIM Y, WANG XX, ZHANG XS, GRIGORIU S, PAGE R, PETI W, WOOD TK. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD[J]. Environmental Microbiology, 2010, 12(5): 1105-1121 DOI:10.1111/j.1462-2920.2009.02147.x.
[54] SOO VWC, WOOD TK. Antitoxin MqsA represses curli formation through the master biofilm regulator CsgD[J]. Scientific Reports, 2013, 3: 3186 DOI:10.1038/srep03186.
[55] ZHAO JQ. The TA system gene hipBA in Escherichia coli affects biofilm formation and DNA release[D]. Jinan: Master's Thesis of Shandong University, 2012 (in Chinese).
赵俊桥. 大肠杆菌TA系统基因hipBA对生物膜的形成以及DNA释放的影响[D]. 济南: 山东大学硕士学位论文, 2012.
[56] YOSHIDA H, SHIMADA T, ISHIHAMA A. Coordinated hibernation of transcriptional and translational apparatus during growth transition of Escherichia coli to stationary phase[J]. mSystems, 2018, 3(5): e00057-18.
[57] LORD DM, UZGOREN BARAN A, SOO VWC, WOOD TK, PETI W, PAGE R. McbR/YncC: implications for the mechanism of ligand and DNA binding by a bacterial GntR transcriptional regulator involved in biofilm formation[J]. Biochemistry, 2014, 53(46): 7223-7231 DOI:10.1021/bi500871a.
[58] ZHANG XS, GARCÍA-CONTRERAS R, WOOD TK. Escherichia coli transcription factor YncC (McbR) regulates colanic acid and biofilm formation by repressing expression of periplasmic protein YbiM (McbA)[J]. The ISME Journal, 2008, 2(6): 615-631 DOI:10.1038/ismej.2008.24.
[59] YU LM, LI WC, ZHANG M, CUI YM, CHEN XL, NI JT, YU L, SHANG F, XUE T. Autoinducer 2 affects trimethoprim-sulfamethoxazole susceptibility in avian pathogenic Escherichia coli dependent on the folate synthesis-associate pathway[J]. MicrobiologyOpen, 2018, 7(4): e00582 DOI:10.1002/mbo3.582.
[60] LEE J, PAGE R, GARCÍA-CONTRERAS R, PALERMINO JM, ZHANG XS, DOSHI O, WOOD TK, PETI W. Structure and function of the Escherichia coli protein YmgB: a protein critical for biofilm formation and acid-resistance[J]. Journal of Molecular Biology, 2007, 373(1): 11-26 DOI:10.1016/j.jmb.2007.07.037.
[61] ATTILA C, UEDA A, WOOD TK. 5-fluorouracil reduces biofilm formation in Escherichia coli K-12 through global regulator AriR as an antivirulence compound[J]. Applied Microbiology and Biotechnology, 2009, 82(3): 525-533 DOI:10.1007/s00253-009-1860-8.
[62] MARIMON O, TEIXEIRA JMC, CORDEIRO TN, SOO VWC, WOOD TL, MAYZEL M, AMATA I, GARCÍA J, MORERA A, GAY M, VILASECA M, OREKHOV VY, WOOD TK, PONS M. An oxygen-sensitive toxin-antitoxin system[J]. Nature Communications, 2016, 7: 13634 DOI:10.1038/ncomms13634.
[63] SHARMA VK, BEARSON BL. Hha controls Escherichia coli O157: H7 biofilm formation by differential regulation of global transcriptional regulators FlhDC and CsgD[J]. Applied and Environmental Microbiology, 2013, 79(7): 2384-2396 DOI:10.1128/AEM.02998-12.
[64] GARCÍA-CONTRERAS R, ZHANG XS, KIM Y, WOOD TK. Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes[J]. PLoS One, 2008, 3(6): e2394 DOI:10.1371/journal.pone.0002394.
[65] KALIDASAN V, NEELA VK. Twitching motility of Stenotrophomonas maltophilia under iron limitation: in-silico, phenotypic and proteomic approaches[J]. Virulence, 2020, 11(1): 104-112 DOI:10.1080/21505594.2020.1713649.
[66] JAISWAL S, PAUL P, PADHI C, RAY S, RYAN D, DASH S, SUAR M. The hha-TomB toxin-antitoxin system shows conditional toxicity and promotes persister cell formation by inhibiting apoptosis-like death in S. typhimurium[J]. Scientific Reports, 2016, 6: 38204 DOI:10.1038/srep38204.
[67] REIDL S, LEHMANN A, SCHILLER R, SALAM KHAN A, DOBRINDT U. Impact of O-glycosylation on the molecular and cellular adhesion properties of the Escherichia coli autotransporter protein Ag43[J]. International Journal of Medical Microbiology, 2009, 299(6): 389-401 DOI:10.1016/j.ijmm.2009.01.001.
[68] WALDRON DE, OWEN P, DORMAN CJ. Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli[J]. Molecular Microbiology, 2002, 44(2): 509-520 DOI:10.1046/j.1365-2958.2002.02905.x.
[69] HENDERSON IR, MEEHAN M, OWEN P. A novel regulatory mechanism for a novel phase-variable outer membrane protein of Escherichia coli[J]. Advances in Experimental Medicine and Biology, 1997, 412: 349-355.
[70] KJAERGAARD K, HASMAN H, SCHEMBRI MA, KLEMM P. Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system[J]. Journal of Bacteriology, 2002, 184(15): 4197-4204 DOI:10.1128/JB.184.15.4197-4204.2002.
[71] HERAS B, TOTSIKA M, PETERS KM, PAXMAN JJ, GEE CL, JARROTT RJ, PERUGINI MA, WHITTEN AE, SCHEMBRI MA. The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(1): 457-462.
[72] VOGELEER P, TREMBLAY YDN, MAFU AA, JACQUES M, HAREL J. Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli[J]. Frontiers in Microbiology, 2014, 5: 317.
[73] ZUDE I, LEIMBACH A, DOBRINDT U. Prevalence of autotransporters in Escherichia coli: what is the impact of phylogeny and pathotype?[J]. International Journal of Medical Microbiology, 2014, 304(3/4): 243-256.
[74] ZHUGE XK, TANG F, ZHU HF, MAO X, WANG SH, WU ZF, LU CP, DAI JJ, FAN HJ. AutA and AutR, two novel global transcriptional regulators, facilitate avian pathogenic Escherichia coli infection[J]. Scientific Reports, 2016, 6: 25085 DOI:10.1038/srep25085.
[75] ZHU-GE XK, PAN ZH, TANG F, MAO X, HU L, WANG SH, XU B, LU CP, FAN HJ, DAI JJ. The effects of upaB deletion and the double/triple deletion of upaB, aatA, and aatB genes on pathogenicity of avian pathogenic Escherichia coli[J]. Applied Microbiology and Biotechnology, 2015, 99(24): 10639-10654 DOI:10.1007/s00253-015-6925-2.
[76] ALLSOPP LP, BELOIN C, ULETT GC, VALLE J, TOTSIKA M, SHERLOCK O, GHIGO JM, SCHEMBRI MA. Molecular characterization of UpaB and UpaC, two new autotransporter proteins of uropathogenic Escherichia coli CFT073[J]. Infection and Immunity, 2012, 80(1): 321-332 DOI:10.1128/IAI.05322-11.
[77] ALLSOPP LP, BELOIN C, MORIEL DG, TOTSIKA M, GHIGO JM, SCHEMBRI MA. Functional heterogeneity of the UpaH autotransporter protein from uropathogenic Escherichia coli[J]. Journal of Bacteriology, 2012, 194(21): 5769-5782 DOI:10.1128/JB.01264-12.
[78] BRUNDER W, SCHMIDT H, KARCH H. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157: H7 cleaves human coagulation factor V[J]. Molecular Microbiology, 1997, 24(4): 767-778 DOI:10.1046/j.1365-2958.1997.3871751.x.
[79] WEISS A, BROCKMEYER J. Prevalence, biogenesis, and functionality of the serine protease autotransporter EspP[J]. Toxins, 2012, 5(1): 25-48 DOI:10.3390/toxins5010025.
[80] PUTTAMREDDY S, CORNICK NA, MINION FC. Genome-wide transposon mutagenesis reveals a role for PO157 genes in biofilm development in Escherichia coli O157: H7 EDL933[J]. Infection and Immunity, 2010, 78(6): 2377-2384 DOI:10.1128/IAI.00156-10.
[81] XICOHTENCATL-CORTES J, SALDAÑA Z, DENG WY, CASTAÑEDA E, FREER E, TARR PI, FINLAY BB, PUENTE JL, GIRÓN JA. Bacterial macroscopic rope-like fibers with cytopathic and adhesive properties[J]. The Journal of Biological Chemistry, 2010, 285(42): 32336-32342 DOI:10.1074/jbc.M110.162248.
[82] WELLS TJ, McNEILLY TN, TOTSIKA M, MAHAJAN A, GALLY DL, SCHEMBRI MA. The Escherichia coli O157: H7 EhaB autotransporter protein binds to laminin and collagen I and induces a serum IgA response in O157: H7 challenged cattle[J]. Environmental Microbiology, 2009, 11(7): 1803-1814 DOI:10.1111/j.1462-2920.2009.01905.x.
[83] WELLS TJ, SHERLOCK O, RIVAS L, MAHAJAN A, BEATSON SA, TORPDAHL M, WEBB RI, ALLSOPP LP, GOBIUS KS, GALLY DL, SCHEMBRI MA. EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157: H7 that contributes to adhesion and biofilm formation[J]. Environmental Microbiology, 2008, 10(3): 589-604 DOI:10.1111/j.1462-2920.2007.01479.x.
[84] VOGELEER P, TREMBLAY YDN, JUBELIN G, JACQUES M, HAREL J. Biofilm-forming abilities of shiga toxin-producing Escherichia coli isolates associated with human infections[J]. Applied and Environmental Microbiology, 2015, 82(5): 1448-1458.
[85] MARTINEZ-GIL M, GOH KGK, RACKAITYTE E, SAKAMOTO C, AUDRAIN B, MORIEL DG, TOTSIKA M, GHIGO JM, SCHEMBRI MA, BELOIN C. YeeJ is an inverse autotransporter from Escherichia coli that binds to peptidoglycan and promotes biofilm formation[J]. Scientific Reports, 2017, 7: 11326 DOI:10.1038/s41598-017-10902-0.
[86] ROUX A, BELOIN C, GHIGO JM. Combined inactivation and expression strategy to study gene function under physiological conditions: application to identification of new Escherichia coli adhesins[J]. Journal of Bacteriology, 2005, 187(3): 1001-1013 DOI:10.1128/JB.187.3.1001-1013.2005.
[87] MIQUEL S, LAGRAFEUILLE R, SOUWEINE B, FORESTIER C. Anti-biofilm activity as a health issue[J]. Frontiers in Microbiology, 2016, 7: 592.
[88] SHERLOCK O, SCHEMBRI MA, REISNER A, KLEMM P. Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation[J]. Journal of Bacteriology, 2004, 186(23): 8058-8065 DOI:10.1128/JB.186.23.8058-8065.2004.
[89] LINDENTHAL C, ELSINGHORST EA. Identification of a glycoprotein produced by enterotoxigenic Escherichia coli[J]. Infection and Immunity, 1999, 67(8): 4084-4091 DOI:10.1128/IAI.67.8.4084-4091.1999.
[90] ELSINGHORST EA, WEITZ JA. Epithelial cell invasion and adherence directed by the enterotoxigenic Escherichia coli Tib locus is associated with a 104-kilodalton outer membrane protein[J]. Infection and Immunity, 1994, 62(8): 3463-3471 DOI:10.1128/iai.62.8.3463-3471.1994.
[91] SHERLOCK O, VEJBORG RM, KLEMM P. The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation[J]. Infection and Immunity, 2005, 73(4): 1954-1963 DOI:10.1128/IAI.73.4.1954-1963.2005.
[92] 解光艳, 段强军, 项红梅, 郝佳兰, 李文强, 汪兴生. 黄芩苷对大肠杆菌生物被膜蛋白表达的干预作用[J]. 时珍国医国药, 2020, 31(8): 1858-1862.
XIE GY, DUAN QJ, XIANG HM, HAO JL, LI WQ, WANG XS. Intervention effect of baicalin on the expression of biological envelope protein of Escherichia coli[J]. Lishizhen Medicine and Materia Medica Research, 2020, 31(8): 1858-1862 (in Chinese).
[93] LEE JH, KIM YG, RYU SY, CHO MH, LEE J. Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157: H7 and Staphylococcus aureus biofilm formation[J]. International Journal of Food Microbiology, 2014, 174: 47-55 DOI:10.1016/j.ijfoodmicro.2013.12.030.
[94] LI XL, DENG FE, SHAN XM, PAN JH, YU PZ, MAO ZH. Effects of the molluscicidal agent GA-C13: 0, a natural occurring ginkgolic acid, on snail mitochondria[J]. Pesticide Biochemistry and Physiology, 2012, 103(2): 115-120 DOI:10.1016/j.pestbp.2012.04.006.
[95] WANG YM, ZHANG Y, SONG X, FANG CL, XING R, LIU L, ZHAO XH, ZOU YF, LI LX, JIA RY, YE G, SHI F, ZHOU X, ZHANG YY, WAN HP, WEI Q, YIN ZQ. 1, 8-cineole inhibits biofilm formation and bacterial pathogenicity by suppressing luxS gene expression in Escherichia coli[J]. Frontiers in Pharmacology, 2022, 13: 988245 DOI:10.3389/fphar.2022.988245.
[96] BAI YB, WANG WW, SHI MY, WEI XJ, ZHOU XZ, LI B, ZHANG JY. Novel antibiofilm inhibitor ginkgetin as an antibacterial synergist against Escherichia coli[J]. International Journal of Molecular Sciences, 2022, 23(15): 8809 DOI:10.3390/ijms23158809.
[97] SUN T, LI XD, HONG J, LIU C, ZHANG XL, ZHENG JP, XU YJ, OU ZY, ZHENG JL, YU DJ. Inhibitory effect of two traditional Chinese medicine monomers, berberine and matrine, on the quorum sensing system of antimicrobial-resistant Escherichia coli[J]. Frontiers in Microbiology, 2019, 10: 2584 DOI:10.3389/fmicb.2019.02584.
[98] KANG JM, LI QQ, LIU L, JIN WY, WANG JF, SUN YY. The specific effect of gallic acid on Escherichia coli biofilm formation by regulating pgaABCD genes expression[J]. Applied Microbiology and Biotechnology, 2018, 102(4): 1837-1846 DOI:10.1007/s00253-017-8709-3.
[99] PACKIAVATHY IASV, PRIYA S, PANDIAN SK, RAVI AV. Inhibition of biofilm development of uropathogens by curcumin-an anti-quorum sensing agent from Curcuma longa[J]. Food Chemistry, 2014, 148: 453-460 DOI:10.1016/j.foodchem.2012.08.002.
[100] WANG L, ZHANG K, ZHANG K, ZHANG JY, FU JJ, LI J, WANG GB, QIU ZY, WANG XZ, LI JX. Antibacterial activity of Cinnamomum camphora essential oil on Escherichia coli during planktonic growth and biofilm formation[J]. Frontiers in Microbiology, 2020, 11: 561002 DOI:10.3389/fmicb.2020.561002.
[101] VIKRAM A, JESUDHASAN PR, PILLAI SD, PATIL BS. Isolimonic acid interferes with Escherichia coli O157: H7 biofilm and TTSS in QseBC and QseA dependent fashion[J]. BMC Microbiology, 2012, 12: 261 DOI:10.1186/1471-2180-12-261.
[102] VIKRAM A, JAYAPRAKASHA GK, JESUDHASAN PR, PILLAI SD, PATIL BS. Suppression of bacterial cell-cell signalling, biofilm formation and type Ⅲ secretion system by citrus flavonoids[J]. Journal of Applied Microbiology, 2010, 109(2): 515-527 DOI:10.1111/j.1365-2672.2010.04677.x.
[103] PENG LY, YUAN M, WU ZM, SONG K, ZHANG CL, AN Q, XIA F, YU JL, YI PF, FU BD, SHEN HQ. Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses[J]. Scientific Reports, 2019, 9: 4063 DOI:10.1038/s41598-019-40684-6.
[104] ZHANG JM, RUI X, WANG L, GUAN Y, SUN XM, DONG MS. Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation[J]. Food Control, 2014, 42: 125-131 DOI:10.1016/j.foodcont.2014.02.001.
[105] KIM YG, LEE JH, KIM SI, BAEK KH, LEE J. Cinnamon bark oil and its components inhibit biofilm formation and toxin production[J]. International Journal of Food Microbiology, 2015, 195: 30-39 DOI:10.1016/j.ijfoodmicro.2014.11.028.
[106] CHEN F. Inhibition mechanism of honokiol on biofilm formation by Escherichia coli[D]. Dalian: Master's Thesis of Liaoning Normal University, 2019 (in Chinese).
陈菲. 和厚朴酚抑制大肠埃希菌生物被膜形成的作用机制[D]. 大连: 辽宁师范大学硕士学位论文, 2019.
[107] SERRANO J, PUUPPONEN-PIMIÄ R, DAUER A, AURA AM, SAURA-CALIXTO F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects[J]. Molecular Nutrition & Food Research, 2009, 53(suppl 2): S310-S329.
[108] JAGANNATHAN V, VISWANATHAN P. Proanthocyanidins-Will they effectively restrain conspicuous bacterial strains devolving on urinary tract infection?[J]. Journal of Basic Microbiology, 2018, 58(7): 567-578 DOI:10.1002/jobm.201800131.
[109] OVERHAGE J, CAMPISANO A, BAINS M, TORFS ECW, REHM BHA, HANCOCK REW. Human host defense peptide LL-37 prevents bacterial biofilm formation[J]. Infection and Immunity, 2008, 76(9): 4176-4182 DOI:10.1128/IAI.00318-08.
[110] 张阳, 程鹏, 李晓芬, 陈红伟. 抗生物膜肽研究进展[J]. 生物技术通报, 2021, 37(2): 216-223.
ZHANG Y, CHENG P, LI XF, CHEN HW. Research progress on anti-biofilm peptides[J]. Biotechnology Bulletin, 2021, 37(2): 216-223 (in Chinese).
[111] WU KC, HUA KF, YU YH, CHENG YH, CHENG TT, HUANG YK, CHANG HW, CHEN WJ. Antibacterial and antibiofilm activities of novel antimicrobial peptides against multidrug-resistant enterotoxigenic Escherichia coli[J]. International Journal of Molecular Sciences, 2021, 22(8): 3926 DOI:10.3390/ijms22083926.
[112] SCOTTI R, CASCIARO B, STRINGARO A, MORGIA F, MANGONI ML, GABBIANELLI R. Derivatives of esculentin-1 peptides as promising candidates for fighting infections from Escherichia coli O157: H7[J]. Antibiotics, 2022, 11(5): 656 DOI:10.3390/antibiotics11050656.
[113] SAPORITO P, BILJANA M, OLESEN AL, JENSSEN H. Antibacterial mechanisms of GN-2 derived peptides and peptoids against Escherichia coli[J]. Biopolymers, 2019, 110(6): e23275 DOI:10.1002/bip.23275.
[114] VERGIS J, MALIK SVS, PATHAK R, KUMAR M, SUNITHA R, BARBUDDHE SB, RAWOOL DB. Efficacy of indolicidin, cecropin A (1-7)-melittin (CAMA) and their combination against biofilm-forming multidrug-resistant enteroaggregative Escherichia coli[J]. Probiotics and Antimicrobial Proteins, 2020, 12(2): 705-715 DOI:10.1007/s12602-019-09589-8.
[115] MORRONI G, SANTE LD, SIMONETTI O, BRESCINI L, KAMYSZ W, KAMYSZ E, MINGOIA M, BRENCIANI A, GIOVANETTI E, BAGNARELLI P, GIACOMETTI A, CIRIONI O. Synergistic effect of antimicrobial peptide LL-37 and colistin combination against multidrug-resistant Escherichia coli isolates[J]. Future Microbiology, 2021, 16: 221-227 DOI:10.2217/fmb-2020-0204.
[116] THANKAPPAN B, ANGAYARKANNI J. Biological characterization of omw1 and omw2: antimicrobial peptides derived from omwaprin[J]. 3 Biotech, 2019, 9(8): 295 DOI:10.1007/s13205-019-1801-x.
[117] LIMA WG, BATISTA FILHO FL, LIMA IP, SIMIÃO DC, BRITO JCM, Da CRUZ NIZER WS, CARDOSO VN, FERNANDES SOA. Antibacterial, anti-biofilm, and anti-adhesive activities of melittin, a honeybee venom-derived peptide, against quinolone-resistant uropathogenic Escherichia coli (UPEC)[J]. Natural Product Research, 2022, 36(24): 6381-6388 DOI:10.1080/14786419.2022.2032047.
[118] KAI-LARSEN Y, LÜTHJE P, CHROMEK M, PETERS V, WANG XD, HOLM A, KÁDAS L, HEDLUND KO, JOHANSSON J, CHAPMAN MR, JACOBSON SH, RÖMLING U, AGERBERTH B, BRAUNER A. Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37[J]. PLoS Pathogens, 2010, 6(7): e1001010 DOI:10.1371/journal.ppat.1001010.
[119] ZAÏRI A, FERRIÈRES L, LATOUR-LAMBERT P, BELOIN C, TANGY F, GHIGO JM, HANI K. In vitro activities of dermaseptins K4S4 and K4K20S4 against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa planktonic growth and biofilm formation[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(4): 2221-2228 DOI:10.1128/AAC.02142-13.
[120] KALSY M, TONK M, HARDT M, DOBRINDT U, ZDYBICKA-BARABAS A, CYTRYNSKA M, VILCINSKAS A, MUKHERJEE K. The insect antimicrobial peptide cecropin A disrupts uropathogenic Escherichia coli biofilms[J]. NPJ Biofilms and Microbiomes, 2020, 6: 6 DOI:10.1038/s41522-020-0116-3.
[121] GORDYA N, YAKOVLEV A, KRUGLIKOVA A, TULIN D, POTOLITSINA E, SUBOROVA T, BORDO D, ROSANO C, CHERNYSH S. Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots[J]. PLoS One, 2017, 12(3): e0173559 DOI:10.1371/journal.pone.0173559.
[122] NAGARAM P, PASUPULETI M, AROCKIARAJ J. CxxC zinc finger protein derived peptide, MF18 functions against biofilm formation[J]. The Protein Journal, 2020, 39(4): 337-349 DOI:10.1007/s10930-020-09904-1.
[123] SUCHI SA, BIN NAM K, KIM YK, TAREK H, YOO JC. A novel antimicrobial peptide YS12 isolated from Bacillus velezensis CBSYS12 exerts anti-biofilm properties against drug-resistant bacteria[J]. Bioprocess and Biosystems Engineering, 2023, 46(6): 813-828 DOI:10.1007/s00449-023-02864-7.
[124] LAVERTY G, McCLOSKEY AP, GORMAN SP, GILMORE BF. Anti-biofilm activity of ultrashort cinnamic acid peptide derivatives against medical device-related pathogens[J]. Journal of Peptide Science: an Official Publication of the European Peptide Society, 2015, 21(10): 770-778.
[125] CHEN Q, CHENG P, MA CB, XI XP, WANG L, ZHOU M, BIAN HM, CHEN TB. Evaluating the bioactivity of a novel broad-spectrum antimicrobial peptide brevinin-1GHa from the frog skin secretion of Hylarana guentheri and its analogues[J]. Toxins, 2018, 10(10): 413 DOI:10.3390/toxins10100413.
[126] MATHEW B, OLLI S, GURU A, NAGARAJ R. Chimeric analogs of human β-defensin 1 and θ-defensin disrupt pre-established bacterial biofilms[J]. Bioorganic & Medicinal Chemistry Letters, 2017, 27(15): 3264-3266.
[127] GREER HM, OVERTON K, FERGUSON MA, SPAIN EM, DARLING LEO, NÚÑEZ ME, VOLLE CB. Extracellular polymeric substance protects some cells in an Escherichia coli biofilm from the biomechanical consequences of treatment with magainin 2[J]. Microorganisms, 2021, 9(5): 976 DOI:10.3390/microorganisms9050976.
[128] 熊静, 王士源, 李会, 张阳, 程鹏, 梅翠, 彭练慈, 徐登峰, 高继业, 何玉张, 陈红伟. 抗微生物肽CRAMP联合抗生素分散铜绿假单胞菌生物被膜的增效作用研究[J]. 微生物学报, 2022, 62(8): 3251-3262.
XIONG J, WANG SY, LI H, ZHANG Y, CHENG P, MEI C, PENG LC, XU DF, GAO JY, HE YZ, CHEN HW. Synergistic effect of CRAMP and antibiotic against Pseudomonas aeruginosa biofilm[J]. Acta Microbiologica Sinica, 2022, 62(8): 3251-3262 (in Chinese).
[129] 梁俐, 廖蕴华, 王成玉, 邹龙涛. 苦参联合左氧氟沙星对腹膜透析管大肠杆菌生物被膜的影响[J]. 实用医学杂志, 2012, 28(10): 1690-1692.
LIANG L, LIAO YH, WANG CY, ZOU LT. Effect of sophora flavescens aqueous-extracts combination with levofloxacin on peritoneal dialysis cathete of Escherichia coli biofilm[J]. The Journal of Practical Medicine, 2012, 28(10): 1690-1692 (in Chinese).
[130] THAPPETA KRV, VIKHE YS, YONG AMH, CHAN-PARK MB, KLINE KA. Combined efficacy of an antimicrobial cationic peptide polymer with conventional antibiotics to combat multidrug-resistant pathogens[J]. ACS Infectious Diseases, 2020, 6(5): 1228-1237 DOI:10.1021/acsinfecdis.0c00016.
[131] ZHOU ZY. Traditional Chinese and western medicine combined with the Escherichia coli biofilm and its clinical application[D]. Ya'an: Master's Thesis of Sichuan Agricultural University, 2013 (in Chinese).
周志远. 中西药结合对大肠杆菌生物膜的干预及临床应用[D]. 雅安: 四川农业大学硕士学位论文, 2013.
[132] YI X, WANG CY, YU X, SU WW, YUAN ZS. Chitosan/zinc nitrate microneedles for bacterial biofilm eradication[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2021, 109(6): 911-920 DOI:10.1002/jbm.b.34755.
[133] NOSRAN A, KAUR P, RANDHAWA V, CHHIBBER S, SINGH V, HARJAI K. Design, synthesis, molecular docking, anti-quorum sensing, and anti-biofilm activity of pyochelin-zingerone conjugate[J]. Drug Development Research, 2021, 82(4): 605-615 DOI:10.1002/ddr.21781.
[134] ORTIZ-GÓMEZ V, RODRÍGUEZ-RAMOS VD, MALDONADO-HERNÁNDEZ R, GONZÁLEZ-FELICIANO JA, NICOLAU E. Antimicrobial polymer-peptide conjugates based on maximin H5 and PEG to prevent biofouling of E. coli and P. aeruginosa[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46991-47001.
[135] BARBOSA M, COSTA F, MONTEIRO C, DUARTE F, GOMES P. Antimicrobial coatings prepared from Dhvar-5-click-grafted chitosan powders[J]. Acta Biomaterialia, 2019, 84: 242-256 DOI:10.1016/j.actbio.2018.12.001.
[136] JI WY, LEE D, WONG E, DADLANI P, DINH D, HUANG V, KEARNS K, TENG S, CHEN SS, HALIBURTON J, HEIMBERG G, HEINEIKE B, RAMASUBRAMANIAN A, STEVENS T, HELMKE KJ, ZEPEDA V, QI LS, LIM WA. Specific gene repression by CRISPRi system transferred through bacterial conjugation[J]. ACS Synthetic Biology, 2014, 3(12): 929-931 DOI:10.1021/sb500036q.
[137] VENDEVILLE A, WINZER K, HEURLIER K, TANG CM, HARDIE KR. Making 'sense' of metabolism: autoinducer-2, LUXS and pathogenic bacteria[J]. Nature Reviews Microbiology, 2005, 3: 383-396 DOI:10.1038/nrmicro1146.
[138] ZUBERI A, MISBA L, KHAN AU. CRISPR interference (CRISPRi) inhibition of luxS gene expression in E. coli: an approach to inhibit biofilm[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 214 DOI:10.3389/fcimb.2017.00214.
[139] ALSHAMMARI M, AHMAD A, AlKHULAIFI M, AL FARRAJ D, ALSUDIR S, ALARAWI M, TAKASHI G, ALYAMANI E. Reduction of biofilm formation of Escherichia coli by targeting quorum sensing and adhesion genes using the CRISPR/Cas9-HDR approach, and its clinical application on urinary catheter[J]. Journal of Infection and Public Health, 2023, 16(8): 1174-1183 DOI:10.1016/j.jiph.2023.05.026.
[140] ZUBERI A, AZAM MW, KHAN AU. CRISPR interference (CRISPRi) mediated suppression of ompR gene in E. coli: an alternative approach to inhibit biofilm[J]. Current Microbiology, 2022, 79(3): 78 DOI:10.1007/s00284-021-02760-x.
[141] LI XN, YEH YC, GIRI K, MOUT R, LANDIS RF, PRAKASH YS, ROTELLO VM. Control of nanoparticle penetration into biofilms through surface design[J]. Chemical Communications, 2015, 51(2): 282-285 DOI:10.1039/C4CC07737G.
[142] POURHAJIBAGHER M, RAHIMI-ESBOEI B, AHMADI H, BAHADOR A. The anti-biofilm capability of nano-emodin-mediated sonodynamic therapy on multi-species biofilms produced by burn wound bacterial strains[J]. Photodiagnosis and Photodynamic Therapy, 2021, 34: 102288 DOI:10.1016/j.pdpdt.2021.102288.
[143] CUI FC, LI TT, WANG DF, YI SM, LI JR, LI XP. Recent advances in carbon-based nanomaterials for combating bacterial biofilm-associated infections[J]. Journal of Hazardous Materials, 2022, 431: 128597 DOI:10.1016/j.jhazmat.2022.128597.
[144] CEYLAN O, TAMFU AN, DOĞAÇ Yİ, TEKE M. Antibiofilm and anti-quorum sensing activities of polyethylene imine coated magnetite and nickel ferrite nanoparticles[J]. 3 Biotech, 2020, 10(12): 513 DOI:10.1007/s13205-020-02509-6.
[145] RIBEIRO KL, FRÍAS IAM, FRANCO OL, DIAS SC, SOUSA-JUNIOR AA, SILVA ON, BAKUZIS AF, OLIVEIRA MDL, ANDRADE CAS. Clavanin A-bioconjugated Fe3O4/silane core-shell nanoparticles for thermal ablation of bacterial biofilms[J]. Colloids and Surfaces B, Biointerfaces, 2018, 169: 72-81 DOI:10.1016/j.colsurfb.2018.04.055.
[146] SHAFREEN RB, SEEMA S, AHAMED AP, THAJUDDIN N, ALI ALHARBI S. Inhibitory effect of biosynthesized silver nanoparticles from extract of Nitzschia palea against curli-mediated biofilm of Escherichia coli[J]. Applied Biochemistry and Biotechnology, 2017, 183(4): 1351-1361 DOI:10.1007/s12010-017-2503-7.
[147] DICKEY J, PERROT V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro[J]. PLoS One, 2019, 14(1): e0209390 DOI:10.1371/journal.pone.0209390.
[148] PIRES DP, MELO L, VILAS BOAS D, SILLANKORVA S, AZEREDO J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections[J]. Current Opinion in Microbiology, 2017, 39: 48-56 DOI:10.1016/j.mib.2017.09.004.
[149] RYAN EM, ALKAWAREEK MY, DONNELLY RF, GILMORE BF. Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro[J]. FEMS Immunology & Medical Microbiology, 2012, 65(2): 395-398.
[150] GU Y, XU Y, XU J, YU XY, HUANG X, LIU GY, LIU XQ. Identification of novel bacteriophage vB_EcoP-EG1 with lytic activity against planktonic and biofilm forms of uropathogenic Escherichia coli[J]. Applied Microbiology and Biotechnology, 2019, 103(1): 315-326 DOI:10.1007/s00253-018-9471-x.
[151] MANOHARADAS S, ALTAF M, ALREFAEI AF, HUSSAIN SA, DEVASIA RM, BADJAH HADJ AYM, ABUHASIL MSA. Microscopic analysis of the inhibition of staphylococcal biofilm formation by Escherichia coli and the disruption of preformed staphylococcal biofilm by bacteriophage[J]. Microscopy Research and Technique, 2021, 84(7): 1513-1521 DOI:10.1002/jemt.23707.
[152] WIGUNA OD, WATURANGI DE, YOGIARA. Bacteriophage DW-EC with the capability to destruct and inhibit biofilm formed by several pathogenic bacteria[J]. Scientific Reports, 2022, 12: 18539 DOI:10.1038/s41598-022-22042-1.
[153] DEWANGGANA MN, EVANGELINE C, KETTY MD, WATURANGI DE, YOGIARA, MAGDALENA S. Isolation, characterization, molecular analysis and application of bacteriophage DW-EC to control enterotoxigenic Escherichia coli on various foods[J]. Scientific Reports, 2022, 12: 495 DOI:10.1038/s41598-021-04534-8.
[154] RONQUI MR, de AGUIAR COLETTI TMSF, de FREITAS LM, MIRANDA ET, FONTANA CR. Synergistic antimicrobial effect of photodynamic therapy and ciprofloxacin[J]. Journal of Photochemistry and Photobiology B, Biology, 2016, 158: 122-129 DOI:10.1016/j.jphotobiol.2016.02.036.
[155] PARAMANANTHAM P, SIDDHARDHA B, LAL SB S, SHARAN A, ALYOUSEF AA, AL DOSARY MS, ARSHAD M, SYED A. Antimicrobial photodynamic therapy on Staphylococcus aureus and Escherichia coli using malachite green encapsulated mesoporous silica nanoparticles: an in vitro study[J]. PeerJ, 2019, 7: e7454 DOI:10.7717/peerj.7454.
[156] JIN WH, SONG P, WU YJ, TAO YG, YANG K, GUI L, ZHANG WW, GE F. Biofilm microenvironment-mediated MoS2 nanoplatform with its photothermal/photodynamic synergistic antibacterial molecular mechanism and wound healing study[J]. ACS Biomaterials Science & Engineering, 2022, 8(10): 4274-4288.