[1] | |
|
[2] |
Varma A, Palsson BO. Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology, 1994, 12(10): 994-998. DOI:10.1038/nbt1094-994
|
|
[3] |
Edwards JS, Palsson BO. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem, 1999, 274(25): 17410-17416. DOI:10.1074/jbc.274.25.17410
|
|
[4] |
Kim TY, Sohn SB, Kim YB, et al. Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol, 2012, 23(4): 617-623. DOI:10.1016/j.copbio.2011.10.007
|
|
[5] |
叶超, 徐楠, 陈修来, 等. 应用代谢网络模型解析工业微生物胞内代谢. 生物工程学报, 2019, 35(10): 1901-1913. Ye C, Xu N, Chen XL, et al. Application of metabolic network model to analyze intracellular metabolism of industrial microorganisms. Chin J Biotech, 2019, 35(10): 1901-1913 (in Chinese).
|
|
[6] |
Reed JL, Palsson BØ. Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol, 2003, 185(9): 2692-2699. DOI:10.1128/JB.185.9.2692-2699.2003
|
|
[7] |
Ebrahim A, Lerman JA, Palsson BO, et al. COBRApy: Constraints-based reconstruction and analysis for Python. BMC Syst Biol, 2013, 7: 74. DOI:10.1186/1752-0509-7-74
|
|
[8] |
Wang M, Weiss M, Simonovic M, et al. Pa xDb, a database of protein abundance averages across all three domains of life. Mol Cell Proteomics, 2012, 11(8): 492-500. DOI:10.1074/mcp.O111.014704
|
|
[9] |
Bennett BD, Kimball EH, Gao M, et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol, 2009, 5(8): 593-599. DOI:10.1038/nchembio.186
|
|
[10] |
Kiparissides A, Hatzimanikatis V. Thermodynamics- based metabolite sensitivity analysis in metabolic networks. Metab Eng, 2017, 39: 117-127. DOI:10.1016/j.ymben.2016.11.006
|
|
[11] |
Nilsson A, Nielsen J, Palsson BO. Metabolic models of protein allocation call for the kinetome. Cell Syst, 2017, 5(6): 538-541. DOI:10.1016/j.cels.2017.11.013
|
|
[12] | |
|
[13] |
Monk JM, Lloyd CJ, Brunk E, et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol, 2017, 35(10): 904-908. DOI:10.1038/nbt.3956
|
|
[14] | |
|
[15] |
Yang L, Yurkovich JT, King ZA, et al. Modeling the multi-scale mechanisms of macromolecular resource allocation. Curr Opin Microbiol, 2018, 45: 8-15. DOI:10.1016/j.mib.2018.01.002
|
|
[16] |
Beg QK, Vazquez A, Ernst J, et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. PNAS, 2007, 104(31): 12663-12668. DOI:10.1073/pnas.0609845104
|
|
[17] |
Zhuang K, Vemuri GN, Mahadevan R. Economics of membrane occupancy and respiro-fermentation. Mol Syst Biol, 2011, 7: 500. DOI:10.1038/msb.2011.34
|
|
[18] |
Adadi R, Volkmer B, Milo R, et al. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. PLoS Comput Biol, 2012, 8(7): e1002575. DOI:10.1371/journal.pcbi.1002575
|
|
[19] |
Lerman JA, Hyduke DR, Latif H, et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun, 2012, 3: 929. DOI:10.1038/ncomms1928
|
|
[20] |
赵欣, 杨雪, 毛志涛, 等. 基于酶约束的代谢网络模型研究进展及其应用. 生物工程学报, 2019, 35(10): 1914-1924. Zhao X, Yang X, Mao ZT, et al. Progress and application of metabolic network model based on enzyme constraints. Chin J Biotech, 2019, 35(10): 1914-1924 (in Chinese).
|
|
[21] |
Basan M, Hui S, Okano H, et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature, 2015, 528(7580): 99-104. DOI:10.1038/nature15765
|
|
[22] |
Varma A, Boesch BW, Palsson BO. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol, 1993, 59(8): 2465-2473. DOI:10.1128/aem.59.8.2465-2473.1993
|
|
[23] |
Sánchez BJ, Zhang C, Nilsson A, et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol Syst Biol, 2017, 13(8): 935. DOI:10.15252/msb.20167411
|
|
[24] |
Chen Y, Nielsen J. Energy metabolism controls phenotypes by protein efficiency and allocation. Proc Natl Acad Sci USA, 2019, 116(35): 17592-17597. DOI:10.1073/pnas.1906569116
|
|
[25] |
Lu HZ, Li FR, Sánchez BJ, et al. Author correction: a consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat Commun, 2020, 11: 5443. DOI:10.1038/s41467-020-19358-9
|
|
[26] |
Molenaar D, van Berlo R, de Ridder D, et al. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst Biol, 2009, 5: 323. DOI:10.1038/msb.2009.82
|
|
[27] |
Hermsen R, Okano H, You C, et al. A growth-rate composition formula for the growth of E. coli on co-utilized carbon substrates. Mol Syst Biol, 2015, 11(4): 801. DOI:10.15252/msb.20145537
|
|
[28] |
赵欣. 基于酶约束的E. coli代谢网络模型构建与分析[D]. 天津: 中国科学院天津工业生物技术研究所, 2020. Zhao X. Construction and analysis of E. coli metabolic network model based on enzyme constraints[D]. Tianjin: Tianjin institute of industrial biotechnology, Chinese academy of sciences, 2020 (in Chinese).
|
|
[29] |
Ye C, Luo QL, Guo L, et al. Improving lysine production through construction of an Escherichia coli enzyme-constrained model. Biotechnol Bioeng, 2020, 117(11): 3533-3544. DOI:10.1002/bit.27485
|
|
[30] |
Chen Y, Sun Y, Liu Z, et al. Genome-scale modeling for Bacillus coagulans to understand the metabolic characteristics. Biotechnol Bioeng, 2020, 117(11): 3545-3558. DOI:10.1002/bit.27488
|
|
[31] |
Bekiaris PS, Klamt S. Automatic construction of metabolic models with enzyme constraints. BMC Bioinformatics, 2020, 21(1): 19. DOI:10.1186/s12859-019-3329-9
|
|
[32] |
Yuan Q, Huang T, Li P, et al. Pathway-consensus approach to metabolic network reconstruction for Pseudomonas putida KT2440 by systematic comparison of published models. PLoS One, 2017, 12(1): e0169437. DOI:10.1371/journal.pone.0169437
|
|
[33] | |
|
[34] |
Soh KC, Hatzimanikatis V. Network thermodynamics in the post-genomic era. Curr Opin Microbiol, 2010, 13(3): 350-357. DOI:10.1016/j.mib.2010.03.001
|
|
[35] |
Seep L, Razaghi-Moghadam Z, Nikoloski Z. Reaction lumping in metabolic networks for application with thermodynamic metabolic flux analysis. Sci Rep, 2021, 11: 8544. DOI:10.1038/s41598-021-87643-8
|
|
[36] |
Hamilton JJ, Dwivedi V, Reed JL. Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models. Biophys J, 2013, 105(2): 512-522. DOI:10.1016/j.bpj.2013.06.011
|
|
[37] | |
|
[38] |
Noor E, Bar-Even A, Flamholz A, et al. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput Biol, 2014, 10(2): e1003483. DOI:10.1371/journal.pcbi.1003483
|
|
[39] |
Goldberg RN, Tewari YB, Bhat TN. Thermodynamics of enzyme-catalyzed reactions—a database for quantitative biochemistry. Bioinformatics, 2004, 20(16): 2874-2877. DOI:10.1093/bioinformatics/bth314
|
|
[40] | |
|
[41] |
Yang X, Yuan Q, Luo H, et al. Systematic design and in vitro validation of novel one-carbon assimilation pathways. Metab Eng, 2019, 56: 142-153. DOI:10.1016/j.ymben.2019.09.001
|
|
[42] |
Dash S, Olson DG, Joshua Chan SH, et al. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum. Metab Eng, 2019, 55: 161-169. DOI:10.1016/j.ymben.2019.06.006
|
|
[43] |
Trudeau DL, Edlich-Muth C, Zarzycki J, et al. Design and in vitro realization of carbon-conserving photorespiration. PNAS, 2018, 115(49): E11455-E11464. DOI:10.1073/pnas.1812605115
|
|
[44] |
Asplund-Samuelsson J, Janasch M, Hudson EP. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential. Metab Eng, 2018, 45: 223-236. DOI:10.1016/j.ymben.2017.12.011
|
|
[45] |
Hädicke O, von Kamp A, Aydogan T, et al. OptMDFpathway: identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO 2 fixation potential of Escherichia coli. PLoS Comput Biol, 2018, 14(9): e1006492. DOI:10.1371/journal.pcbi.1006492
|
|
[46] |
Ullah E, Yosafshahi M, Hassoun S. Towards scaling elementary flux mode computation. Brief Bioinform, 2020, 21(6): 1875-1885. DOI:10.1093/bib/bbz094
|
|
[47] |
Massaiu I, Pasotti L, Sonnenschein N, et al. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains. Microb Cell Fact, 2019, 18(1): 3. DOI:10.1186/s12934-018-1052-2
|
|
[48] |
Soh KC, Miskovic L, Hatzimanikatis V. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res, 2012, 12(2): 129-143. DOI:10.1111/j.1567-1364.2011.00771.x
|
|
[49] |
Noor E, Flamholz A, Liebermeister W, et al. A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects. FEBS Lett, 2013, 587(17): 2772-2777. DOI:10.1016/j.febslet.2013.07.028
|
|
[50] |
Chassagnole C, Noisommit-Rizzi N, Schmid JW, et al. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng, 2002, 79(1): 53-73. DOI:10.1002/bit.10288
|
|
[51] |
Tepper N, Noor E, Amador-Noguez D, et al. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load. PLoS One, 2013, 8(9): e75370. DOI:10.1371/journal.pone.0075370
|
|
[52] | |
|
[53] |
Lloyd CJ, Ebrahim A, Yang L, et al. COBRAme: a computational framework for genome-scale models of metabolism and gene expression. PLoS Comput Biol, 2018, 14(7): e1006302. DOI:10.1371/journal.pcbi.1006302
|
|
[54] |
Salvy P, Hatzimanikatis V. The ETFL formulation allows multi-omics integration in thermodynamics- compliant metabolism and expression models. Nat Commun, 2020, 11(1): 30. DOI:10.1038/s41467-019-13818-7
|
|
[55] |
Yang X, Mao ZT, Zhao X, et al. Integrating thermodynamic and enzymatic constraints into genome-scale metabolic models. Metab Eng, 2021, 67: 133-144. DOI:10.1016/j.ymben.2021.06.005
|
|
[56] |
O'Brien EJ, Lerman JA, Chang RL, et al. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol, 2013, 9: 693. DOI:10.1038/msb.2013.52
|
|
[57] |
Valgepea K, Adamberg K, Seiman A, et al. Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins. Mol BioSyst, 2013, 9(9): 2344-2358. DOI:10.1039/c3mb70119k
|
|
[58] |
Issaly IM, Issaly AS, Reissig JL. Carbamyl phosphate biosynthesis in Bacillus subtilis. Biochim Biophys Acta, 1970, 198(3): 482-494. DOI:10.1016/0005-2744(70)90126-9
|
|
[59] |
Ginesy M, Belotserkovsky J, Enman J, et al. Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis. Microb Cell Fact, 2015, 14: 29. DOI:10.1186/s12934-015-0211-y
|
|
[60] |
杨雪, 张彦飞, 郑阳阳, 等. 大肠杆菌苏氨酸合成途径动力学模型的构建与分析. 生物工程学报, 2014, 30(1): 18-29. Yang X, Zhang YF, Zheng YY, et al. Development and analysis of a kinetic model for Escherichia coli threonine biosynthesis. Chin J Biotech, 2014, 30(1): 18-29 (in Chinese).
|
|
[61] |
Charlier D, Bervoets I. Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids, 2019, 51(8): 1103-1127. DOI:10.1007/s00726-019-02757-8
|
|
[62] |
Shen S, Zhang X, Li Z. Development of an engineered carbamoyl phosphate synthetase with released sensitivity to feedback inhibition by site-directed mutation and casting error-prone PCR. Enzyme Microb Technol, 2019, 129: 109354. DOI:10.1016/j.enzmictec.2019.05.011
|
|
[63] |
Ramón-Maiques S, Marina A, Gil-Ortiz F, et al. Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis. Structure, 2002, 10(3): 329-342. DOI:10.1016/S0969-2126(02)00721-9
|
|
[64] | |
|
[65] |
Ding D, Li J, Bai D, et al. Biosensor-based monitoring of the central metabolic pathway metabolites. Biosens Bioelectron, 2020, 167: 112456. DOI:10.1016/j.bios.2020.112456
|
|
[66] |
Lu X, Liu Y, Yang Y, et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nat Commun, 2019, 10(1): 1378. DOI:10.1038/s41467-019-09095-z
|
|
[67] |
Wang Y, Cheng H, Liu Y, et al. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nat Commun, 2021, 12(1): 678. DOI:10.1038/s41467-021-21003-y
|
|
[68] |
Schramm T, Lempp M, Beuter D, et al. High-throughput enrichment of temperature-sensitive argininosuccinate synthetase for two-stage citrulline production in E. coli. Metab Eng, 2020, 60: 14-24. DOI:10.1016/j.ymben.2020.03.004
|
|
[69] |
Guo J, Man Z, Rao Z, et al. Improvement of the ammonia assimilation for enhancing L-arginine production of Corynebacterium crenatum. J Ind Microbiol Biotechnol, 2017, 44(3): 443-451. DOI:10.1007/s10295-017-1900-9
|
|
[70] |
Noor E, Flamholz A, Bar-Even A, et al. The protein cost of metabolic fluxes: prediction from enzymatic rate laws and cost minimization. PLoS Comput Biol, 2016, 12(11): e1005167. DOI:10.1371/journal.pcbi.1005167
|
|
[71] |
Heckmann D, Lloyd CJ, Mih N, et al. Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nat Commun, 2018, 9(1): 5252. DOI:10.1038/s41467-018-07652-6
|
|
[72] |
Davidi D, Noor E, Liebermeister W, et al. Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements. PNAS, 2016, 113(12): 3401-3406. DOI:10.1073/pnas.1514240113
|
|
[73] |
Heckmann D, Campeau A, Lloyd CJ, et al. Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers. PNAS, 2020, 117(37): 23182-23190. DOI:10.1073/pnas.2001562117
|
|
[74] |
He H, Höper R, Dodenhöft M, et al. An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli. Metab Eng, 2020, 60: 1-13. DOI:10.1016/j.ymben.2020.03.002
|
|
[75] |
Wortel MT, Noor E, Ferris M, et al. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield. PLoS Comput Biol, 2018, 14(2): e1006010. DOI:10.1371/journal.pcbi.1006010
|
|
[76] | |
|
[77] | |
|
[78] |
Wang L, Ng CY, Dash S, et al. Exploring the combinatorial space of complete pathways to chemicals. Biochem Soc Trans, 2018, 46(3): 513-522. DOI:10.1042/BST20170272
|
|