[1] |
Artursson K, Schelin J, Lambertz ST, Hansson I, Engvall EO. Foodborne pathogens in unpasteurized milk in Sweden[J]. International Journal of Food Microbiology, 2018, 284: 120-127. DOI:10.1016/j.ijfoodmicro.2018.05.015 |
|
[2] |
Zhang J, Jiang Y, Xia X, Wu J, Almeida R, Eda S, Qi HC. An on-site, highly specific immunosensor for Escherichia coli detection in field milk samples from mastitis-affected dairy cattle[J]. Biosensors and Bioelectronics, 2020, 165: 112366. DOI:10.1016/j.bios.2020.112366 |
|
[3] |
Pacha PA, Munoz MA, Paredes-Osses E, Latorre AA. Short communication: virulence profiles of Staphylococcus aureus isolated from bulk tank milk and adherences on milking equipment on chilean dairy farms[J]. Journal of Dairy Science, 2020, 103(5): 4732-4737. DOI:10.3168/jds.2019-17794 |
|
[4] |
Kashoma IP, Kassem Ⅱ, John J, Kessy BM, Gebreyes W, Kazwala RR, Rajashekara G. Prevalence and antimicrobial resistance of campylobacter isolated from dressed beef carcasses and raw milk in Tanzania[J]. Microbial Drug Resistance, 2016, 22(1): 40-52. DOI:10.1089/mdr.2015.0079 |
|
[5] |
Modi S, Brahmbhatt MN, Chatur YA, Nayak JB. Prevalence of Campylobacter species in milk and milk products, their virulence gene profile and antibiogram[J]. Veterinary World, 2015, 8(1): 1-8. DOI:10.14202/vetworld.2015.1-8 |
|
[6] |
Adzitey F, Asiamah P, Boateng EF. Prevalence and antibiotic susceptibility of Salmonella enterica isolated from cow milk, milk products and hands of sellers in the Tamale Metropolis of Ghana[J]. Journal of Applied Sciences and Environmental Management, 2020, 24(1): 59-64. DOI:10.4314/jasem.v24i1.8 |
|
[7] |
Rahman MA, Rahman AKMA, Islam MA, Alam MM. Detection of multi-drug resistant Salmonella from milk and meat in Bangladesh[J]. Bangladesh Journal of Veterinary Medicine, 2018, 16(1): 115-120. DOI:10.3329/bjvm.v16i1.37388 |
|
[8] | |
|
[9] |
Bano SA, Hayat M, Samreen T, Asif M, Habiba U, Uzair B. Detection of pathogenic bacteria Staphylococcus aureus and Salmonella sp. from raw milk samples of different cities of Pakistan[J]. Natural Science, 2020, 12(5): 295-306. DOI:10.4236/ns.2020.125026 |
|
[10] |
Pei XY, Yang SR, Zhan L, Zhu JH, Song XY, Hu XN, Liu GH, Ma GZ, Li N, Yang DJ. Prevalence of Bacillus cereus in powdered infant and powdered follow-up formula in China[J]. Food Control, 2018, 93: 101-105. DOI:10.1016/j.foodcont.2018.05.049 |
|
[11] |
Meng L, Zhang YD, Liu HM, Zhao SG, Wang JQ, Zheng N. Characterization of Pseudomonas spp. and associated proteolytic properties in raw milk stored at low temperatures[J]. Frontiers in Microbiology, 2017, 8: 2158. DOI:10.3389/fmicb.2017.02158 |
|
[12] |
Meng L, Liu HM, Dong L, Zheng N, Xing MR, Zhang YD, Zhao SG, Wang JQ. Identification and proteolytic activity quantification of Pseudomonas spp. isolated from different raw milks at storage temperatures[J]. Journal of Dairy Science, 2018, 101(4): 2897-2905. DOI:10.3168/jds.2017-13617 |
|
[13] |
del Olmo A, Calzada J, Nuñez M. The blue discoloration of fresh cheeses: a worldwide defect associated to specific contamination by Pseudomonas fluorescens[J]. Food Control, 2018, 86: 359-366. DOI:10.1016/j.foodcont.2017.12.001 |
|
[14] |
Lan T, Liu HM, Meng L, Xing MR, Dong L, Gu M, Wang JQ, Zheng N. Antimicrobial susceptibility, phylotypes, and virulence genes of Escherichia coli from clinical bovine mastitis in five provinces of China[J]. Food and Agricultural Immunology, 2020, 31(1): 406-423. DOI:10.1080/09540105.2020.1736009 |
|
[15] |
Yong Y, Yu XF, Zhan L, Chen JC, Zhang YY, Zhang JY, Chen HH, Zhang Z, Zhang YJ, Lu YY, et al. Multilocus sequence type profiles of Bacillus cereus isolates from infant formula in China[J]. Food Microbiology, 2017, 62: 46-50. DOI:10.1016/j.fm.2016.09.007 |
|
[16] | |
|
[17] |
Viegas S, Assunção R, Twarużek M, Kosicki R, Grajewski J, Viegas C. Mycotoxins feed contamination in a dairy farm-potential implications for milk contamination and workers' exposure in a one health approach[J]. Journal of the Science of Food and Agriculture, 2020, 100(3): 1118-1123. DOI:10.1002/jsfa.10120 |
|
[18] |
Fei P, Yuan XJ, Zhao SJ, Yang TX, Xiang JL, Chen X, Zhou LX, Ji MD. Prevalence and genetic diversity of Bacillus cereus isolated from raw milk and cattle farm environments[J]. Current Microbiology, 2019, 76(11): 1355-1360. DOI:10.1007/s00284-019-01741-5 |
|
[19] |
Abebe R, Hatiya H, Abera M, Megersa B, Asmare K. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia[J]. BMC Veterinary Research, 2016. DOI:10.1186/s12917-016-0905-3 |
|
[20] |
Lee SHI, Barancelli GV, De Camargo TM, Corassin CH, Rosim RE, DaCruz AG, Cappato LP, De Oliveira CAF. Biofilm-producing ability of Listeria monocytogenes isolates from Brazilian cheese processing plants[J]. Food Research International, 2017, 91: 88-91. DOI:10.1016/j.foodres.2016.11.039 |
|
[21] |
Fei P, Man CX, Lou BB, Forsythe SJ, Chai YL, Li R, Niu JT, Jiang YJ. Genotyping and source tracking of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and an infant formula production factory in China[J]. Applied and Environmental Microbiology, 2015, 81(16): 5430-5439. DOI:10.1128/AEM.01390-15 |
|
[22] |
Ntuli V, Njage PMK, Buys EM. Characterization of Escherichia coli and other Enterobacteriaceae in producer-distributor bulk milk[J]. Journal of Dairy Science, 2016, 99(12): 9534-9549. DOI:10.3168/jds.2016-11403 |
|
[23] |
Liu HM, Li SL, Meng L, Dong L, Zhao SG, Lan XY, Wang JQ, Zheng N. Prevalence, antimicrobial susceptibility, and molecular characterization of Staphylococcus aureus isolated from dairy herds in northern China[J]. Journal of Dairy Science, 2017, 100(11): 8796-8803. DOI:10.3168/jds.2017-13370 |
|
[24] |
Meng L, Liu HM, Lan T, Dong L, Hu HY, Zhao SG, Zhang YD, Zheng N, Wang JQ. Antibiotic resistance patterns of Pseudomonas spp. isolated from raw milk revealed by whole genome sequencing[J]. Frontiers in Microbiology, 2020, 11: 1005. DOI:10.3389/fmicb.2020.01005 |
|
[25] |
Elshiekh NA, Mohammed G, Abdalla M, Elkhair O, Altayeb H. Isolation and molecular identification of Staphylococcus species in cow's milk distributed in Khartoum state[J]. The Egyptian Journal of Veterinary Sciences, 2020, 51(2): 271-281. DOI:10.21608/ejvs.2020.19581.1129 |
|
[26] |
Tayyarcan EK, Soykut EA, Boyaci IH. A Raman-spectroscopy-based approach for detection and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages at low titer in raw milk[J]. Folia Microbiologica, 2018, 63(5): 627-636. DOI:10.1007/s12223-018-0604-5 |
|
[27] |
Xie YF, Feng JJ, Yao WR, Guo YH, Cheng YL, Qian H. Method for rapidly detecting Salmonella typhimurium in milk by Raman microspectroscopy based on incorporation of heavy water: US, Patent application 15/815, 341[P]. 2019-02-14
|
|
[28] |
Feng JJ, Yao WR, Guo YH, Cheng YL, Qian H, Xie YF. Incorporation of heavy water for rapid detection of Salmonella typhimurium by Raman microspectroscopy[J]. Food Analytical Methods, 2018, 11(12): 3551-3557. DOI:10.1007/s12161-018-1328-5 |
|
[29] |
De Koster CG, Brul S. MALDI-TOF MS identification and tracking of food spoilers and food-borne pathogens[J]. Current Opinion in Food Science, 2016, 10: 76-84. DOI:10.1016/j.cofs.2016.11.004 |
|
[30] |
Suarez S, Nassif X, Ferroni A. Applications of MALDI-TOF technology in clinial microbiology[J]. Pathologie Biologie, 2015, 63(1): 43-52. DOI:10.1016/j.patbio.2014.10.002 |
|
[31] |
Nomura F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): a revolutionary shift in clinical diagnostic microbiology[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2015, 1854(6): 528-537. DOI:10.1016/j.bbapap.2014.10.022 |
|
[32] |
Ojima-Kato T, Yamamoto N, Takahashi H, Tamura H. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can precisely discriminate the lineages of Listeria monocytogenes and species of Listeria[J]. PLoS One, 2016, 11(7): e0159730. DOI:10.1371/journal.pone.0159730 |
|
[33] |
Goldstein JE, Zhang L, Borror CM, Rago JV, Sandrin TR. Culture conditions and sample preparation methods affect spectrum quality and reproducibility during profiling of Staphylococcus aureus with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Letters in Applied Microbiology, 2013, 57(2): 144-150. DOI:10.1111/lam.12092 |
|
[34] |
Rim JH, Lee YS, Hong SK, Park Y, Kim M, D'Souza R, Park ES, Yong D, Lee K. Insufficient discriminatory power of matrix-assisted laser desorption ionization time-of-flight mass spectrometry dendrograms to determine the clonality of multi-drug-resistant Acinetobacter baumannii isolates from an intensive care unit[J]. Biomed Research International, 2015, 2015: 535027. |
|
[35] |
Lasch P, Fleige C, Stämmler M, Layer F, Nübel U, Witte W, Werner G. Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates[J]. Journal of Microbiological Methods, 2014, 100: 58-69. DOI:10.1016/j.mimet.2014.02.015 |
|
[36] |
Hsueh PR, Lee TF, Du SH, Teng SH, Liao CH, Sheng WH, Teng LJ. Bruker biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria species[J]. Journal of Clinical Microbiology, 2014, 52(7): 2371-2379. DOI:10.1128/JCM.00456-14 |
|
[37] |
Wolters M, Rohde H, Maier T, Belmar-Campos C, Franke G, Scherpe S, Aepfelbacher M, Christner M. MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages[J]. International Journal of Medical Microbiology, 2011, 301(1): 64-68. DOI:10.1016/j.ijmm.2010.06.002 |
|
[38] |
Sun JH. Application and development of PCR in the detection of food-borne microorganism[J]. Biological Chemical Engineering, 2016, 2(2): 56-58, 63. (in Chinese) 孙吉浩. PCR技术在食源性微生物检测中的应用与发展研究[J]. 生物化工, 2016, 2(2): 56-58, 63. |
|
[39] | |
|
[40] |
Hernández M, López-Enríquez L, Rodríguez-Lázaro D. Quantitative detection of Clostridium perfringens by real-time PCR in raw milk[J]. Food Analytical Methods, 2017, 10(5): 1139-1147. DOI:10.1007/s12161-017-0821-6 |
|
[41] |
Salvianti F, Costanza F, Sonnati G, Pinzani P. Detection and characterization of circulating tumor cells by quantitative real-time PCR[A]//Biassoni B, Raso A. Quantitative Real-Time PCR[M]. New York: Springer, 2020: 139-151
|
|
[42] |
Wei CJ, Zhong JL, Hu T, Zhao XH. Simultaneous detection of Escherichia coli O157:H7, Staphylococcus aureus and Salmonella by multiplex PCR in milk[J]. 3 Biotech, 2018, 8(1): 76. DOI:10.1007/s13205-018-1086-5 |
|
[43] |
Ung A, Baidjoe AY, Van Cauteren D, Fawal N, Fabre L, Guerrisi C, Danis K, Morand A, Donguy MP, Lucas E, et al. Disentangling a complex nationwide Salmonella Dublin outbreak associated with raw-milk cheese consumption, France, 2015 to 2016[J]. Eurosurveillance, 2019, 24(3): pii=1700703. |
|
[44] |
Dal T, Durmaz R, Ceylan A, Bacalan F, Karagoz A, Celebi B, Yasar E, Kilic S, Acikgoz C. Molecular investigation of the transmission dynamics of brucellosis observed among children in the province of south-east Anatolia, Turkey[J]. Jundishapur Journal of Microbiology, 2018, 11(3): e58857. |
|
[45] |
Ma JY, Wang H, Zhang XF, Xu LQ, Hu GY, Jiang H, Zhao F, Zhao HY, Piao DR, Qin YM, et al. MLVA and MLST typing of Brucella from Qinghai, China[J]. Infectious Diseases of Poverty, 2016, 5: 26. DOI:10.1186/s40249-016-0123-z |
|
[46] |
Singh M, Malik MA, Singh DK, Doimari S, Bhavna, Sharma R. Multilocus variable number tandem repeat analysis (MLVA)-typing of Brucella abortus isolates of India reveals limited genetic diversity[J]. Tropical Animal Health and Production, 2020, 52(3): 1187-1194. DOI:10.1007/s11250-019-02110-x |
|
[47] |
Ali S, Akhter S, Khan I, Ahmed H, Maalik A, Neubauer H, Melzer F, El-Adawy H. Molecular typing of Brucella abortus strains isolated from cattle in different districts of Pakistan based on Bruce-Ladder-PCR and MLVA-16 assays[J]. Pakistan Veterinary Journal, 2019, 39(3): 463-465. |
|
[48] |
Caruso M, Latorre L, Santagada G, Fraccalvieri R, Difato LM, Miccolupo A, Capozzi L, Bonerba E, Mottola A, Parisi A. Arcobacter spp. in bovine milk: an emerging pathogen with potential zoonotic risk[J]. Italian Journal of Food Safety, 2019, 7(4): 7685. |
|
[49] |
Marta C, Giovanni N, Angela M, Loredana C, Elisabetta B, Laura D, Anna M, Angela DP, Gianfranco S, Antonio P. Large genetic diversity of Arcobacter butzleri isolated from raw milk in southern Italy[J]. Food Microbiology, 2020, 89: 103403. DOI:10.1016/j.fm.2019.103403 |
|
[50] |
Dendani ZC, Bezille P, Arcangioli MA. PCR and PCR-RFLP genotyping of Staphylococcus aureus coagulase gene: convenience compared to pulse-field gel electrophoresis[J]. Comparative Clinical Pathology, 2016, 25(5): 1061-1064. DOI:10.1007/s00580-016-2311-4 |
|
[51] |
Alni RH, Mohammadzadeh A, Mahmoodi P, Alikhani MY. Genotypic analysis of Staphylococcus aureus coagulase gene using PCR-RFLP analysis[J]. Medical Laboratory Journal, 2017, 11(6): 12-17. DOI:10.29252/mlj.11.6.12 |
|
[52] |
Vidal AMC, Saran NA, Vaz ACN, Capodifóglio E, Gonçalves ACS, Rossi GAM, Figueiredo AS, Ruiz VLA. Pseudomonas spp.: contamination sources in bulk tanks of dairy farms[J]. Pesquisa Veterinária Brasileira, 2017, 37(9): 941-948. DOI:10.1590/s0100-736x2017000900008 |
|
[53] |
Lazzi C, Bove CG, Sgarbi E, Monica G, La Gioia F, Sandra T, Neviani E. Application of AFLP fingerprint analysis for studying the biodiversity of Streptococcus thermophilus[J]. Journal of Microbiological Methods, 2009, 79(1): 48-54. DOI:10.1016/j.mimet.2009.07.021 |
|
[54] |
Svensson B, Eneroth Å, Brendehaug J, Christiansson A. Investigation of Bacillus cereus contamination sites in a dairy plant with RAPD-PCR[J]. International Dairy Journal, 1999, 9(12): 903-912. DOI:10.1016/S0958-6946(00)00014-5 |
|
[55] |
Singh KP. Analysis of toxicants-induced alterations in DNA methylation by methylation-sensitive-random amplified polymorphic DNA-polymerase chain reaction (MS-RAPD-PCR)[A]//Keohavong P, Singh KP, Gao WM. Molecular Toxicology Protocols[M]. New York: Springer, 2020: 213-224
|
|
[56] |
Sadiq FA, Li Y, Liu TJ, Flint S, Zhang GH, He GQ. A RAPD based study revealing a previously unreported wide range of mesophilic and thermophilic spore formers associated with milk powders in China[J]. International Journal of Food Microbiology, 2016, 217: 200-208. DOI:10.1016/j.ijfoodmicro.2015.10.030 |
|
[57] |
Yuan L, Sadiq FA, Liu TJ, Flint S, Chen JC, Yang HY, Gu JS, Zhang GH, He GQ. Psychrotrophic bacterial populations in Chinese raw dairy milk[J]. LWT, 2017, 84: 409-418. DOI:10.1016/j.lwt.2017.05.023 |
|
[58] |
Xin L, Meng ZX, Zhang LW, Cui YH, Han X, Yi HX. The diversity and proteolytic properties of psychrotrophic bacteria in raw cows' milk from north China[J]. International Dairy Journal, 2017, 66: 34-41. DOI:10.1016/j.idairyj.2016.10.014 |
|
[59] |
Nalepa B, Markiewicz LH. PCR-DGGE markers for qualitative profiling of microbiota in raw milk and ripened cheeses[J]. LWT, 2017, 84: 168-174. DOI:10.1016/j.lwt.2017.05.057 |
|
[60] |
Parisi A, Capozzi L, Bianco A, Caruso M, Latorre L, Costa A, Giannico A, Ridolfi D, Bulzacchelli C, Santagada G. Identification of virulence and antibiotic resistance factors in Arcobacter butzleri isolated from bovine milk by whole genome sequencing[J]. Italian Journal of Food Safety, 2019, 8(2): 7840. |
|
[61] |
Butcher H, Elson R, Chattaway MA, Featherstone CA, Willis C, Jorgensen F, Dallman TJ, Jenkins C, McLauchlin JJ, Beck CR, et al. Whole genome sequencing improved case ascertainment in an outbreak of Shiga toxin-producing Escherichia coli O157 associated with raw drinking milk[J]. Epidemiology & Infection, 2016, 144(13): 2812-2823. |
|
[62] |
Guo QY, Niu B, Yang JL. Application of whole genome sequencing (WGS) to Cronobacter sakazakii in dairy products, comparing two subtyping methods of MLST and SNP[J]. China Dairy Industry, 2018, 46(8): 13-17, 20. (in Chinese) 郭清艳, 钮冰, 杨捷琳. 两种分子分型技术在乳制品克诺罗杆菌污染溯源分析上的比较[J]. 中国乳品工业, 2018, 46(8): 13-17, 20. |
|
[63] |
Portmann AC, Fournier C, Gimonet J, Ngom-Bru C, Barretto C, Baert L. A validation approach of an end-to-end whole genome sequencing workflow for source tracking of Listeria monocytogenes and Salmonella enterica[J]. Frontiers in Microbiology, 2018, 9: 446. DOI:10.3389/fmicb.2018.00446 |
|
[64] |
Allard MW, Bell R, Ferreira CM, Gonzalez-Escalona N, Hoffmann M, Muruvanda T, Ottesen A, Ramachandran P, Reed E, Sharma S, et al. Genomics of foodborne pathogens for microbial food safety[J]. Current Opinion in Biotechnology, 2018, 49: 224-229. DOI:10.1016/j.copbio.2017.11.002 |
|