[1] |
ANDRÉS F, COUPLAND G. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 2012, 13(9): 627-639. DOI:10.1038/nrg3291
|
|
[2] |
帅敏敏. 光周期途径成花关键基因GIGANTEA和CONSTANS的进化机制[D]. 杭州: 浙江农林大学硕士学位论文, 2018. SHUAI MM. The evolution mechanism of the key genes GIGANTEA and CONSTANS in photoperidic pathway[D]. Hangzhou: Master's Thesis Zhejiang A & F University, 2018 (in Chinese).
|
|
[3] |
SUÁREZ-LÓPEZ P, WHEATLEY K, ROBSON F, ONOUCHI H, VALVERDE F, COUPLAND G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410(6832): 1116-1120. DOI:10.1038/35074138
|
|
[4] |
OLIVERIO KA, CREPY M, MARTIN-TRYON EL, MILICH R, HARMER SL, PUTTERILL J, YANOVSKY MJ, CASAL JJ. GIGANTEA regulates phytochrome a-mediated photomorphogenesis independently of its role in the circadian clock. Plant Physiology, 2007, 144(1): 495-502. DOI:10.1104/pp.107.097048
|
|
[5] |
FOWLER S, LEE K, ONOUCHI H, SAMACH A, RICHARDSON K, MORRIS B, COUPLAND G, PUTTERIL J. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. The EMBO Journal, 1999, 18(17): 4679-4688. DOI:10.1093/emboj/18.17.4679
|
|
[6] |
MIZONGUCHI T, WRIGHT L, FUJIWARA S, CREMER F, LEE K, ONOUCHI H, MOURADOV A, FOWLER S, KAMADA H, PUTTERILL J, COUPLAND G. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. The Plant Cell, 2005, 17(8): 2255-2270. DOI:10.1105/tpc.105.033464
|
|
[7] |
SAWA M, KAY SA. GIGANTEA directly activates flowering locus T in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 2011, 108(28): 11698-11703. DOI:10.1073/pnas.1106771108
|
|
[8] |
DUNFORD RP, GRIFFITHS S, CHRISTODOULOU V, LAURIE DA. Characterisation of a barley ( Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theoretical and Applied Genetics, 2005, 110(5): 925-931. DOI:10.1007/s00122-004-1912-5
|
|
[9] |
HECHT V, KNOWLES CL, Vander SCHOOR JK, LIEW LC, JONES SE, LAMBERT MJ, WELLER JL. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiology, 2007, 144(2): 648-661. DOI:10.1104/pp.107.096818
|
|
[10] |
HAYAMA R, IZAWA T, SHIMAMOTO K. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant and Cell Physiology, 2002, 43(5): 494-504. DOI:10.1093/pcp/pcf059
|
|
[11] |
HAYAMA R, YOKOI S, TAMAKI S, YANO M, SHIMAMOTO K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 2003, 422(6933): 719-722. DOI:10.1038/nature01549
|
|
[12] |
HIGUCHI Y, SAGE-ONO K, SASAKI R, OHTSUKI N, HOSHINO A, IIDA S, KAMADA H, ONO M. Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in pharbitis nil, a typical short-day plant. Plant & Cell Physiology, 2011, 52(4): 638-650.
|
|
[13] |
亢超, 郭彩华, 张雪蒙, 等. 核桃NAC基因家族的全基因组鉴定与分析. 果树学报, 2021, 38(9): 1444-1458. KANG C, GUO CH, ZHANG XM, et al. Genome-wide identification and analysis of NAC gene family in walnut ( Juglans regia L.). Journal of Fruit Science, 2021, 38(9): 1444-1458 (in Chinese).
|
|
[14] |
全绍文. 核桃GRAS基因家族分析及JrCOs和JrNF-Ys蛋白协同调控JrFT基因转录机制的研究[D]. 石河子: 石河子大学博士学位论文, 2020. QUAN SW. Characterization of GRAS gene family and study on the mechanism of JrCOs proteins and JrNF-Ys proteins coodinately regulate JrFT gene transcription in walnut(Juglans regia L. )[D]. Shihezi: Doctoral Dissertation of Shihezi University, 2020 (in Chinese).
|
|
[15] |
LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262
|
|
[16] |
KIM J, GENG R, Gallenstein RA, Somers DE. The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development, 2013, 140(19): 4060-4069. DOI:10.1242/dev.096651
|
|
[17] |
TANG W, WANG X, KOU M, YAN H, GAO R, LI C, SONG W, ZHANG Y, WANG X, LIU Y, LI Z, LI Q. The sweetpotato GIGANTEA gene promoter is co-regulated by phytohormones and abiotic stresses in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2021, 168: 143-154. DOI:10.1016/j.plaphy.2021.08.047
|
|
[18] |
BLACK MM, STOCKUM C, DICKSON JM, PUTTERILL J, ARCUS VL. Expression, purification and characterisation of GIGANTEA: a circadian clock-controlled regulator of photoperiodic flowering in plants. Protein Expression and Purification, 2011, 76(2): 197-204. DOI:10.1016/j.pep.2010.11.009
|
|
[19] |
MIZOGUCHI T, WHEATLEY K, HANZAWA Y, WRIGHT L, MIZOGUCGI M, SONG HR, CARRÉ IA, COUPLAND G. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Developmental Cell, 2002, 2(5): 629-641. DOI:10.1016/S1534-5807(02)00170-3
|
|
[20] |
JIN AK. The BrGI circadian clock gene is involved in the regulation of glucosinolates in Chinese cabbage. Genes, 2021, 12(11): 1664. DOI:10.3390/genes12111664
|
|
[21] |
MISHRA P, PANIGRAH KCS. GIGANTEA-an emerging story. Frontiers in Plant Science, 2015, 26: 6-8.
|
|
[22] |
ZHANG J, HAFEEZ MT, DI DW, WU L, ZHANG L. Precise control of ABA signaling through post-translational protein modification. Plant Growth Regulation, 2019, 88: 99-111. DOI:10.1007/s10725-019-00492-4
|
|
[23] |
HUQ E, TEPPERMAN JM, QUAIL PH. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 2000, 97(17): 9789-9794. DOI:10.1073/pnas.170283997
|
|
[24] |
LEE HG, SEO PJ. Dependence and independence of the root clock on the shoot clock in Arabidopsis. Genes & Genomics, 2018, 40(10): 1063-1068.
|
|
[25] |
LI F, ZHANG X, HU R, WU F, MA J, MENG Y, FU Y. Identification and molecular characterization of FKF1 and GI homologous genes in soybean. PLoS One, 2013, 8(11): e79036. DOI:10.1371/journal.pone.0079036
|
|
[26] |
TANG W, YAN H, SU ZX, PARK SC, LIU YJ, ZHANG YG, WANG X, KOU M, MA DF, KWAK SS, LI Q. Cloning and characterization of a novel GIGANTEA gene in sweet potato. Plant Physiology and Biochemistry, 2017, 116: 27-35. DOI:10.1016/j.plaphy.2017.04.025
|
|
[27] |
KARSAI-REKTENWALD F, ODGEREL K, JOSE J, BÁNFALVI Z. In silico characterization and expression analysis of GIGANTEA genes in potato. Biochemical Genetics, 2022, 60: 2137-2154. DOI:10.1007/s10528-022-10214-7
|
|
[28] |
FATAFTAH N, BAG P, ANDEÉ D, LIHAVAINEN J, ZHANG B, INGVARSSON PK, NILSSON O, JANSSON S. GIGANTEA influences leaf senescence in trees in two different ways. Plant Physiology, 2021, 187(4): 2435-2450. DOI:10.1093/plphys/kiab439
|
|
[29] |
BAEK D, KIM WY, CHA JY, PARK HJ, SHIN G, PARK J, LIM CJ, CHUN HJ, LI N, KIM DH, LEE SY, PARDO JM, KIM MC, YUN DJ. The GIGANTEA-ENHANCED EM LEVEL complex enhances drought tolerance via regulation of abscisic acid synthesis. Plant Physiology, 2020, 184(1): 443-458. DOI:10.1104/pp.20.00779
|
|
[30] |
HAN Y, ZHANG X, WANG W, WANG Y, MING F. The suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana. PLoS One, 2013, 8(11): e73541. DOI:10.1371/journal.pone.0073541
|
|
[31] | |
|
[32] |
JOSE J, BÁNFALVI Z. The role of GIGANTEA in flowering and abiotic stress adaptation in plants. Columella: Journal of Agricultural and Environmental Sciences, 2019, 6(1): 7-18. DOI:10.18380/SZIE.COLUM.2019.6.1.7
|
|
[33] |
CAO S, MING Y, JIANG S. Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Reports, 2005, 24(11): 683-690. DOI:10.1007/s00299-005-0061-x
|
|
[34] |
KIM WY, ALI Z, PARK HJ, PARK SJ, CHA JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nature Communications, 2013, 4: 273-275.
|
|
[35] |
IMAIZUMI T, SCHULTZ TF, HARMON FG, HO LA, KAY SA. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309(5732): 293-297. DOI:10.1126/science.1110586
|
|
[36] | |
|
[37] | |
|
[38] |
KE Q, KIM HS, WANG Z, JI CY, JEONG JC, LEE HS, CHOI YI, XU B, DENG X, YUN DJ, KWAK SS. Down-regulation of GIGANTEA-like genes increases plant growth and salt stress tolerance in poplar. Plant Biotechnology Journal, 2017, 15(3): 331-343. DOI:10.1111/pbi.12628
|
|
[39] |
MA K, LUO X, HAN L, ZHAO Y, MAMAT A, LI N, MEI C, YAN P, ZHANG R, HU J, WANG J. Transcriptome profiling based on Illumina-and SMRT-based RNA-seq reveals circadian regulation of key pathways in flower bud development in walnut. PLoS One, 2021, 16(11): e0260017. DOI:10.1371/journal.pone.0260017
|
|
[40] |
于栋, 赵钰, 韩立群, 等. 雌、雄先型核桃品种花芽分化过程比较研究. 果树学报, 2022, 39(6): 1054-1062. YU D, ZHAO Y, HAN LQ, et al. Comparative study on flower bud differentiation of female and male pre type walnut varieties. Journal of Fruit Science, 2022, 39(6): 1054-1062 (in Chinese).
|
|