[1] | |
|
[2] |
Cai JL, Chen ML, Wang GC, et al. Fermentative hydrogen and polyhydroxybutyrate production from pretreated cyanobacterial blooms[J]. Algal Research, 2015, 12: 295-299. DOI:10.1016/j.algal.2015.09.014 |
|
[3] |
Fu BL, Pan GH, Zhu DL, et al. Effects of different nitrogen sources on the photosynthetic activity, growth and neutral lipid accumulation of Skeletonema[J]. Journal of Tianjin University of Science & Technology, 2014, 29(3): 16-22. (in Chinese) 付宝龙, 潘光华, 朱大玲, 等. 不同氮源对骨条藻光合活性、生长和中性脂积累的影响[J]. 天津科技大学学报, 2014, 29(3): 16-22. |
|
[4] |
Garzon-Sanabria AJ, Davis RT, Nikolov ZL. Harvesting Nannochloris oculata by inorganic electrolyte flocculation: Effect of initial cell density, ionic strength, coagulant dosage, and media pH[J]. Bioresource Technology, 2012, 118: 418-424. DOI:10.1016/j.biortech.2012.04.057 |
|
[5] |
Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 217-232. DOI:10.1016/j.rser.2009.07.020 |
|
[6] |
Suparmaniam U, Lam MK, Uemura Y, et al. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 115: 109361. DOI:10.1016/j.rser.2019.109361 |
|
[7] | |
|
[8] |
Zhang JQ, Yuan Y, Jin WB. Study on the efficiency of centrifugal separation device for microalage cultivated in municipal wastewater[J]. Water & Wastewater Engineering, 2018, 44(7): 35-40. (in Chinese) 张剑桥, 袁媛, 金文标. 城市污水培养微藻离心分离装置效能的研究[J]. 给水排水, 2018, 44(7): 35-40. DOI:10.3969/j.issn.1002-8471.2018.07.009 |
|
[9] |
Fan H, Han P, Wang JH, et al. Status and prospects of microalgae harvesting with biological flocculation[J]. Journal of Biology, 2017, 34(2): 26-32. (in Chinese) 樊华, 韩佩, 王菁晗, 等. 微藻生物采收技术的现状和展望[J]. 生物学杂志, 2017, 34(2): 26-32. |
|
[10] |
de Baerdemaeker T, Lemmens B, Dotremont C, et al. Benchmark study on algae harvesting with backwashable submerged flat panel membranes[J]. Bioresource Technology, 2013, 129: 582-591. DOI:10.1016/j.biortech.2012.10.153 |
|
[11] |
Rossignol N, Vandanjon L, Jaouen P, et al. Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration[J]. Aquacultural Engineering, 1999, 20(3): 191-208. DOI:10.1016/S0144-8609(99)00018-7 |
|
[12] |
Liang H, Yang YL, Gong WJ, et al. Effect of pretreatment by permanganate/chlorine on algae fouling control for ultrafiltration (UF) membrane system[J]. Desalination, 2008, 222(1/3): 74-80. |
|
[13] |
Kanchanatip E, Su BR, Tulaphol S, et al. Fouling characterization and control for harvesting microalgae Arthrospira ( Spirulina) maxima using a submerged, disc-type ultrafiltration membrane[J]. Bioresource Technology, 2016, 209: 23-30. DOI:10.1016/j.biortech.2016.02.081 |
|
[14] |
Wu XT, Tao Y, Zhou CW, et al. The microalgae harvesting efficiency and fouling characterization with ceramic ultrafiltration membrane[J]. Applied Chemical Industry, 2017, 46(6): 1027-1032, 1046. (in Chinese) 吴晓甜, 陶益, 周灿炜, 等. 陶瓷膜过滤收获微藻的效能与膜污染特征[J]. 应用化工, 2017, 46(6): 1027-1032, 1046. DOI:10.3969/j.issn.1671-3206.2017.06.001 |
|
[15] |
Zhang KF, Wang S, Nie RF, et al. Study on the performance of different typical filters under the influent of high algae-laden water[J]. Journal of Shandong Jianzhu University, 2016, 31(6): 549-555. (in Chinese) 张克峰, 王珊, 聂荣飞, 等. 高藻进水条件下常见滤池过滤性能研究[J]. 山东建筑大学学报, 2016, 31(6): 549-555. DOI:10.3969/j.issn.1673-7644.2016.06.006 |
|
[16] |
Schiel DR, Gunn TD. Effects of sediment on early life history stages of habitat-dominating fucoid algae[J]. Journal of Experimental Marine Biology and Ecology, 2019, 516: 44-50. DOI:10.1016/j.jembe.2019.04.005 |
|
[17] | |
|
[18] | |
|
[19] |
McAndrews RS, Eich A, Ford AK, et al. Algae sediment dynamics are mediated by herbivorous fishes on a nearshore coral reef[J]. Coral Reefs, 2019, 38(3): 431-441. DOI:10.1007/s00338-019-01780-1 |
|
[20] |
Zhang HY, Yang L, Zang XM, et al. Effect of shear rate on floc characteristics and concentration factors for the harvesting of Chlorella vulgaris using coagulation-flocculation-sedimentation[J]. Science of The Total Environment, 2019, 688: 811-817. DOI:10.1016/j.scitotenv.2019.06.321 |
|
[21] | |
|
[22] |
Xing YW, Gui XH, Pan L, et al. Recent experimental advances for understanding bubble-particle attachment in flotation[J]. Advances in Colloid and Interface Science, 2017, 246: 105-132. DOI:10.1016/j.cis.2017.05.019 |
|
[23] |
Zhang HY, Liu CH, Kuang YL, et al. Research on harvesting energy microalgae via foam flotation[J]. Renewable Energy Resources, 2016, 34(2): 268-273. (in Chinese) 张海阳, 刘春华, 匡亚莉, 等. 基于泡沫浮选的能源微藻采收实验研究[J]. 可再生能源, 2016, 34(2): 268-273. |
|
[24] |
Garg S, Wang LG, Schenk PM. Flotation separation of marine microalgae from aqueous medium[J]. Separation and Purification Technology, 2015, 156: 636-641. DOI:10.1016/j.seppur.2015.10.059 |
|
[25] |
Wang YL, Liu BZ, Jia RB, et al. Counter-current/co-current dissolved air flotation (CCDAF) system for algae-laden surface water treatment[J]. Desalination and Water Treatment, 2018, 130: 37-43. DOI:10.5004/dwt.2018.22860 |
|
[26] |
Wen H. Buoy-bead flotation harvesting technology applied on the microalgae Chlorella vulgaris and the mechanisms of physicochemical interactions among microalgae-medium- bead multiphase interfaces[D]. Xi'an: Doctor Dissertation of Chang'an University, 2019 (in Chinese) 文豪.小球藻浮珠浮选采收技术及相界面间物理化学作用机理研究[D].西安: 长安大学博士学位论文, 2019
|
|
[27] |
Li XC, Mou CX, Mu G, et al. Performance of dissolved air flotation for marine microalgae harvesting[J]. Journal of Dalian Ocean University, 2012, 27(4): 355-359. (in Chinese) 李秀辰, 牟晨晓, 母刚, 等. 海洋微藻的加压气浮采收工艺研究[J]. 大连海洋大学学报, 2012, 27(4): 355-359. DOI:10.3969/j.issn.2095-1388.2012.04.014 |
|
[28] |
Nguyen HVM, Kim JK, Chang SW. A case study of low pressure air flotation ferryboat for algae removal in Korean rivers and lakes[J]. Journal of Industrial and Engineering Chemistry, 2019, 69: 32-38. DOI:10.1016/j.jiec.2018.09.011 |
|
[29] | |
|
[30] |
Zhou WJ, Gao LL, Cheng WT, et al. Electro-flotation of Chlorella sp. assisted with flocculation by chitosan[J]. Algal Research, 2016, 18: 7-14. DOI:10.1016/j.algal.2016.05.029 |
|
[31] | |
|
[32] |
Pugazhendhi A, Shobana S, Bakonyi P, et al. A review on chemical mechanism of microalgae flocculation via polymers[J]. Biotechnology Reports, 2019, 21: e00302. DOI:10.1016/j.btre.2018.e00302 |
|
[33] |
Chen L, Wang CW, Wang WG, et al. Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. cultivated in an open-pond system[J]. Bioresource Technology, 2013, 133: 9-15. DOI:10.1016/j.biortech.2013.01.071 |
|
[34] |
Guo TT, Lou YJ. Research of flocculent effects of inorganic reagents on Botryococcus braunii[J]. Journal of Biology, 2014, 31(2): 90-93. (in Chinese) 郭婷婷, 娄永江. 6种无机絮凝剂对布朗葡萄藻的絮凝效应[J]. 生物学杂志, 2014, 31(2): 90-93. |
|
[35] |
Zhao K, Wang YJ, Wu ZJ, et al. Eight different flocculants study of Chlorella emersonii flocculation effect[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2017, 37(1): 54-59. (in Chinese) 赵奎, 王亚君, 武振晋, 等. 8种不同絮凝剂对埃氏小球藻絮凝效应的研究[J]. 山西农业大学学报:自然科学版, 2017, 37(1): 54-59. |
|
[36] |
Peng C, Su HB, Xiong Q, et al. Effects of flocculants on recovery of Haematococcus pluvialis[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(2): 1-6. (in Chinese) 彭超, 苏会波, 熊强, 等. 絮凝剂对雨生红球藻采收的影响[J]. 生物加工过程, 2017, 15(2): 1-6. DOI:10.3969/j.issn.1672-3678.2017.02.001 |
|
[37] |
Wu SC, Xie XJ, Huan L, et al. Selection of optimal flocculant for effective harvesting of the fucoxanthin-rich marine microalga Isochrysis galbana[J]. Journal of Applied Phycology, 2016, 28(3): 1579-1588. DOI:10.1007/s10811-015-0716-0 |
|
[38] |
Wan C, Zhang XY, Zhao XQ, et al. Harvesting microalgae via flocculation: a review[J]. Chinese Journal of Biotechnology, 2015, 31(2): 161-171. (in Chinese) 万春, 张晓月, 赵心清, 等. 利用絮凝进行微藻采收的研究进展[J]. 生物工程学报, 2015, 31(2): 161-171. |
|
[39] |
Wei CY, Huang Y, Liao Q, et al. Adsorption thermodynamic characteristics of Chlorella vulgaris with organic polymer adsorbent cationic starch: Effect of temperature on adsorption capacity and rate[J]. Bioresource Technology, 2019, 293: 122056. DOI:10.1016/j.biortech.2019.122056 |
|
[40] |
Rahul R, Kumar S, Jha U, et al. Cationic inulin: a plant based natural biopolymer for algal biomass harvesting[J]. International Journal of Biological Macromolecules, 2015, 72: 868-874. DOI:10.1016/j.ijbiomac.2014.09.039 |
|
[41] |
Rashid N, Rehman SU, Han JI. Rapid harvesting of freshwater microalgae using chitosan[J]. Process Biochemistry, 2013, 48(7): 1107-1110. DOI:10.1016/j.procbio.2013.04.018 |
|
[42] |
Feng SS, Wu XQ, Wang CB, et al. Optimization of preparation conditions of cationic starch and its flocculation efficiency on field cyanobacteria[J]. Environmental Science & Technology, 2018, 41(5): 37-42. (in Chinese) 冯闪闪, 吴幸强, 王纯波, 等. 阳离子淀粉制备条件优化及其对野外蓝藻的絮凝效果[J]. 环境科学与技术, 2018, 41(5): 37-42. |
|
[43] |
Meramo-Hurtado S, Alarcón-Suesca C, González-Delgado ÁD. Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia[J]. Journal of Cleaner Production, 2020, 248: 119285. DOI:10.1016/j.jclepro.2019.119285 |
|
[44] |
Kavallauskaite R, Klimaviciute R, Zemaitaitis A. Factors influencing production of cationic starches[J]. Carbohydrate Polymers, 2008, 73(4): 665-775. DOI:10.1016/j.carbpol.2008.01.019 |
|
[45] |
Landels A, Beacham TA, Evans CT, et al. Improving electrocoagulation floatation for harvesting microalgae[J]. Algal Research, 2019, 39: 101446. DOI:10.1016/j.algal.2019.101446 |
|
[46] |
Dassey AJ, Theegala CS. Reducing electrocoagulation harvesting costs for practical microalgal biodiesel production[J]. Environmental Technology, 2014, 35(6): 691-697. DOI:10.1080/09593330.2013.842602 |
|
[47] |
Barros AI, Gonçalves AL, Simões M, et al. Harvesting techniques applied to microalgae: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 1489-1500. DOI:10.1016/j.rser.2014.09.037 |
|
[48] |
Liu Q, Zhang M, Lv T, et al. Energy-producing electro-flocculation for harvest of Dunaliella salina[J]. Bioresource Technology, 2017, 241: 1022-1026. DOI:10.1016/j.biortech.2017.05.196 |
|
[49] |
Zhang BM, Wang JY, Wang DZ, et al. Harvesting of microalgae Isochrysis zhangjiangensis by electro-flocculation[J]. Chinese Journal of Bioprocess Engineering, 2016, 14(1): 54-57. (in Chinese) 章表明, 王加友, 王大志, 等. 电絮凝法收集湛江等鞭金藻[J]. 生物加工过程, 2016, 14(1): 54-57. DOI:10.3969/j.issn.1672-3678.2016.01.010 |
|
[50] |
Zhang C, Li Y, Shuai DM, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review[J]. Chemosphere, 2019, 214: 462-479. DOI:10.1016/j.chemosphere.2018.09.137 |
|
[51] |
Jangyubol K, Kasemwong K, Charoenrat T, et al. Magnetic-cationic cassava starch composite for harvesting Chlorella sp. TISTR8236[J]. Algal Research, 2018, 35: 561-568. DOI:10.1016/j.algal.2018.09.027 |
|
[52] |
Zhao Y, Wang XY, Jiang XX, et al. Harvesting of Chlorella vulgaris using Fe 3O 4 coated with modified plant polyphenol[J]. Environmental Science and Pollution Research, 2018, 25(26): 26246-26258. DOI:10.1007/s11356-018-2677-8 |
|
[53] | |
|
[54] |
Gómez-Pastora J, Xue XZ, Karampelas IH, et al. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices[J]. Separation and Purification Technology, 2017, 172: 16-31. DOI:10.1016/j.seppur.2016.07.050 |
|
[55] |
Cerff M, Morweiser M, Dillschneider R, et al. Harvesting fresh water and marine algae by magnetic separation: Screening of separation parameters and high gradient magnetic filtration[J]. Bioresource Technology, 2012, 118: 289-295. DOI:10.1016/j.biortech.2012.05.020 |
|
[56] | |
|
[57] |
Cai JL, Wei Y, Zhao YP, et al. Production of polyhydroxybutyrate by the marine photosynthetic bacterium Rhodovulum sulfidophilum P5[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(4): 620-626. DOI:10.1007/s00343-012-1132-9 |
|
[58] |
Al-Hothaly KA. An optimized method for the bio-harvesting of microalgae, Botryococcus braunii, using Aspergillus sp. in large-scale studies[J]. MethodsX, 2018, 5: 788-794. DOI:10.1016/j.mex.2018.07.010 |
|
[59] |
Nasir NM, Yunos FH, Jusoh HH, et al. Subtopic: Advances in water and wastewater treatment harvesting of Chlorella sp. microalgae using Aspergillus niger as bio-flocculant for aquaculture wastewater treatment[J]. Journal of Environmental Management, 2019, 249: 109373. DOI:10.1016/j.jenvman.2019.109373 |
|
[60] |
Luo SS, Wu XD, Jiang HB, et al. Edible fungi-assisted harvesting system for efficient microalgae bio-flocculation[J]. Bioresource Technology, 2019, 282: 325-330. DOI:10.1016/j.biortech.2019.03.033 |
|
[61] |
Li Y, Xu YT, Liu L, et al. Flocculation mechanism of Aspergillus niger on harvesting of Chlorella vulgaris biomass[J]. Algal Research, 2017, 25: 402-412. DOI:10.1016/j.algal.2017.06.001 |
|
[62] |
Nguyen TDP, van Anh Le T, Show PL, et al. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent[J]. Bioresource Technology, 2019, 272: 34-39. DOI:10.1016/j.biortech.2018.09.146 |
|
[63] |
Lei XQ, Zheng W, Ding HY, et al. Effective harvesting of the marine microalga Thalassiosira pseudonana by Marinobacter sp. FL06[J]. Bioresource Technology, 2018, 269: 127-133. DOI:10.1016/j.biortech.2018.08.077 |
|
[64] |
Dong XJ, Shen JL, Shen P. Study on removing the red tide microalgae via bioflocculant produced by Bacillus sp. strain[J]. Journal of Safety and Environment, 2016, 16(5): 212-215. (in Chinese) 董新姣, 沈佳丽, 沈萍. 一株芽孢杆菌产生物絮凝剂去除赤潮微藻的研究[J]. 安全与环境学报, 2016, 16(5): 212-215. |
|
[65] |
Wan C, Zhao XQ, Guo SL, et al. Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation[J]. Bioresource Technology, 2013, 135: 207-212. DOI:10.1016/j.biortech.2012.10.004 |
|
[66] | |
|
[67] |
Lv JP, Guo BW, Feng J, et al. Integration of wastewater treatment and flocculation for harvesting biomass for lipid production by a newly isolated self-flocculating microalga Scenedesmus rubescens SX[J]. Journal of Cleaner Production, 2019, 240: 118211. DOI:10.1016/j.jclepro.2019.118211 |
|
[68] |
Zhao FY, Xiao JM, Ding W, et al. An effective method for harvesting of microalga: Coculture-induced self-flocculation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100: 117-126. DOI:10.1016/j.jtice.2019.04.011 |
|
[69] |
Guo SL, Zhao XQ, Wan C, et al. Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest[J]. Bioresource Technology, 2013, 145: 285-289. DOI:10.1016/j.biortech.2013.01.120 |
|
[70] |
Alam MA, Wan C, Guo SL, et al. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7[J]. Journal of Bioscience and Bioengineering, 2014, 118(1): 29-33. DOI:10.1016/j.jbiosc.2013.12.021 |
|
[71] |
Aljuboori AHR, Uemura Y, Thanh NT. Flocculation and mechanism of self-flocculating lipid producer microalga Scenedesmus quadricauda for biomass harvesting[J]. Biomass and Bioenergy, 2016, 93: 38-42. DOI:10.1016/j.biombioe.2016.06.013 |
|