[1] |
Liu PL, Shi L, Zhang W, et al. Prevalence and genetic diversity analysis of human coronaviruses among cross-border children[J]. Virology Journal, 2017, 14: 230. DOI:10.1186/s12985-017-0896-0 |
|
[2] |
Li F, Li WH, Farzan M, et al. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor[J]. Science, 2005, 309(5742): 1864-1868. DOI:10.1126/science.1116480 |
|
[3] |
Toh TH, Hii KC, Fieldhouse JK, et al. High prevalence of viral infections among hospitalized pneumonia patients in equatorial Sarawak, Malaysia[J]. Open Forum Infectious Diseases, 2019, 6(3): ofz074. |
|
[4] |
Widjaja I, Wang CY, van Haperen R, et al. Towards a solution to MERS:protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein[J]. Emerging Microbes & Infections, 2019, 8(1): 516-530. |
|
[5] |
Campbell F, Cori A, Ferguson N, et al. Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data[J]. PLoS Computational Biology, 2019, 15(3): e1006930. DOI:10.1371/journal.pcbi.1006930 |
|
[6] |
Chen FZ, Knutson TP, Rossow S, et al. Decline of transmissible gastroenteritis virus and its complex evolutionary relationship with porcine respiratory coronavirus in the United States[J]. Scientific Reports, 2019, 9(1): 3953. DOI:10.1038/s41598-019-40564-z |
|
[7] |
Koonpaew S, Teeravechyan S, Frantz PN, et al. PEDV and PDCoV pathogenesis:the interplay between host innate immune responses and porcine enteric coronaviruses[J]. Frontiers in Veterinary Science, 2019, 6: 34. DOI:10.3389/fvets.2019.00034 |
|
[8] |
Amarasinghe A, de Silva Senapathi U, Abdul-Cader MS, et al. Comparative features of infections of two Massachusetts (Mass) infectious bronchitis virus (IBV) variants isolated from Western Canadian layer flocks[J]. BMC Veterinary Research, 2018, 14: 391. DOI:10.1186/s12917-018-1720-9 |
|
[9] |
Cruz JLG, Sola I, Becares M, et al. Coronavirus gene 7 counteracts host defenses and modulates virus virulence[J]. PLoS Pathogens, 2011, 7(6): e1002090. DOI:10.1371/journal.ppat.1002090 |
|
[10] |
Woo PCY, Lau SKP, Lam CSF, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus[J]. Journal of Virology, 2012, 86(7): 3995-4008. DOI:10.1128/JVI.06540-11 |
|
[11] |
Brandão PE, Hora AS, Silva SOS, et al. Complete genome sequence of Avian coronavirus strain D274[J]. Microbiology Resource Announcements, 2018, 7(8): e01003-18. DOI:10.1128/MRA.01003-18 |
|
[12] |
Tao J, Li BQ, Cheng JH, et al. Preparation and characterization of an attenuated porcine epidemic diarrhea virus strain by serial passaging[J]. Archives of Virology, 2018, 163(11): 2997-3004. DOI:10.1007/s00705-018-3968-6 |
|
[13] |
Eckerle LD, Becker MM, Halpin RA, et al. Infidelity of SARS-CoV nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing[J]. PLoS Pathogens, 2010, 6(5): e1000896. DOI:10.1371/journal.ppat.1000896 |
|
[14] |
Mai KJ, Li D, Wu JL, et al. Complete genome sequences of two porcine deltacoronavirus strains, CHN-GD16-03 and CHN-GD16-05, isolated in southern China, 2016[J]. Genome Announcements, 2018, 6(4): e01545-17. DOI:10.1128/genomeA.01545-17 |
|
[15] |
Wang GS, Zhang M, Zhu YM, et al. Cloning, expression and antibody preparation of S1 fragment of porcine epidemic diarrhea virus epidemic strain[J]. Animal Husbandry & Veterinary Medicine, 2015, 47(12): 103-107. (in Chinese) 王国松, 张明, 朱于敏, 等. 猪流行性腹泻病毒流行毒株S1片段的克隆表达及其抗体制备[J]. 畜牧与兽医, 2015, 47(12): 103-107. |
|
[16] |
Wang RY, Yu RS, Chen BQ, et al. Identification of host cellular proteins interacting with porcine epidemic diarrhea virus M protein[J]. Microbiology China, 2019, 46(6): 1434-1442. (in Chinese) 王瑞阳, 于瑞嵩, 陈冰清, 等. 与猪流行性腹泻病毒M蛋白互作的宿主蛋白的鉴定[J]. 微生物学通报, 2019, 46(6): 1434-1442. |
|
[17] |
Li BX, Ge JW, Li YJ. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus[J]. Virology, 2007, 365(1): 166-172. DOI:10.1016/j.virol.2007.03.031 |
|
[18] |
Hu XX, Yu RS, Si FS, et al. ORF3 protein promotes the proliferation of porcine epidemic diarrhea virus on vero cells[J]. Microbiology China, 2018, 45(7): 1508-1517. (in Chinese) 胡晓霞, 于瑞嵩, 司伏生, 等. ORF3蛋白促进猪流行性腹泻病毒在Vero细胞上的增殖[J]. 微生物学通报, 2018, 45(7): 1508-1517. |
|
[19] |
Eléouét JF, Slee EA, Saurini F, et al. The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and-7 during TGEV-induced apoptosis[J]. Journal of Virology, 2000, 74(9): 3975-3983. DOI:10.1128/JVI.74.9.3975-3983.2000 |
|
[20] |
Kim Y, Lee C. Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor[J]. Virology, 2014, 460-461: 180-193. DOI:10.1016/j.virol.2014.04.040 |
|
[21] |
Yang Y, Ye F, Zhu N, et al. Middle east respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets[J]. Scientific Reports, 2015, 5: 17554. DOI:10.1038/srep17554 |
|
[22] |
Yan R, Shen C, Lei L, et al. SARS-CoV infection induces apoptosis of vero E6[J]. Virologica Sinica, 2003, 18(6): 541-543. (in Chinese) 鄢然, 沈超, 雷磊, 等. SARS-CoV感染Vero E6细胞诱导细胞凋亡[J]. 中国病毒学, 2003, 18(6): 541-543. |
|
[23] |
Chu H, Zhou J, Wong BHY, et al. Middle east respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways[J]. The Journal of Infectious Diseases, 2016, 213(6): 904-914. DOI:10.1093/infdis/jiv380 |
|
[24] |
Han XX, Tian YM, Guan R, et al. Infectious bronchitis virus infection induces apoptosis during replication in chicken macrophage HD11 cells[J]. Viruses, 2017, 9(8): 198. DOI:10.3390/v9080198 |
|
[25] |
Antolikova NR, Kello M, Zigova M, et al. Naja ashei venom induces mitochondria-mediated apoptosis in human colorectal cancer cells[J]. Acta Biochimica Polonica, 2019, 66(2): 207-213. |
|
[26] |
Sprick MR, Weigand MA, Rieser E, et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2[J]. Immunity, 2000, 12(6): 599-609. |
|
[27] |
Werner AB, de Vries E, Tait SWG, et al. TRAIL receptor and CD95 signal to mitochondria via FADD, Caspase-8/10, Bid, and Bax but differentially regulate events downstream from truncated Bid[J]. The Journal of Biological Chemistry, 2002, 277(43): 40760-40767. DOI:10.1074/jbc.M204351200 |
|
[28] |
Liao Y, Fung TS, Huang M, et al. Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway[J]. Journal of Virology, 2013, 87(14): 8124-8134. DOI:10.1128/JVI.00626-13 |
|
[29] |
Yang SY, Wei FL, Hu LH, et al. PERK-eIF2α-ATF4 pathway mediated by endoplasmic reticulum stress response is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force[J]. Cellular Signalling, 2016, 28(8): 880-886. DOI:10.1016/j.cellsig.2016.04.003 |
|
[30] |
Ali MMU, Bagratuni T, Davenport EL, et al. Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response[J]. The EMBO Journal, 2011, 30(5): 894-905. DOI:10.1038/emboj.2011.18 |
|
[31] |
Willis S, Day CL, Hinds MG, et al. The Bcl-2-regulated apoptotic pathway[J]. Journal of Cell Science, 2003, 116(20): 4053-4056. DOI:10.1242/jcs.00754 |
|
[32] | |
|
[33] |
Ang RL, Ting AT.Detection of RIPK1 in the FADD-containing death inducing signaling complex (DISC) during necroptosis[A]//Ting AT.Programmed Necrosis: Methods and Protocols[M].New York: Humana Press, 2018: 101-107
|
|
[34] |
Chen YF, Zhang ZB, Li J, et al. Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis[J]. Virology Journal, 2018, 15(1): 170. DOI:10.1186/s12985-018-1078-4 |
|
[35] |
Martinou JC, Youle RJ. Mitochondria in apoptosis:Bcl-2 family members and mitochondrial dynamics[J]. Developmental Cell, 2011, 21(1): 92-101. DOI:10.1016/j.devcel.2011.06.017 |
|
[36] |
Liu H, Yang X, Zhang ZK, et al. Comparative transcriptome analysis reveals induction of apoptosis in chicken kidney cells associated with the virulence of nephropathogenic infectious bronchitis virus[J]. Microbial Pathogenesis, 2017, 113: 451-459. DOI:10.1016/j.micpath.2017.11.031 |
|
[37] |
Zhong YX, Liao Y, Fang SG, et al. Up-regulation of Mcl-1 and Bak by coronavirus infection of human, avian and animal cells modulates apoptosis and viral replication[J]. PLoS One, 2012, 7(1): e30191. DOI:10.1371/journal.pone.0030191 |
|
[38] |
Marfè G, Tafani M, Fiorito F, et al. Involvement of FOXO transcription factors, TRAIL-FasL/Fas, and sirtuin proteins family in canine coronavirus type Ⅱ-induced apoptosis[J]. PLoS One, 2011, 6(11): e27313. DOI:10.1371/journal.pone.0027313 |
|
[39] |
Chan CP, Siu KL, Chin KT, et al. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein[J]. Journal of Virology, 2006, 80(18): 9279-9287. DOI:10.1128/JVI.00659-06 |
|
[40] |
Cattie DJ, Richardson CE, Reddy KC, et al. Mutations in nonessential eIF3k and eIF3l genes confer lifespan extension and enhanced resistance to ER stress in Caenorhabditis elegans[J]. PLoS Genetics, 2016, 12(9): e1006326. DOI:10.1371/journal.pgen.1006326 |
|
[41] |
Hayner JN, Shan JX, Kilberg MS. Regulation of the ATF3 gene by a single promoter in response to amino acid availability and endoplasmic reticulum stress in human primary hepatocytes and hepatoma cells[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2018, 1861(2): 72-79. DOI:10.1016/j.bbagrm.2018.01.002 |
|
[42] |
Mihailidou C, Chatzistamou I, Kiaris H.Chop/GADD153[A]//Choi S.Encyclopedia of Signaling Molecules[M].New York: Springer, 2016
|
|
[43] |
Liang JQ, Fang SG, Yuan Q, et al. N-linked glycosylation of the membrane protein ectodomain regulates infectious bronchitis virus-induced ER stress response, apoptosis and pathogenesis[J]. Virology, 2019, 531: 48-56. DOI:10.1016/j.virol.2019.02.017 |
|
[44] | |
|
[45] |
Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β[J]. Nature, 2000, 403(6765): 98-103. DOI:10.1038/47513 |
|
[46] |
Susin SA, Lorenzo HK, Zamzami N, et al. Mitochondrial release of caspase-2 and-9 during the apoptotic process[J]. Journal of Experimental Medicine, 1999, 189(2): 381-394. DOI:10.1084/jem.189.2.381 |
|
[47] |
Tsoi H, Li L, Chen ZS, et al. The SARS-coronavirus membrane protein induces apoptosis via interfering with PDK1-PKB/Akt signalling[J]. Biochemical Journal, 2014, 464(3): 439-447. DOI:10.1042/BJ20131461 |
|
[48] |
Zhao G, Shi SQ, Yang Y, et al. M and N proteins of SARS coronavirus induce apoptosis in HPF cells[J]. Cell Biology and Toxicology, 2006, 22(5): 313-322. DOI:10.1007/s10565-006-0077-1 |
|
[49] | |
|
[50] |
Ding L, Huang Y, Du Q, et al. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling[J]. Biochemical and Biophysical Research Communications, 2014, 445(2): 497-503. DOI:10.1016/j.bbrc.2014.02.039 |
|
[51] |
Ding L, Li JW, Li WH, et al. p53-and ROS-mediated AIF pathway involved in TGEV-induced apoptosis[J]. Journal of Veterinary Medical Science, 2018, 80(11): 1775-1781. DOI:10.1292/jvms.18-0104 |
|
[52] |
Candé C, Cohen I, Daugas E, et al. Apoptosis-inducing factor (AIF):a novel caspase-independent death effector released from mitochondria[J]. Biochimie, 2002, 84(2/3): 215-222. |
|
[53] | |
|
[54] |
Lee YJ, Lee C. Porcine deltacoronavirus induces caspase-dependent apoptosis through activation of the cytochrome c-mediated intrinsic mitochondrial pathway[J]. Virus Research, 2018, 253: 112-123. DOI:10.1016/j.virusres.2018.06.008 |
|
[55] |
Peteranderl C, Herold S. The impact of the interferon/TNF-related apoptosis-inducing ligand signaling axis on disease progression in respiratory viral infection and beyond[J]. Frontiers in Immunology, 2017, 8: 313. |
|
[56] |
Ding L, Li JW, Li WH, et al. p53 mediated IFN-β signaling to affect viral replication upon TGEV infection[J]. Veterinary Microbiology, 2018, 227: 61-68. DOI:10.1016/j.vetmic.2018.10.025 |
|
[57] |
Borsini A, Cattaneo A, Malpighi C, et al. Interferon-alpha reduces human hippocampal neurogenesis and increases apoptosis via activation of distinct STAT1-dependent mechanisms[J]. International Journal of Neuropsychopharmacology, 2018, 21(2): 187-200. DOI:10.1093/ijnp/pyx083 |
|
[58] |
Kocherhans R, Bridgen A, Ackermann M, et al. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence[J]. Virus Genes, 2001, 23(2): 137-144. DOI:10.1023/A:1011831902219 |
|
[59] |
Zhang QZ, Shi KC, Yoo D. Suppression of type Ⅰ interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1[J]. Virology, 2016, 489: 252-268. DOI:10.1016/j.virol.2015.12.010 |
|
[60] |
Kamitani W, Narayanan K, Huang C, et al. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(34): 12885-12890. DOI:10.1073/pnas.0603144103 |
|
[61] |
Zhang QZ, Ke HZ, Blikslager A, et al. Type Ⅲ interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling[J]. Journal of Virology, 2018, 92(4): e01677-17. |
|
[62] |
Wang D, Fang LR, Shi YL, et al. Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO[J]. Journal of Virology, 2016, 90(4): 2090-2101. DOI:10.1128/JVI.02514-15 |
|
[63] |
Cavanagh D. Coronavirus avian infectious bronchitis virus[J]. Veterinary Research, 2007, 38(2): 281-297. DOI:10.1051/vetres:2006055 |
|
[64] |
Doyle N, Neuman BW, Simpson J, et al. Infectious bronchitis virus nonstructural protein 4 alone induces membrane pairing[J]. Viruses, 2018, 10(9): 477. DOI:10.3390/v10090477 |
|
[65] |
Kint J, Dickhout A, Kutter J, et al. Infectious bronchitis coronavirus inhibits STAT1 signaling and requires accessory proteins for resistance to type Ⅰ interferon activity[J]. Journal of Virology, 2015, 89(23): 12047-12057. DOI:10.1128/JVI.01057-15 |
|
[66] |
Wawryk-Gawda E, Chylińska-Wrzos P, Lis-Sochocka M, et al. P53 protein in proliferation, repair and apoptosis of cells[J]. Protoplasma, 2014, 251(3): 525-533. DOI:10.1007/s00709-013-0548-1 |
|
[67] |
Sun P, Wu HY, Huang JL, et al. Porcine epidemic diarrhea virus through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase[J]. Virus Research, 2018, 253: 1-11. DOI:10.1016/j.virusres.2018.05.019 |
|
[68] |
Heung ML, Yao Y, Jia L, et al. MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2[J]. Nature Microbiology, 2016. DOI:10.1038/nmicrobiol.2016.4 |
|
[69] |
Xu XG, Zhang HL, Zhang Q, et al. Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression[J]. Virology Journal, 2013, 10: 26. DOI:10.1186/1743-422X-10-26 |
|
[70] |
Petros AM, Nettesheim DG, Wang Y, et al. Rationale for Bcl-x L/Bad peptide complex formation from structure, mutagenesis, and biophysical studies[J]. Protein Science, 2000, 9(12): 2528-2534. DOI:10.1110/ps.9.12.2528 |
|
[71] |
DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM, et al. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis[J]. PLoS Pathogens, 2011, 7(10): e1002315. DOI:10.1371/journal.ppat.1002315 |
|
[72] |
Yuan L, Chen ZB, Song SS, et al. p53 degradation by a coronavirus papain-like protease suppresses type Ⅰ interferon signaling[J]. The Journal of Biological Chemistry, 2015, 290(5): 3172-3182. DOI:10.1074/jbc.M114.619890 |
|