脱落酸调节植物铁代谢的研究进展
张淼
,
高嘉璐
,
邓国伟
,
郭长虹
,
毕影东
,
郭东林
生物工程学报 ![]() ![]() |
铁(Fe) 是生物必需的微量营养素,参与植物的许多基本功能,如光合作用、呼吸作用和氮代谢[1]。铁在土壤中含量丰富,但是其溶解度很低,尤其是在石灰性土壤中。土壤中的铁低有效性经常导致种植的作物发生缺铁性生理和形态变化(如褪绿症),进而降低品质、叶片和籽粒的产量[2]。缺铁条件下,植物具有增强Fe获取的机制。一系列bHLH转录因子构成的调控网络响应缺铁信号,并调控动员转运蛋白以增强对铁的吸收。几种植物激素已被证实参与缺铁反应。自20世纪80年代以来,采用分根、胁迫、铁调突变体、外源激素、激素抑制剂和激素突变体等方法研究发现,植物激素参与缺铁反应,生长素和赤霉素具有激活缺铁反应的作用,而细胞分裂素、茉莉酸和油菜素内酯对缺铁反应有抑制作用[3-9]。脱落酸(abscisic acid, ABA) 在参与植物胚胎发育、侧根发生、花芽分化、器官衰老、气孔关闭和抵御胁迫等方面多有报道[10-12]。ABA在植物应对重金属胁迫中也扮演重要角色[13],ABA可通过影响细胞膜透性或主动吸收过程直接影响矿质元素的吸收,也可通过影响植物生长增强或减弱对矿质元素的吸收[14]。近年来陆续有报道ABA调节植物对缺铁胁迫的反应[15],但尚未有专门针对此方面研究的综述。本文针对植物ABA与缺铁的关系、共响应ABA和缺铁胁迫的基因、ABA介导的缺铁响应调控机制进行综述,以加深对植物铁信号与ABA串扰的理解,为植物缺铁胁迫耐受能力的提高和铁营养强化实践提供理论依据。
1 植物的铁吸收转运机制由于Fe具有Fe2+和Fe3+两种氧化状态,参与氧化还原反应的关键细胞过程,如光合作用和呼吸作用。但是铁的溶解度低,生物有效性差,制约了植物对铁的吸收[16-17]。为此,双子叶及非禾本科植物采用机理Ⅰ-还原策略[18],而禾本科植物采用机理Ⅱ-螯合策略来应对缺铁[19-22]。在缺铁时,机理Ⅰ植物根际质膜的H+-ATP酶分泌质子,降低根际pH值,上调根细胞质膜上高铁还原酶(ferric-chelate reductase, FCR) 的活性,将Fe3+还原为Fe2+,由二价铁转运蛋白(iron-regulated transporter 1, IRT1) 将Fe2+转运到根细胞中[23];机理Ⅱ植物在根系合成大量的铁载体,螯合Fe3+并转运至细胞内供植物利用[24-26]。Fe被植物摄取后,通过长距离运输至各部位加以利用。根部的Fe从根皮层细胞运送到木质部,被木质部汁液的主要金属螯合剂有机酸,尤其是柠檬酸螯合与运输[27-28],通过蒸腾流转移到植物的地上部。Fe可能以Fe3+形式进入叶片,被叶肉细胞的FCR还原[29]。Fe进入叶肉细胞后被运送到叶绿体、线粒体等细胞器以行使功能,或者被运送到液泡贮存防止过量导致细胞毒性。在铁的长距离运输和分布的过程中,柠檬酸转运蛋白(ferric reductase defective 3, FRD3)、IRT1、黄条纹样蛋白(yellow stripe-like, YSL) 和天然抗性相关巨噬细胞蛋白(natural resistanural-associated macrophage protein, NRAMP) 等转运蛋白参与铁的吸收和运输[30-31]。了解这些转运蛋白工作的分子机制至关重要,可为提高作物的缺铁耐受改良提供理论依据。
2 植物的铁代谢调控网络在模式植物拟南芥(Arabidopsis thaliana)中,铁代谢调控的研究取得了很大进展。主要的铁代谢调控因子集中在bHLH转录因子家族,见表 1。
Name | Clade | References |
AtbHLH29 (FIT) | Ⅲa | [32] |
AtbHLH18 | Ⅳa | [33] |
AtbHLH19 | Ⅳa | [33] |
AtbHLH20 | Ⅳa | [33] |
AtbHLH25 | Ⅳa | [33] |
AtbHLH11 | Ⅳb | [34] |
AtbHLH47 (PYE) | Ⅳb | [35] |
AtbHLH121 (URI) | Ⅳb | [36] |
AtbHLH34 (IDT1) | Ⅳc | [37] |
AtbHLH104 | Ⅳc | [37] |
AtbHLH105 (ILR3) | Ⅳc | [37] |
AtbHLH115 | Ⅳc | [37] |
AtbHLH38 | Ⅰb | [32] |
AtbHLH39 | Ⅰb | [32] |
AtbHLH100 | Ⅰb | [38] |
AtbHLH101 | Ⅰb | [38] |
目前,在拟南芥中已经发现至少包括Ⅲa、Ⅳa、Ⅳb、Ⅳc和Ⅰb这5个bHLH亚家族的16个成员参与铁代谢调控[32-38]。研究表明,这些bHLH转录因子作用独特且相互关联,bHLH转录因子调控的缺铁响应网络十分复杂,见图 1。
拟南芥缺铁诱导转录因子(FER-like iron deficiency-induced transcription factor, FIT) 属于Ⅲa亚族,是缺铁响应调控的核心因子,受缺铁诱导表达。Ⅰb亚族的bHLH38/39/100/101的表达也被缺铁诱导。bHLH38/39/101能与FIT蛋白形成异源二聚体,结合到下游靶基因FRO2和IRT1的启动子区域,激活FRO2和IRT1的转录[32-33]。最近发现Ⅳb亚族bHLH121,能与Ⅳc亚族bHLH34/104/115/105形成异源二聚体,诱导FIT和已知的大多数铁调控基因的表达[36, 39-41]。拟南芥的E3连接酶(BRUTUS, BTS) 被认为是一种植物铁/金属传感器,其稳定性受到与铁/金属等因子结合的影响[42-43],作为缺铁反应的负调控因子。BTSL1或BTSL2可以与FIT相互作用,发挥转录后水平的调节功能。IVa亚族的bHLH18/19/20/25在BTS的作用下可与AtFIT结合并促进其降解。另一个名为POPEYE (PYE)的Ⅳb亚族bHLH转录因子,独立于FIT网络调控缺铁反应[35]。Ⅳc亚族的bHLH104/105/115可以与PYE形成异源二聚体,当植物铁过剩时负向调节铁蛋白等基因的表达[44-46]。以bHLH转录因子为核心的铁代谢调控网络为理解植物的铁平衡调控奠定了基础,然而众多bHLH转录因子的具体调控功能还有待进一步揭示,调控中激素所发挥的信号作用也有待深入研究。
3 ABA参与植物铁代谢 3.1 ABA调节铁代谢的相关基因研究发现,外源ABA能提高缺铁植株根际的酸化能力[47],可能与bHLH转录因子调控有关。此外,茉莉酸参与对植物缺铁响应,可能调控Ⅳa亚族bHLHs与AtFIT结合及降解[33]。植物铁蛋白是重要的贮铁蛋白,也是缓解铁氧化应激的主要非酶蛋白。ABA被证实与植物铁蛋白之间的联系较为密切[48-50],铁介导的氧化应激和ABA均可诱导铁蛋白的产生[51]。ABA在铁蛋白的合成过程中起重要作用,玉米ABA缺失突变体vp2中,铁对铁蛋白mRNA积累的诱导性显著降低,添加外源ABA可以修复,证实ABA参与了植物对铁的响应机制[52]。
3.2 ABA含量与铁含量的相关性前人研究报道,ABA与铁元素发生互扰,影响植物的生长发育、根系形态建成、抵抗金属及非生物胁迫过程。在陈种子萌发、铜、镉、盐、干旱胁迫响应中,ABA与铁元素存在协同关系[53-57]。首先,缺铁和加外源铁处理可以引起植物体内ABA含量变化。铁处理增加了非洲半水生稻根部和玉米根部的ABA积累[58]。过量铁处理导致玉米中ABA含量升高,且与植物贮铁蛋白(ferritin, fer) 的积累有平行关系[52],但Fe2O3纳米粒子处理的水稻根中ABA含量与Fe2O3处理浓度呈负相关[59]。铁和铅的交互作用抑制水稻ABA的合成[60]。而在缺铁胁迫下,尽管响应的时间不同,拟南芥[47]、黄瓜[61]和苹果[62]、甜椒[63]根部的ABA含量均有升高。但缺铁抑制花椰菜ABA的积累[64],这些都表明ABA可能参与缺铁的早期反应。其次,外源ABA处理使得植物体内铁含量发生变化。如外源ABA作用下甜椒果实中Fe浓度显著增加,而番茄叶片Fe浓度却下降[65-66]。以上研究由于处理的条件不同,得出的结论也不完全相同,但都确切表明植物中ABA含量与铁含量之间存在联系。
3.3 外源ABA影响植物的铁吸收转运途径缺铁导致拟南芥、苹果、黄瓜根系的FCR、H+-ATP活性和质子分泌的增加,而外源ABA能抑制这种缺铁反应[47, 64]。在缺铁与ABA共处理时,根系FCR的活性提高,缺铁导致的褐化现象得到缓解[67]。缺铁或ABA处理上调了菊花CmbHLH1基因的表达,过表达CmbHLH1株系的根际酸化能力增强,对Fe的吸收得到促进[68]。外源ABA促进缺铁植物根系酚类物质的分泌[47, 69]。质外体是植物根系重要的Fe储存库,在Fe元素的再利用中发挥作用[70-71]。缺铁条件下红三叶草根中酚类物质的含量显著升高,活化和释放更多的质外体铁。缺铁时外源ABA显著促进拟南芥根质外体的Fe活化和释放,质外体的主要成分细胞壁表现出与质外体Fe含量相似的变化趋势[47]。以上研究表明ABA与铁吸收途径中的酸化作用及有机物的分泌有关。
3.4 共响应ABA和铁的基因研究发现,在铁蛋白之外,铁代谢或ABA途径的已知基因中,ABA合成、钝化、氧化途径以及铁转运蛋白、铁调控相关转录因子和一些抗氧化酶基因也受到铁和ABA的双重调控,见表 2。
Function | Gene names | Species | References |
ABA synthesis | MdNCED3 | Malus hupenensis | [62] |
GhNCED4, GhABA2, GhAAO3 | Gossypium hirsutum | [67] | |
ABA passivation | GhUGT2, GhUGT84B1 | Gossypium hirsutum | [67] |
ABA oxidation | GhABAH1, GhABAH2 | Gossypium hirsutum | [67] |
Iron transporter | MdMATE43, MdNAS1/3/4, MdNRAMP1/2/3/6, MdYSL6/7, MdZIP1/2/4, MdVIT1 | Malus hupenensis | [62] |
GhIRT1, GhIRT2, GhIRT3, GhFRO2, GhFIT1 | Gossypium hirsutum | [67] | |
AtFRD3, AtYSL2, AtNAS1, AtNRAMP3, OsNramp1, OsNramp2 | Arabidopsis thaliana | [47] | |
Transcription factor | GhbHLH3, GhbHLH92, GhbHLH104 | Gossypium hirsutum | [67] |
AtABI5 | Arabidopsis thaliana | [47] | |
Antioxidant enzyme | GhAPX1, GhCAT | Gossypium hirsutum | [67] |
Other proteins | AtCPL1-2 | Arabidopsis thaliana | [72] |
ABA生物合成的限速酶9-顺式环氧类胡萝卜素双加氧酶基因(9-cis-epoxycarotenoid dioxigenase 3, MdNCED3) 在缺铁的苹果根中的表达模式与ABA的积累一致[62]。与此研究一致的是,缺铁时拟南芥NCED基因下调,另一个关键基因ABA高诱变PP2C基因3 (highly ABA induced PP2C gene3, HAI3) 显著下调[73]。缺铁且施加外源ABA的组培棉花中ABA糖基化基因(ABA glycosylation gene, UGT) 和ABA 8′-羟化酶基因(ABA 8′-hydroxylase gene, ABAH) 的表达被诱导[67]。在抗坏血酸过氧化物酶抑制系中,ABA合成相关基因受缺Fe的抑制,UGT和ABAH受诱导表达的上调幅度明显降低,脱落酸受体基因(pyrabactin risistance-like, PYL4)、下游ABF转录因子ABA不敏感基因(ABA insenstive 5, ABI5)、MYB44和负调控脱落酸信号通路的基因在根或叶中显著下调,说明在抗坏血酸过氧化物酶APX作用下通过稳定ABA合成和抑制ABA降解来保持ABA含量的稳定,从而缓解缺铁症状[67]。
拟南芥的组氨酸激酶(Arabidopsis thaliana histidine kinase, ATHK1)、增殖蛋白激酶(mitogen-activated protein kinase, MAPK3) 以及PYL9对脱落酸信号有正调控作用,在缺铁胁迫时小金海棠根中的ATHK1、MAPK3和 PYL9显著上调,叶中的PYL9和MAPK3显著上调[74]。ABA反应元件结合蛋白(ABA responsive element binding protein, AREB) 转录因子参与ABA信号通路,并调控ABA反应元件结合蛋白(ABA responsive element binding protein, ABF2) 和铁蛋白Fer1基因表达,通过RhFer1的作用帮助维持铁水平[71]。
铁转运蛋白基因IRT1/2/3、FRO2和转录因子FIT1受缺铁诱导,但在缺铁处理的组培棉花中施加外源ABA,这些基因的表达被抑制[67]。而在外源ABA处理的拟南芥中,AtFRD3、AtYSL2、AtNAS1和AtNRAMP3的表达被激活,有利于根部释放的Fe向地上部运输并进行地上部Fe离子的液泡存储[47]。拟南芥C末端磷酸酶(C-terminal domain-phosphatase-like1, CPL1) 突变体中,铁转运基因AtFIT1、AtFRO2、AtIRT1和ABA响应相关蛋白/胚胎晚期表达蛋白(ABA-responsive protein-related/LEA family protein, AtABAR) 的转录都被激活,缺铁耐受提高[72]。以上研究中受铁和ABA双重调控的基因可能在铁与ABA的串扰中发挥作用,很可能是铁信号与ABA信号交联的中间枢纽。
4 ABA介导的植物铁代谢调控机制 4.1 ABA-FIT互作调节铁代谢钙调神经磷酸酶(calcineurin B-like protein, CBL) 作为Ca2+传感器与其互作的蛋白激酶(calcium-dependent protein kinase, CIPK) 在渗透/盐胁迫中发挥作用[75]。ABA和CBL-CIPK信号是干旱和盐分调节的标志[51]。最近的研究指出,CBL-CIPK在细胞的Fe信号传导中也发挥作用[76]。在缺铁的拟南芥主根细胞质中,Ca2+浓度增加,通过CBL-CIPK模块激活Ca2+介导的反应[77-78]。拟南芥CBL1/CBL9在低铁时激活CIPK11,CIPK11与FIT相互作用,使FIT磷酸化并被激活,由此增强根部对Fe的吸收[78]。bZIP转录因子ABI5是ABA信号的主调控器,也被预测是调节缺铁反应的反作用因子[79]。在缺铁期间CIPK11与FIT相互作用,而在ABA信号期间与ABI5相互作用,可以磷酸化和激活ABI5[80-81]。CIPKs在质膜和转录因子蛋白的磷酸化中发挥双重作用,引起ABA反应的激活和抑制。根细胞中的Fe信号与幼苗中的ABA信号类似,也涉及质膜和细胞核之间的通信。CIPK11以ABA和Fe信号通路中相关的不同蛋白为靶点,产生正应答和负应答[82-84],而其中机制仍有待进一步研究。FIT与ABI5和CBL-CIPK的强烈关联预示其受到ABA的调节,FIT可能是一个连接ABA反应和Fe获取的调节枢纽。这些信息和表达分析的结果支持FIT和ABI5可能会影响彼此功能的假设。这种相互作用关系必将要通过实验加以证实。细胞中的CBLs和FIT磷酸化存在位置差异,可以解释Ca2+如何以相反的方式影响FIT依赖的铁吸收过程[84],见图 2。
4.2 ABA-IRT1互作调节铁代谢铁调转运蛋白1 (iron-regulated transporter 1, IRT1) 不仅是一个转运器,也是一个受体。在铁充足和缺铁时,拟南芥AtIRT1的表达都受到外源ABA的抑制,推测是由于ABA抑制根系生长所致[85]。IRT1在翻译后水平上受包括CIPK23在内的几个蛋白的调节。在拟南芥中,IRT1感应到细胞质中非铁金属底物的升高,然后被CIPK23磷酸化,随后被泛素化和降解[78]。膜相关的C2结构域蛋白(C2-domain abscisic acidrelated, CAR) 连接ABA和Ca2+信号通路[86],CAR6蛋白也能与IRT1互作并抑制IRT1功能[87]。IRT1可能是由ABA通过CAR蛋白直接控制的。因此,CAR还可能是Fe信号通路的节点。还有一种观点认为ABA增加了不依赖于IRT1的Fe获取功能,植物体内Fe含量升高抑制IRT1表达。这个观点的依据是ABA处理增加了拟南芥irt1突变体的Fe含量。施用外源ABA降低了植物对Cd的摄取,可能就是通过增加Fe的吸收然后抑制IRT1活性。在镉胁迫下,IRT1同样可以作为连接ABA和Fe信号调节网络的重要角色[88],见图 2。
4.3 ABA介导氧化途径调节铁代谢Fe3+参与Haber-Weiss反应,生成氧自由基。ABA能延缓保护酶的活性下降,阻止自由基引发的膜脂过氧化,增加植物对逆境胁迫的抗性。与缺铁处理相比,ABA与缺铁共处理的苹果叶片氧化指标显著降低而抗氧化酶活性显著升高,表明ABA处理明显减少了缺铁引起的ROS积累[62]。组培棉花抗坏血酸过氧化酶1基因在正常条件下被ABA抑制,而在缺铁条件下不受ABA影响。缺铁诱导了棉花的生长素的积累和抗坏血酸过氧化物酶活性的抑制,可能提高了细胞中抗坏血酸(ascorbic acid, ASA) 的含量,继而激活Fe吸收和转运相关基因的表达,同时激活ABA合成基因、抑制ABA降解基因以维持ABA含量,进而维持FCR活性来提高缺铁耐受[67]。在abc1k活性复合体激酶(activity of bc1 complex kinase, abc1k) 突变体中,ABA处理上调了ABC1K7和ABC1K8的表达,并影响了ABA响应的一些生理过程,表明ABC1K7和ABC1K8可能参与了ABA和ROS信号之间的串扰[89]。铁蛋白也是缓解铁氧化应激的主要非酶蛋白,铁介导的氧化应激和ABA均可诱导铁蛋白的产生[51]。拟南芥锌指(zinc finger of Arabidopsis, ZAT12) 是一种由ROS诱导表达的C2H2型锌指核蛋白[90]。长期缺铁会导致氧化应激,进而诱导根系中ZAT12的表达[91]。ASA处理诱导拟南芥ZAT12基因表达,ABA含量持续增加,表明ZAT12参与了ABA介导的氧化胁迫反应过程[92]。酵母双杂交和双分子荧光互补试验表明ZAT12与FIT蛋白之间存在相互作用。在缺乏Fe诱导的氧化应激中,FIT表达下调而ZAT12表达上调,作者认为ZAT12可能是一种抑制因子。在长期缺铁的条件下,FIT-ZAT12复合物最终会使FIT失活。在Fe充足条件下,zat12-3突变体植株具有较高的Fe螯合还原酶活性和Fe含量,表明ZAT12在Fe充足条件下抑制Fe的吸收,这对于防止Fe积累的有害影响至关重要。然而,作者也认为ZAT12可能通过其他机制影响Fe的吸收,这些机制仍有待确定。ZAT12可能是铁缺乏时ABA-FIT氧化应激的中介,ABA-FIT-ZAT12整合了来自其他信号通路(ROS) 的输入来调节铁摄取[93]。
5 展望各国学者在外源ABA增强植物缺铁耐受方面开展了大量研究,在过去的10年中,人们在了解植物铁稳态的相关机制方面取得了重大进展。笔者认为ABA作为激活大多数Fe反应的协调者,其机制涉及ABA与FIT互作、ABA与IRT1互作;ABA可能需要与其他激素和非激素信号一起发挥作用,ROS可能参与其中。
尽管最新的进展确定了一些参与缺铁响应的bHLH转录调控网络的关键角色,但级联调控中大部分转录因子调控基因表达的知识仍然缺乏。已经初步揭示了ABA与FIT互作、ABA与IRT1互作的机制,但仍存在许多未知的问题。缺铁和ABA信号的交叉联系、导致关键蛋白功能改变的修饰作用有待阐明。ABA究竟是通过增加铁离子的吸收,还是通过改善铁的分配或者增加胁迫耐受来提高缺铁的耐受性也有待研究。FIT形成了一个交叉连接Fe获取、ABA反应和氧化应激的调节枢纽,植物中其他Fe吸收相关的核心转录因子,POPEYE及其他bHLHs是否与ABA存在互作以及通过何种方式互作仍未得到证实。今后的研究中一个重要的目标是破译ABA信号途径。确定ABA合成、ABA钝化及ABA感知基因和FIT、IRT1、FRO2等基因之间的关系,了解它们在ABA信号途径过程中的具体作用,从而了解对Fe反应的调控。有必要了解ABA的哪些合成步骤和信号通路受其他激素或信号分子如NO、GSH、ASA影响,研究FIT、GSH、ASA、Fe相互作用在ABA调节Fe吸收中的作用。ABA也参与了对其他营养缺乏反应的调节也应该加以考虑。回答这些问题将有助于我们理解感知和调节铁摄取所必需的环境线索。植物铁营养代谢研究一直备受关注,运用“组学”技术,尤其是“多组学”技术联用,深入探讨已知因子如Ca2+、ROS和ABA受体等在Fe获取、ABA反应和氧化应激的调节途径中的机理和作用,筛选和鉴定关键的信号分子,能够深入揭示ABA介导的铁调节机制、也将为植物Fe吸收和利用效率的改善和ABA的实际应用提供依据。
[1] |
Marschner H, Romheld V, Kissel M. Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr, 1986, 9(6): 695-713.
|
[2] |
Lindsay WL. Chemical reactions in soils that affect iron availability to plants. A quantative approach. Iron Nutr Soil Plant, 1995, 3(7): 15-33.
|
[3] |
Brumbarova T, Bauer P, Ivanov R. Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci, 2015, 20(2): 124-133. DOI:10.1016/j.tplants.2014.11.004
|
[4] |
申红芸, 熊宏春, 郭笑彤, 等. 植物吸收和转运铁的分子生理机制研究进展. 植物营养与肥料学报, 2011, 5(6): 22-30. Shen HY, Xiong HC, Guo XT, et al. Research progress on the molecular physiological mechanism of iron uptake and transport in plants. Plant Nutr Fert Sci, 2011, 5(6): 22-30 (in Chinese). |
[5] |
周晓今, 陈茹梅, 范云六. 植物对铁元素吸收、运输和储存的分子机制. 作物研究, 2012, 26(5): 605-610. Zhou XJ, Chen RM, Fan YL. Molecular mechanisms of iron uptake, transport and storage in plants. Crop Res, 2012, 26(5): 605-610 (in Chinese). |
[6] |
Brumbarova T, Bauer P, Ivanov R. Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci, 2013, 20(2): 124-133.
|
[7] |
Jeong J, Merkovich A, Clyne M, et al. Directing iron transport in dicots: regulation of iron acquisition and translocation. Curr Opin Plant Biol, 2017, 39(9): 106-113.
|
[8] |
王黎明, 杨瑞珍, 孙加强. 油菜素内酯调控作物农艺性状和非生物胁迫响应的研究进展. 生物工程学报, 2022, 38(2): 1-16. Wang LM, Yang RZ, Sun JQ. Research progress of brassinosteroids in regulating crop agronomic traits and abiotic stress responses. Chin J Biotech, 2022, 38(2): 1-16 (in Chinese). |
[9] |
张妮娜, 上官周平, 陈娟. 植物应答缺铁胁迫的分子生理机制及其调控. 植物营养与肥料学报, 2018, 24(5): 239-251. Zhang NN, Shangguan ZP, Chen J. Molecular physiological mechanism and regulation of plant response to iron deficiency stress. Plant Nutr Fert Sci, 2018, 24(5): 239-251 (in Chinese). |
[10] |
李丹丹, 张晓伟, 刘丰娇, 等. H2S与ABA缓解低温胁迫对黄瓜幼苗氧化损伤的交互效应. 园艺学报, 2018, 45(12): 2395-2406. Li DD, Zhang XW, Liu FJ, et al. Interaction between H2S and ABA in alleviating oxidative damage in cucumber seedlings under low temperature stress. Acta Hortic Sin, 2018, 45(12): 2395-2406 (in Chinese). |
[11] |
Becker D, Hoth S, Ache P, et al. Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett, 2003, 554(2): 119-126.
|
[12] |
Aroca R, Vernieri P, Irigoyen JJ, et al. Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling induced water stress. Plant Sci, 2003, 165(3): 671-679. DOI:10.1016/S0168-9452(03)00257-7
|
[13] |
Hsu YT, Kao CH. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ, 2003, 26(6): 867-874. DOI:10.1046/j.1365-3040.2003.01018.x
|
[14] |
张晨光, 赵德英, 袁继存, 等. '富士'苹果幼树叶片内源激素与矿质营养年动态变化分析. 果树学报, 2017, 34(3): 303-311. Zhang CG, Zhao DY, Yuan JC, et al. Annual dynamic changes of endogenous hormones and mineral nutrition in leaves of Young Apple 'Fuji'. J Fruit Sci, 2017, 34(3): 303-311 (in Chinese). |
[15] |
Landsberg EC. Hormonal regulation of iron-stress response in sunflower roots: a morphological and cytological investigation. Protoplasma, 1996, 194(1): 69-80.
|
[16] |
Colombo C, Palumbo G, He JZ, et al. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments, 2014, 14(3): 538-548. DOI:10.1007/s11368-013-0814-z
|
[17] |
Connorton JM, Balk J, Rodriguez-Celma J. Iron homeostasis in plants-a brief overview. Metallomics, 2017, 9(3): 813-823.
|
[18] |
Santi S, Schmidt W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis root. New Phytol, 2009, 183(4): 1072-1084. DOI:10.1111/j.1469-8137.2009.02908.x
|
[19] |
Romheld V. Mobilization of iron in the rhizosphere of different plant species. Adv Plant Nutr, 1986, 2(1): 155-204.
|
[20] |
Higuchi K, Suzuki K, Nakanishi H, et al. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol, 1999, 119(2): 471-480. DOI:10.1104/pp.119.2.471
|
[21] |
Bashir K, Inoue H, Nagasaka S, et al. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem, 2006, 281(43): 395-402.
|
[22] |
Garnica M, Bacaicoa E, Mora V, et al. Shoot iron status and auxin are involved in iron deficiency-induced phytosiderophores release in wheat. BMC Plant Biol, 2018, 18(1): 1-14. DOI:10.1186/s12870-017-1213-1
|
[23] |
Vert G, Grotz N, Dédaldéchamp F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 2002, 14(6): 1223-1233. DOI:10.1105/tpc.001388
|
[24] |
Curie C, Cassin G, Couch D, et al. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot, 2009, 103(1): 1-11. DOI:10.1093/aob/mcn207
|
[25] |
Inoue H, Kobayashi T, Nozoye T, et al. Rice OsYSL15 is an iron-regulated iron (Ⅲ)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem, 2009, 284(6): 3470-3479. DOI:10.1074/jbc.M806042200
|
[26] |
郎明林, 张玉秀, 柴团耀. 基因工程改良植物重金属抗性与富集能力的研究进展. 生物工程学报, 2004, 23(2): 157-164. Lang ML, Zhang YX, Chai TY. Advances in genetic engineering to improve plant heavy metal resistance and enrichment ability. Chin J Biotech, 2004, 23(2): 157-164 (in Chinese). |
[27] |
Chaney RL, Brown JC, Tiffin LO. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol, 1972, 50(2): 208-213. DOI:10.1104/pp.50.2.208
|
[28] |
Cataldo DA, McFadden M, Garland TR, et al. Organic constituents and complexation of nickel (Ⅱ), iron (Ⅲ), cadmium (Ⅱ), and plutonium (Ⅳ) in soybean xylem exudates. Plant Physiol, 1988, 86(3): 734-739. DOI:10.1104/pp.86.3.734
|
[29] |
Bruggemann W, Maas-Kantel K, Moog PR. Iron uptake by leaf mesophyll cells: the role of the plasma membrane-bound ferric-chelate reductase. Planta, 1993, 190(2): 151-155.
|
[30] |
Rogers EE, Mary LG. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell, 2002, 14(8): 1787-1799. DOI:10.1105/tpc.001495
|
[31] |
Singh P, Khan A, Kumar R, et al. In silico analysis of comparative affinity of phytosiderophore and bacillibactin for iron uptake by YSL15 and YSL18 receptors of Oryza sativa. J Biomol Struct Dyn, 2022, 1(8): 1-14.
|
[32] |
Yuan Y, Wu H, Wang N, et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res, 2008, 18(3): 385-397. DOI:10.1038/cr.2008.26
|
[33] |
Yan C, Chen CL, Cui M, et al. Four Ⅳa bHLH transcription factors are novel interactors of FIT and mediate JA inhibition of iron uptake in Arabidopsis. Mol Plant, 2018, 11(9): 1166-1183. DOI:10.1016/j.molp.2018.06.005
|
[34] |
Tanabe N, Noshi M, Mori D, et al. The basic helix-loop helix transcription factor, bHLH11 functions in the iron uptake system in Arabidopsis thaliana. J Plant Res, 2019, 132(1): 93-105. DOI:10.1007/s10265-018-1068-z
|
[35] |
Long TA, Tsukagoshi H, Busch W, et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell, 2010, 22(9): 2219-2236.
|
[36] |
Lei R, Li Y, Cai Y, et al. bHLH121 functions as a direct link that facilitates the activation of FIT by bHLH Ⅳc transcription factors for maintaining Fe homeostasis in Arabidopsis. Mol Plant, 2020, 13(4): 634-649. DOI:10.1016/j.molp.2020.01.006
|
[37] |
Tissot N, Robe K, Gao F, et al. Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3. New Phytol, 2019, 3(7): 1433-1446.
|
[38] |
Sivitz AB, Hermand V, Curie C, et al. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway. PLoS One, 2012, 6(3): 35-47.
|
[39] |
Gao F, Robe K, Gaymard F, et al. The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors. Front Plant Sci, 2019, 10(1): 7-18.
|
[40] |
Wang N, Cui Y, Liu Y, et al. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol Plant, 2013, 6(9): 503-513.
|
[41] |
Sivitz AB, Hermand V, Curie C, et al. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway. PLoS One, 2012, 6(3): 35-47.
|
[42] |
Li Y, Lu CK, Li CY, et al. IRON MAN interacts with BRUTUS to maintain iron homeostasis in Arabidopsis. PNAS, 2021, 118(3): 385-397.
|
[43] |
Zhu Y, Dai Y, Jing X, et al. Inhibition of BRUTUS enhances plant tolerance to Zn toxicity by upregulating pathways related to iron nutrition. Life, 2022, 12(3): 216-223.
|
[44] |
Long TA, Tsukagoshi H, Busch W, et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell, 2010, 22(9): 2219-2236.
|
[45] |
Tissot N, Robe K, Gao F, et al. Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3. New Phytol, 2019, 3(7): 1433-1446.
|
[46] |
Zhang X, Zhang D, Sun W, et al. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. Int J Mol Sci, 2019, 2(6): 24-34.
|
[47] |
Lei GJ, Zhu XF, Wang ZW, et al. Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant Cell Environ, 2014, 7(4): 852-863.
|
[48] |
Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006, 57(3): 781-803.
|
[49] |
Munemasa S, Hauser F, Park J, et al. Mechanisms of abscisic acidmediated control of stomatal aperture. Curr Opin Plant Biol, 2015, 28(9): 154-162.
|
[50] |
Zhu JK. Abiotic stress signaling and responses in plants. Cell, 2016, 16(3): 313-324.
|
[51] |
Kumar TR, Prasad M. Ferritin induction by iron mediated oxidative stress and aba in vigna mungo (l.) hepper seedlings: role of antioxidants and free radical scavengers. J Plant Physiol, 1999, 155(4): 652-655.
|
[52] |
Lobreaux S, Hardy T, Briat JF. Abscisic acid is involved in the iron-induced synthesis of maize ferritin. EMBO J, 1993, 12(2): 651-657. DOI:10.1002/j.1460-2075.1993.tb05698.x
|
[53] |
林程. 锌铁螯合物引发对杂交水稻种子活力和低温、淹水及其复合逆境抗性调控的研究[D]. 浙江大学, 2021. Lin C. Effects of zinc and iron chelate initiation on seed vigor and resistance to low temperature, flooding and compound stress in hybrid rice[D]. Zhejiang Univ, 2021 (in Chinese). |
[54] |
钱芝惠. 胡杨生长的激素调节与矿质元素分析[D]. 中央民族大学, 2006. Qian ZH. Hormone regulation and mineral element analysis of Populus euphratica growth[D]. Minzu Univ of China, 2006 (in Chinese). |
[55] |
姜春辉. 外源一氧化氮对番茄幼苗铜胁迫缓解效应的研究[D]. 山东农业大学, 2012. Jiang CH. Alleviating effect of exogenous nitric oxide on copper stress in tomato seedlings[D]. Shandong Agric Univ, 2012 (in Chinese). |
[56] |
苏芸芸. 乙酰胆碱调节烟草镉胁迫响应的生理机制[D]. 西北农林科技大学, 2021. Su YY. Physiological mechanism of acetylcholine regulating cadmium stress response in tobacco[D]. Northwest A & F Univ, 2021 (in Chinese). |
[57] |
夏师慧, 刘宏鑫, 谭佳缘, 等. 水杨酸与脱落酸处理对水分胁迫下水稻幼苗矿质元素含量的影响. 贵州农业科学, 2020, 48(1): 5-8. Xia SH, Liu HX, Tan JY, et al. Effects of salicylic acid and abscisic acid treatments on mineral element contents in rice seedlings under water stress. Guizhou Agric Sci, 2020, 48(1): 5-8 (in Chinese). |
[58] |
Majerus V, Bertin P, Lutts S. Abscisic acid and oxidative stress implications in overall ferritin synthesis by African rice (Oryza glaberrima Steud.) seedlings exposed to short term iron toxicity. Plant Soil, 2009, 324(1): 253-265.
|
[59] |
Gui X, Deng Y, Rui Y, et al. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environ Sci Pollut Res, 2015, 22(2): 116-223.
|
[60] |
Wang L, Liu B, Wang Y, et al. Influence and interaction of iron and lead on seed germination in upland rice. Plant Soil, 2020, 2(4): 1-16.
|
[61] |
Bacaicoa E, Mora V, Zamarreno AM, et al. Auxin: a major player in the shoot-to-root regulation of root Fe-stress physiological responses to Fe deficiency in cucumber plants. Plant Physiol. Biochem, 2011, 49(5): 545-556. DOI:10.1016/j.plaphy.2011.02.018
|
[62] |
Zhang JC, Wang XF, Wang XN, et al. Abscisic acid alleviates iron deficiency by regulating iron distribution in roots and shoots of apple. Sci Hortic, 2020, 26(2): 109-118.
|
[63] |
Margarita PJ, Pazos-Navarro M, López-Marín J, et al. Foliar application of plant growth regulators changes the nutrient composition of sweet pepper (Capsicum annuum L.). Sci Hortic, 2015, 194(1): 188-193.
|
[64] |
Sharma PN, Tripathi A, Kumar N, et al. Iron plays a critical role in stomatal closure in cauliflower. Environ Exp Bot, 2016, 131(4): 68-76.
|
[65] |
Barickman TC, Kopsell DA, Sams CE. Applications of abscisic acid and increasing concentrations of calcium affect the partitioning of mineral nutrients between tomato leaf and fruit tissue. Sci Hortic, 2019, 5(3): 49-61.
|
[66] |
万寅生, 徐义俊, 周燮. 黄瓜根细胞质膜脱落酸特异性结合蛋白的初步研究. 南京农业大学学报, 1988, 11(2): 129-129. Wan YS, Xu YJ, Zhou X. Preliminary study on specific abscisic acid binding protein of cucumber root cell plasma membrane. J Nanjing Agric Univ, 1988, 11(2): 129-129 (in Chinese). |
[67] |
Guo K, Tu L, Wang P, et al. Ascorbate alleviates Fe deficiency-induced stress in cotton (Gossypium hirsutum) by modulating ABA levels. Front Plant Sci, 2017, 7(1): 19-30.
|
[68] |
Zhao M, Song A, Li P, et al. A bHLH transcription factor regulates iron intake under Fe deficiency in chrysanthemum. Sci Rep, 2014, 4: 6694.
|
[69] |
Jin CW, You GY, He YF, et al. Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol, 2007, 14(1): 278-285.
|
[70] |
Bienfait HF, Briel WVD, Mesland-Mul NT. Free space iron pools in roots: generation and mobilization. Plant Physiol, 1985, 78(3): 596-600. DOI:10.1104/pp.78.3.596
|
[71] |
Liu J, Fan Y, Zou J, et al. A RhABF2/ferritin module affects rose (Rosa hybrida) petal dehydration tolerance and senescence by modulating iron levels. Plant J, 2017, 9(6): 1157-1169.
|
[72] |
Aksoy E, Jeong IS, Koiwa H. Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level. Plant Physiol, 2013, 11(1): 330-345.
|
[73] |
Liu S, Lv Z, Liu Y, et al. Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genet Mol Biol, 2018, 41(3): 624-637. DOI:10.1590/1678-4685-gmb-2017-0229
|
[74] |
Wang S, Lu B, Wu T, et al. Transcriptomic analysis demonstrates the early responses of local ethylene and redox signaling to low iron stress in Malus xiaojinensis. Tree Genet Genomes, 2014, 10(3): 573-584. DOI:10.1007/s11295-014-0705-5
|
[75] |
Pandey GK, Kanwar P, Pandey A. Global comparative analysis of CBL-CIPK gene families in plants. Cham, Switzerland: Springer International Publishing, 2014(4): 1-16.
|
[76] |
Kanwar P, Baby D, Bauer P. Interconnection of iron and osmotic stress signalling in plants: is FIT a regulatory hub to cross-connect abscisic acid responses?. Plant Biol, 2021, 23(2): 31-38.
|
[77] |
Tian QY, Zhang XX, Yang A, et al. CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity. Plant Sci, 2016, 46(3): 70-79.
|
[78] |
Dubeaux G, Neveu J, Zelazny E, et al. Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition. Mol Cell, 2018, 69(6): 953-964. DOI:10.1016/j.molcel.2018.02.009
|
[79] |
Schwarz B, Azodi CB, Shiu SH, et al. Putative cis-regulatory elements predict iron deficiency responses in Arabidopsis roots. Plant Physiol, 2020, 182(3): 1420-1439. DOI:10.1104/pp.19.00760
|
[80] |
Finkelstein RR, Lynch TJ. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000, 12(4): 599-609. DOI:10.1105/tpc.12.4.599
|
[81] |
Zhou X, Hao H, Zhang Y, et al. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-type protein kinase, is important for abscisic acid responses in Arabidopsis through phosphorylation of ABSCISIC ACID-INSENSITIVE5. Plant Physiol, 2015, 168(2): 659-676. DOI:10.1104/pp.114.255455
|
[82] |
Fuglsang AT, Guo Y, Cuin TA, et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell, 2007, 19(5): 1617-1634. DOI:10.1105/tpc.105.035626
|
[83] |
Lumba S, Toh S, Handfield LF, et al. A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis. Dev Cell, 2014, 29(3): 360-372. DOI:10.1016/j.devcel.2014.04.004
|
[84] |
Sanyal SK, Pandey A, Pandey GK. The CBL-CIPK signaling module in plants: a mechanistic perspective. Physiol Plant, 2015, 155(2): 89-108. DOI:10.1111/ppl.12344
|
[85] |
Séguéla M, Briat JF, Vert G, et al. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. Plant J, 2008, 55(2): 289-300. DOI:10.1111/j.1365-313X.2008.03502.x
|
[86] |
Diaz M, Sanchez-Barrena MJ, Gonzalez-Rubio JM, et al. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. PNAS, 2016, 113(3): 396-405.
|
[87] |
Khan I, Gratz R, Denezhkin P, et al. Calcium-promoted interaction between the C2-domain protein EHB1 and metal transporter IRT1 inhibits Arabidopsis iron acquisition. Plant Physiol, 2019, 180(3): 1564-1581. DOI:10.1104/pp.19.00163
|
[88] |
Fan SK, Fang XZ, Guan MY, et al. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Front Plant Sci, 2014, 5(1): 721-733.
|
[89] |
Manara A, Dalcorso G, Furini A. The role of the atypical kinases ABC1K7 and ABC1K8 in abscisic acid responses. Front Plant Sci, 2016, 7(6): 60-72.
|
[90] |
Davletova S, Schlauch K, Coutu J, et al. The zinc-finger protein ZAT12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol, 2005, 139(2): 847-856. DOI:10.1104/pp.105.068254
|
[91] |
Le CTT, Brumbarova T, Ivanov R, et al. Zinc finger of Arabidopsis thaliana12 (ZAT12) interacts with FER-like iron deficiency-induced transcription factor (FIT) linking iron deficiency and oxidative stress responses. Plant Physiol, 2016, 7(1): 540-557.
|
[92] |
Bulley SM, Cooney JM, Laing W. Elevating ascorbate in Arabidopsis stimulates the production of abscisic acid, phaseic acid, and to a lesser extent auxin (IAA) and Jasmonates, resulting in increased expression of DHAR1 and multiple transcription factors associated with abiotic stress tolerance. Int J Mol Sci, 2021, 22(13): 6743. DOI:10.3390/ijms22136743
|
[93] |
Kagale S, Links MG, Rozwadowski K. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiol, 2010, 152(3): 1109-1134. DOI:10.1104/pp.109.151704
|