[1] |
革兰阴性菌外膜囊泡的研究进展. 中国抗生素杂志, 2019, 44(1): 32-39. Feng WY, Zhang KX. Research development of outer membrane vesicles in gram-negative bacteria. Chin J Antibiot, 2019, 44(1): 32-39 (in Chinese). DOI:10.3969/j.issn.1001-8689.2019.01.005
|
|
[2] |
胞外和胞内菌胞外囊泡的功能及应用. 微生物学杂志, 2021, 41(3): 99-106. Wang YY, Xu ZK, Ma CJ, et al. Function and application of extracellular vesicles of extracellular bacteria and intracellular bacteria. Journal of Microbiology, 2021, 41(3): 99-106 (in Chinese). DOI:10.3969/j.issn.1005-7021.2021.03.015
|
|
[3] |
Dudzik D, Macioszek S, Struck-Lewicka W, et al. Perspectives and challenges in extracellular vesicles untargeted metabolomics analysis. Trac Trends Anal Chem, 2021, 143: 116382. DOI:10.1016/j.trac.2021.116382
|
|
[4] | |
|
[5] |
Wang X, Thompson CD, Weidenmaier C, et al. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun, 2018, 9(1): 1379. DOI:10.1038/s41467-018-03847-z
|
|
[6] |
Briaud P, Carroll RK. Extracellular vesicle biogenesis and functions in gram-positive bacteria. Infect Immun, 2020, 88(12): e00433-20. DOI:10.1128/iai.00433-20
|
|
[7] |
Bose S, Aggarwal S, Singh DV, et al. Extracellular vesicles: an emerging platform in gram-positive bacteria. Microbial Cell, 2020, 7(12): 312. DOI:10.15698/mic2020.12.737
|
|
[8] |
细胞外囊泡检测技术及其临床应用进展. 检验医学, 2020, 35(12): 1207-1212. Liu CC, Lin HX, Zheng L. Research progress in extracellular vesicle detection technique and its clinical application. Lab Med, 2020, 35(12): 1207-1212 (in Chinese). DOI:10.3969/j.issn.1673-8640.2020.12.002
|
|
[9] |
Bitto NJ, Cheng L, Johnston EL, et al. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles, 2021, 10(6): e12080.
|
|
[10] |
Resch U, Tsatsaronis JA, Le Rhun A, et al. A two-component regulatory system impacts extracellular membrane-derived vesicle production in group A Streptococcus. mBio, 2016, 7(6): e00207-e00216.
|
|
[11] |
Bron PA, Marcelli B, Mulder J, et al. Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria. Curr Opin Biotechnol, 2019, 56: 61-68. DOI:10.1016/j.copbio.2018.09.004
|
|
[12] |
Brown L, Wolf JM, Prados-Rosales R, et al. Through the wall: extracellular vesicles in gram-positive bacteria, Mycobacteria and fungi. Nat Rev Microbiol, 2015, 13(10): 620-630. DOI:10.1038/nrmicro3480
|
|
[13] |
Kalra H, Drummen GP, Mathivanan S. Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci, 2016, 17(2): 170. DOI:10.3390/ijms17020170
|
|
[14] |
Codemo M, Muschiol S, Iovino F, et al. Immunomodulatory effects of pneumococcal extracellular vesicles on cellular and humoral host defenses. mBio, 2018, 9(2): e00559-e00518.
|
|
[15] |
Lee EY, Choi DY, Kim DK, et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics, 2009, 9(24): 5425-5436. DOI:10.1002/pmic.200900338
|
|
[16] |
Smith ZJ, Lee C, Rojalin T, et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles, 2015, 4: 28533. DOI:10.3402/jev.v4.28533
|
|
[17] |
Spura J, Reimer LC, Wieloch P, et al. A method for enzyme quenching in microbial metabolome analysis successfully applied to gram-positive and gram-negative bacteria and yeast. Anal Biochem, 2009, 394(2): 192-201. DOI:10.1016/j.ab.2009.07.016
|
|
[18] |
Williams C, Palviainen M, Reichardt NC, et al. Metabolomics applied to the study of extracellular vesicles. Metabolites, 2019, 9(11): 276. DOI:10.3390/metabo9110276
|
|
[19] | |
|
[20] |
Tartaglia NR, Breyne K, Meyer E, et al. Staphylococcus aureus extracellular vesicles elicit an immunostimulatory response in vivo on the murine mammary gland. Front Cell Infect Microbiol, 2018, 8: 277. DOI:10.3389/fcimb.2018.00277
|
|
[21] |
Wani S, Man Law IK, Pothoulakis C. Role and mechanisms of exosomal miRNAs in IBD pathophysiology. Am J Physiol-Gastrointest Liver Physiol, 2020, 319(6): G646-G654. DOI:10.1152/ajpgi.00295.2020
|
|
[22] |
Roier S, Zingl FG, Cakar F, et al. A novel mechanism for the biogenesis of outer membrane vesicles in gram-negative bacteria. Nat Commun, 2016, 7: 10515. DOI:10.1038/ncomms10515
|
|
[23] |
Yumoto H, Hirota K, Hirao K, et al. The pathogenic factors from oral streptococci for systemic diseases. Int J Mol Sci, 2019, 20(18): E4571. DOI:10.3390/ijms20184571
|
|
[24] |
Wang M, Nie Y, Wu XL. Extracellular heme recycling and sharing across species by novel mycomembrane vesicles of a gram-positive bacterium. Isme J, 2021, 15(2): 605-617. DOI:10.1038/s41396-020-00800-1
|
|
[25] |
Liu Y, Defourny KAY, Smid EJ, et al. Gram-positive bacterial extracellular vesicles and their impact on health and disease. Front Microbiol, 2018, 9: 1502. DOI:10.3389/fmicb.2018.01502
|
|
[26] |
Lekmeechai S, Su YC, Brant M, et al. Helicobacter pylori outer membrane vesicles protect the pathogen from reactive oxygen species of the respiratory burst. Front Microbiol, 2018, 9: 1837. DOI:10.3389/fmicb.2018.01837
|
|
[27] |
Caruana JC, Walper SA. Bacterial membrane vesicles as mediators of microbe-microbe and microbe-host community interactions. Front Microbiol, 2020, 11: 432. DOI:10.3389/fmicb.2020.00432
|
|
[28] |
D'Souza G, Shitut S, Preussger D, et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep, 2018, 35(5): 455-488. DOI:10.1039/C8NP00009C
|
|
[29] |
Rueter C, Bielaszewska M. Secretion and delivery of intestinal pathogenic Escherichia coli virulence factors via outer membrane vesicles. Front Cell Infect Microbiol, 2020, 10: 91. DOI:10.3389/fcimb.2020.00091
|
|
[30] |
Urashima A, Sanou A, Yen H, et al. Enterohaemorrhagic Escherichia coli produces outer membrane vesicles as an active defence system against antimicrobial peptide LL-37. Cell Microbiol, 2017, 19(11): e12758. DOI:10.1111/cmi.12758
|
|
[31] | |
|
[32] |
de Rezende Rodovalho V, da Luz BSR, Nicolas A, et al. Environmental conditions modulate the protein content and immunomodulatory activity of extracellular vesicles produced by the probiotic Propionibacterium freudenreichii. Appl Environ Microbiol, 2021, 87(4): e02263-20. DOI:10.1128/aem.02263-20
|
|
[33] |
Mehanny M, Koch M, Lehr CM, et al. Streptococcal extracellular membrane vesicles are rapidly internalized by immune cells and alter their cytokine release. Front Immunol, 2020, 11: 80. DOI:10.3389/fimmu.2020.00080
|
|
[34] |
Alpdundar Bulut E, Bayyurt Kocabas B, Yazar V, et al. Human gut commensal membrane vesicles modulate inflammation by generating M2-like macrophages and myeloid-derived suppressor cells. J Immunol, 2020, 205(10): 2707-2718. DOI:10.4049/jimmunol.2000731
|
|
[35] |
Li M, Lee K, Hsu M, et al. Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci. BMC Microbiol, 2017, 17(1): 66. DOI:10.1186/s12866-017-0977-7
|
|
[36] |
Yamasaki-Yashiki S, Miyoshi Y, Nakayama T, et al. IgA-enhancing effects of membrane vesicles derived from Lactobacillus sakei subsp. sakei NBRC15893. Biosci Microbiota Food Health, 2019, 38(1): 23-29. DOI:10.12938/bmfh.18-015
|
|
[37] |
Domingues S, Nielsen KM. Membrane vesicles and horizontal gene transfer in prokaryotes. Curr Opin Microbiol, 2017, 38: 16-21. DOI:10.1016/j.mib.2017.03.012
|
|
[38] |
Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother, 2011, 55(7): 3084-3090. DOI:10.1128/AAC.00929-10
|
|
[39] |
Toyofuku M, Morinaga K, Hashimoto Y, et al. Membrane vesicle-mediated bacterial communication. Isme J, 2017, 11(6): 1504-1509. DOI:10.1038/ismej.2017.13
|
|
[40] |
Ñahui Palomino RA, Vanpouille C, Laghi L, et al. Extracellular vesicles from symbiotic vaginal Lactobacilli inhibit HIV-1 infection of human tissues. Nat Commun, 2019, 10(1): 5656. DOI:10.1038/s41467-019-13468-9
|
|
[41] |
Kim OY, Park HT, Dinh NTH, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat Commun, 2017, 8(1): 626. DOI:10.1038/s41467-017-00729-8
|
|
[42] |
Takahashi RU, Prieto-Vila M, Hironaka A, et al. The role of extracellular vesicle microRNAs in cancer biology. Clin Chem Lab Med CCLM, 2017, 55(5): 648-656. DOI:10.1515/cclm-2016-0708
|
|
[43] |
Maerz JK, Steimle A, Lange A, et al. Outer membrane vesicles blebbing contributes to B. vulgatus mpk-mediated immune response silencing. Gut Microbes, 2018, 9(1): 1-12. DOI:10.1080/19490976.2017.1344810
|
|
[44] |
Cañas MA, Fábrega MJ, Giménez R, et al. Outer membrane vesicles from probiotic and commensal Escherichia coli activate NOD1-mediated immune responses in intestinal epithelial cells. Front Microbiol, 2018, 9: 498. DOI:10.3389/fmicb.2018.00498
|
|
[45] |
Seo MK, Park EJ, Ko SY, et al. Therapeutic effects of kefir grain Lactobacillus-derived extracellular vesicles in mice with 2, 4, 6-trinitrobenzene sulfonic acid-induced inflammatory bowel disease. J Dairy Sci, 2018, 101(10): 8662-8671. DOI:10.3168/jds.2018-15014
|
|
[46] |
Kim MH, Choi SJ, Choi HI, et al. Lactobacillus plantarum-derived extracellular vesicles protect atopic dermatitis induced by Staphylococcus aureus-derived extracellular vesicles. Allergy Asthma Immunol Res, 2018, 10(5): 516-532. DOI:10.4168/aair.2018.10.5.516
|
|
[47] |
Dean SN, Rimmer MA, Turner KB, et al. Lactobacillus acidophilus membrane vesicles as a vehicle of bacteriocin delivery. Front Microbiol, 2020, 11: 710. DOI:10.3389/fmicb.2020.00710
|
|
[48] |
Wang X, Eagen WJ, Lee JC. Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles. PNAS, 2020, 117(6): 3174-3184. DOI:10.1073/pnas.1915829117
|
|
[49] |
Rakoff-Nahoum S, Coyne MJ, Comstock LE. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr Biol, 2014, 24(1): 40-49. DOI:10.1016/j.cub.2013.10.077
|
|
[50] |
Elhenawy W, Debelyy MO, Feldman MF. Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles. mBio, 2014, 5(2): e00909-e00914.
|
|
[51] |
Ding M, Wang C, Lu X, et al. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Anal Bioanal Chem, 2018, 410(16): 3805-3814. DOI:10.1007/s00216-018-1052-4
|
|
[52] | |
|
[53] |
Shao HL, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles. Chem Rev, 2018, 118(4): 1917-1950. DOI:10.1021/acs.chemrev.7b00534
|
|
[54] |
Fuhrmann G, Serio A, Mazo M, et al. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release, 2015, 205: 35-44. DOI:10.1016/j.jconrel.2014.11.029
|
|
[55] |
Mizrak A, Bolukbasi MF, Ozdener GB, et al. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther, 2013, 21(1): 101-108. DOI:10.1038/mt.2012.161
|
|