
扩展功能
文章信息
- 苏慧颖, 蒙世拯, 赵欣欣, 钱江潮, 储炬, 秦秀林
- SU Huiying, MENG Shizheng, ZHAO Xinxin, QIAN Jiangchao, CHU Ju, QIN Xiulin
- 阻断消耗途径提高毕赤酵母工程菌S-腺苷甲硫氨酸产量
- Blocking consumption pathway increases production of S-adenosyl-L-methionine by Pichia pastoris
- 微生物学通报, 2023, 50(2): 441-453
- Microbiology China, 2023, 50(2): 441-453
- DOI: 10.13344/j.microbiol.china.220486
-
文章历史
- 收稿日期: 2022-05-15
- 接受日期: 2022-06-30
- 网络首发日期: 2022-07-21
2. 华东理工大学 生物反应器工程国家重点实验室, 上海 200237
2. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
S-腺苷甲硫氨酸(S-adenosyl-L-methionine, SAM)作为所有生物体内的重要中间代谢物,是一种高价值的化学物质,具有良好的临床应用价值。SAM不仅被广泛地用作膳食补充剂,也是抑郁症、肝病和癌症的有效治疗剂[1-2]。利用代谢工程改造微生物细胞的代谢途径可显著提高SAM在细胞内的积累[3-6]。主要的改造方法有:(1) 强化S-腺苷甲硫氨酸合成酶(methionine adenosyltransferase, MAT)基因(sam1和sam2)的表达量,提高MAT的活性,从而增加SAM的产量;(2) 阻断或弱化β-胱硫醚合成酶基因(cys4)表达,减少SAM和L-Met在细胞内转化为半胱氨酸的途径,增加胞内SAM的积累;(3) 减少SAM分解代谢(消耗)途径,提高SAM的胞内积累;(4) 增加ATP、L-甲硫氨酸(L-Met)或前体的量,以提高SAM的胞内积累。
在生物体内MAT催化ATP和L-Met合成SAM,不同来源的MAT基因的过表达是提高SAM产量的首要策略[7]。当MAT活性提高到一定水平时,它不再是SAM合成的限速因子[8]。因此,在获得了MAT活性足够高的工程菌后,减少SAM分解代谢途径是增加细胞内SAM积累的另一有效策略。
在毕赤酵母(Pichia pastoris)中,SAM代谢途径如图 1A所示。L-Met和ATP在MAT的作用下反应生成SAM,SAM可通过S-腺苷甲硫氨酸脱羧酶(S-adenosylmethionine decarboxylase, SPE2)催化的脱羧反应生成脱羧S-腺苷甲硫氨酸;也可在S-腺苷高半胱氨酸水解酶(S-adenosyl-L-homocysteine hydrolase, SAH1)作用下催化S-腺苷高半胱氨酸(S-adenosyl-L-homocysteine, AdoHcy)形成高半胱氨酸,随后转化为β-胱硫醚或L-Met[9]。L-Met作为参与SAM合成的底物,在L-甲硫氨酰tRNA合酶(mitochondrial methionyl-tRNA synthetase, MSM1)的作用下[10],先形成L-甲硫氨酰-tRNA,再反应生成N-甲酰-甲硫氨酰-tRNA,参与生理反应。我们前期的研究发现,弱化S-腺苷甲硫氨酸(S-adenosyl-L-methionine, SAM)分解代谢途径β-胱硫醚(β-cystathionine)合成途径能提高毕赤酵母重组菌的SAM产量[4],因此,减少SAM在细胞内的消耗是提高其产量的有效策略。
![]() |
图 1 毕赤酵母重组工程菌G/Dspe、G/Dsah和G/Dmsm的构建 Figure 1 Construction of recombinant strains G/Dspe, G/Dsah and G/Dmsm. A:毕赤酵母SAM代谢途径. sah1:S-腺苷同型半胱氨酸水解酶基因;spe2:S-腺苷甲硫氨酸脱羧酶基因;sam:SAM合成酶基因;msm1:L-甲硫氨酰tRNA合酶基因;cys4:β-胱硫醚合成酶基因. B:重组质粒pDspeZ、pDsahZ和pDmsmZ的酶切验证. C:菌落PCR验证工程菌G/Dspe、G/Dsah和G/Dmsm A: Intracellular metabolic pathway for SAM utilization. The pathways of SAM metabolism in Pichia pastoris. sah1: S-adenosyl-L-homocysteine hydrolase gene; spe2: S-adenosylmethionine decarboxylase gene; sam: S-adenosylmethionine synthetase gene; msm1: Mitochondrial methionyl-tRNA synthetase gene; cys4: Cystathionine β-synthase gene. B: Verification of plasmids pDspeZ, pDsahZ and pDmsmZ by restriction enzyme digestion. C: Verification of engineered strains G/Dspe, G/Dsah and G/Dmsm by colony PCR. |
|
L-Met和ATP都是合成SAM的底物,增加底物浓度或降低其成本对SAM的合成有着重要的意义。构建以腺苷为底物合成ATP的重组菌可提高SAM产量并降低其生产成本[11-12]。L-Met既是合成SAM的底物,也是菌体生长的碳源和氮源,因此,L-Met的添加不仅影响SAM产量,还会对菌体的细胞代谢产生影响。L-Met作为SAM合成过程中需外源添加的底物,通常采用过量添加的方法,这种方法就会导致成本上升。有研究表明,胞内浓度过高的L-Met会抑制TCA循环和氧化磷酸化作用,造成SAM产量降低[13]。通过优化L-Met的补料策略[14],在突变酿酒酵母中使用低成本的dL-Met (混合的d-Met和L-Met)作为SAM生产的底物[15],能显著提高SAM产量。酵母细胞中L-Met的转运主要是利用MUP1和MUP3编码的甲硫氨酸透过酶。在毕赤酵母重组菌中,共表达腺苷酸激酶基因ADK1、MUP1和SAM2能提高L-Met转化效率和SAM的产量[16]。在酵母菌株中,共表达编码甲硫氨酸合成酶的Met6和SAM2可提高细胞内的L-Met水平,从而提高L-Met的利用率[17],降低SAM生产的成本。
S-腺苷同型半胱氨酸水解酶(SAH1)、S-腺苷甲硫氨酸脱羧酶(SPE2)和L-甲硫氨酰tRNA合酶(MSM1)是SAM代谢途径的关键酶,阻断这些途径可以减少SAM在胞内的消耗,提高工程菌积累SAM的能力。细胞内适度的L-Met水平有利于SAM的合成,优化L-Met添加浓度,可以提高工程菌SAM的产量。
1 材料与方法 1.1 菌株和质粒毕赤酵母(Pichia pastoris)表达质粒pGAPZ A和菌株GS115购自Invitrogen公司。大肠杆菌(Escherichia coli) DH5α保藏于本实验室,用于基因克隆,本研究所构建的其他质粒和菌株见表 1。
Plasmids or strains | Relevant features | Source or reference |
Plasmids | ||
pGAPZ A | P. pastoris expression plasmid, PGAP promoter; ble+ | Invitrogen |
pDspeZ | The spe2 gene knock out vector containing 5’spe2-ble-3’spe2 cassette; ble+ | This study |
pDsahZ | The sah1 gene knock out vector containing 5’sah1-ble-3’sah1 cassette; ble+ | This study |
pDmsmZ | The msm1 gene knock out vector containing 5’msm1-ble-3’msm1 cassette; ble+ | This study |
Strains | ||
GS115 | Commercial P. pastoris host strain; his4– | Invitrogen |
GS115/DS16 | GS115 harboring recombinant methionine adenosyltransferase gene DS16; HIS4; kan+ | [18] |
G/Dspe | The spe2 gene was knock out in GS115/DS16; spe2; ble+ | This study |
G/Dsah | The sah1 gene was knock out in GS115/DS16; sah1; ble+ | This study |
G/Dmsm | The msm1 gene was knock out in GS115/DS16; msm1; ble+ | This study |
培养基YPG、YPD、MD、BMGY、BMMY按照毕赤酵母表达系统说明书制备。
LLB培养基(g/L):胰蛋白胨10.0,酵母提取物5.0,NaCl 10.0,Zeocin 50 μg/mL。
YPDS培养基(g/L):胰蛋白胨20.0,酵母提取物10.0,葡萄糖20.0,山梨醇182.2,琼脂15.0。
BSM发酵培养基(g/L):K2SO4 18.20,CaSO4 0.93,85% H3PO4 26.80,MgSO4·7H2O 14.90,KOH 4.13,glycerol 40.00,毕赤微量元素溶液(Pichia trace minerals 1 salt solution, PTM1) 12 mL。
PTM1 (g/L):ZnCl2 20.00,KI 0.08,CoCl2 0.50,CuSO4·5H2O 6.00,MnSO4·H2O 3.00,Na2MoO4·2H2O 0.20,H3BO3 0.20,FeSO4·7H2O 65.00,生物素0.20,H2SO4 5.00。
1.3 主要试剂和仪器酵母氮源基础(yeast nitrogen base, YNB)、生物素、氨苄青霉素(ampicillin, Amp)、遗传霉素G418,Solarbio公司;ZeocinTM,Invitrogen公司;质粒小规模提取试剂盒、通用型DNA纯化回收试剂盒、RNA提取试剂盒,TIANGEN公司;2×Phanta® Max Master Mix、2×Taq Plus Master Mix、Exnase Ⅱ工具酶,Vazyme公司;限制性内切酶和DNA Marker,Thermo Fisher Scientific公司;T4 DNA Ligase,TaKaRa公司。气相色谱仪,上海海欣色谱仪器有限公司。
1.4 引物研究所用引物见表 2,由生工生物工程(上海)股份有限公司合成。
Primer name | Sequence (5′→3′) | Amplified fragment length (bp) |
sah3-F | AGCGTCGACGGTTGAAGGCCAACGCTCAGGACGT | 490 |
sah3-R | CGCGGATCCAAAGGAGGCAAAAGCTCTGTAGGTAATTAGC | |
sah5-F | AGGACTAGTGAGACAAGTATACTGATCTTCTTTCTACCTATT | 970 |
sah5-R | AAGGCGGCCGCGGTATTATTTGGTTTAGTGTAGTAGAGAGG | |
msm3-F | AACGTCGACCTGTGACTTCACAGAAAGGAAACTAAAC | 516 |
msm3-R | CGCGGATCCGGCGTAGAGCCCTTGAGAAATTTT | |
msm5-F | AGGACTAGTCAGCAGTTTGGTCAATACAACCCTG | 997 |
msm5-R | AAGGCGGCCGCACGTAGATGGTAAATACAGTGGTTAAGTGC | |
spe3-F | AACGAGCTCGCGTCGACTTGGAATGAAAACTTTGAAAGAGACGG | 513 |
spe3-R | CGCGGATCCATGTTACGAGGCTGTACTGAAATATTTGG | |
spe5-F | AGGACTAGTCGGGAAATGACATCCTATAGGCGAATC | 661 |
spe5-R | AACGAGCTCGGCGGCCGCATTGCCGGGATTAGAATGAAAAATTGTG | |
zeocin-F | AAAGCGGCCGCTAACCCACACACCATAGCTTCAAAATGT | 1 780 |
zeocin-R | AACGTCGACAGCTTGCAAATTAAAGCCTTCGAG | |
sah5-F0 | CTTGCCAATTTTTCAAAAGCAATTC | 1 106 |
zeocin R0 | ACATTTTGAAGCTATGGTGTGTGGG | |
msm5-F0 | GGGGAATGTCTTTCTATCAACAACC | 1 100 |
zeocin R0 | ACATTTTGAAGCTATGGTGTGTGGG | |
spe5-F0 | GGCCTTCCTATAATGCGATGACTTC | 861 |
zeocin R0 | ACATTTTGAAGCTATGGTGTGTGGG |
挑取MD平板活化的毕赤酵母重组菌GS115/DS16单菌落接种至YPD培养基中,于30 ℃、220 r/min条件下培养过夜;以1%接种量转接至100 mL YPD培养基,培养至OD600约为0.8−1.2,用于感受态细胞制备。毕赤酵母感受态细胞的制备和电击转化参照毕赤酵母表达手册进行。质粒pDsahZ、pDspeZ、pDmsmZ分别经SpeⅠ/BamHⅠ酶切线性化,然后电击转化GS115/DS16感受态细胞。电转后迅速加入1 mL冰预冷的无菌1 mol山梨醇,温和混匀,取100 μL涂布于YPDS平板(含100 μg/mL Zeocin),于30 ℃培养3 d,筛选转化子。
1.6 毕赤酵母工程菌摇瓶发酵生产SAM从MD平板上挑取单菌落接种至3 mL YPG培养基,30 ℃、220 r/min培养过夜,取1 mL培养液于25 mL BMGY中进行种子扩大培养,培养16 h (OD600约为20.0)。收集BMGY培养的种子液,于4 000 r/min离心5 min,弃上清,菌体重悬于25 mL BSM培养基(250 mL摇瓶),于30 ℃、220 r/min甲醇诱导培养96 h。每隔12 h用气相色谱测定甲醇残留浓度,添加甲醇至终浓度为1.2% (体积分数);每隔24 h添加一定量的L-Met,用5 mol/L氢氧化钾调节pH (5.5−6.0)。各工程菌分别选取6个转化子用摇瓶发酵,设3次生物学重复。
1.7 SAM浓度和SAM合成酶酶活检测胞内SAM浓度和SAM合成酶(MAT)的酶活测定用HPLC检测[19],采用Thermo-BioBasic SCX色谱柱(4.6 mm×250 mm, 5 µm)。流动相为:A:5 mmol/L甲酸铵,pH 4.0;B:500 mmol/L甲酸铵,pH 4.0。洗脱方式:0.0−5.0 min,100% A;5.01−9.00 min,10% A,90% B;9.01−12.00 min,100% B;12.01−14.00 min,100% A。设定流速为1 mL/min,检测波长254 nm。1个MAT酶活单位定义为:37 ℃条件下,1 h内转化生成1 µmol的SAM所对应的酶量。
1.8 气相色谱测定甲醇浓度每隔12 h取BSM发酵培养液1 mL,常温下8 000 r/min离心2 min,取上清,经滤头(0.22 µm)过滤,用于甲醇浓度测定。使用气相色谱仪,填料为chromosorbl01型,色谱柱长l m、内径2 mm,柱炉温度125 ℃,汽化室温度170 ℃,检测器温度170 ℃,选用H2作为火焰检测器燃气(流量为30 mL/min),空气为助燃气(流量为300 mL/min),N2作为载气(流量为15 mL/min),采用CDMC色谱工作站进行分析。
2 结果与分析 2.1 敲除spe2、sah1和msm1的工程菌构建 2.1.1 基因敲除质粒的构建阻断SAM在胞内的消耗途径(图 1A)能进一步提高毕赤酵母工程菌GS115/DS16[18]的SAM产量。为了敲除DS16的S-腺苷同型半胱氨酸水解酶基因sah1、S-腺苷甲硫氨酸脱羧酶基因spe2和L-甲硫氨酰tRNA合成酶基因msm1,构建了基因敲除载体pDsahZ、pDspeZ和pDmsmZ。首先,以毕赤酵母菌GS115/DS16基因组DNA为模板,用引物对spe5-F/spe5-R、spe3-F/spe3-R分别扩增基因spe2 5′端和3′端片段。然后,将基因spe2 5′端和3′端片段分别克隆到质粒pGAPZ A,构建质粒pDspe。最后,以pGAPZ A质粒为模板,用引物对zeocinF/zeocinR扩增zeocin抗性基因ble片段,并克隆到pDspe质粒的NotⅠ/SalⅠ位点,获得用于敲除spe2的质粒pDspeZ。
以GS115/DS16的基因组DNA为模板,用引物对sah5-F/sah5-R、sah3-F/sah3-R分别扩增sah1的5′端和3′端片段;分别将sah1的5′和3′片段替换载体pDspeZ中spe2的5′和3′片段,获得质粒pDsahZ。同样地,分别将msm1的5′和3′片段替换载体pDspeZ中spe2的5′和3′片段,构建质粒pDmsmZ。质粒pDspeZ和pDsahZ、pDmsmZ的酶切验证正确(图 1B)。
2.1.2 基因敲除工程菌的构建质粒pDspeZ、pDsahZ和pDmsmZ经SpeⅠ/BamHⅠ酶切线性化,分别电击转化GS115/DS16,获得工程菌G/Dspe、G/Dsah和G/Dmsm。分别用引物对zeocin R0/sah5-F0、zeocin R0/msm5-F0和zeocin R0/spe5-F0对G/Dspe、G/Dsah和G/Dmsm转化子进行PCR验证。对应的工程菌G/Dsah和G/Dmsm扩增出1.1 kb片段,G/Dspe扩增出0.8 kb片段(图 1C)。
2.2 阻断SAM分解代谢途径对工程菌生长的影响在MD平板上,工程菌G/Dspe、G/Dmsm和G/Dsah均能正常生长(图 2A),说明敲除spe2、msm1和sah1不会导致工程菌变成营养缺陷型。
![]() |
图 2 毕赤酵母工程菌在MD (A)、BMGY (B)、BMMY (C)和BSM (D)培养基中的生长 Figure 2 Cell growth of engineered strains on MD medium (A) and in BMGY medium (B), BMMY medium (C), BSM medium (D). |
|
以甘油为碳源时检测了工程菌在BMGY培养基中的生长情况。从MD平板上挑取单菌落接种至3 mLYPG液体培养基中培养过夜,再取1 mL培养液置于25 mL BMGY中进行培养。结果显示,与出发菌GS115/DS16相比,工程菌G/Dspe、G/Dmsm和G/Dsah的生长无显著差异;培养16 h菌体生长进入平稳期(图 2B)。
在甲醇诱导培养基中(BMMY和BSM)检测了工程菌的生长。取BMGY培养16 h的培养液,于4 000 r/min离心5 min,弃上清,菌体重悬于25 mL BMMY或BSM中。工程菌于30 ℃、220 r/min和甲醇诱导条件下培养96 h,每隔12 h添加甲醇至终浓度为1.2% (体积分数)。在甲醇诱导培养基BMMY中,与出发菌株GS115/DS16相比,工程菌G/Dsah生长较缓慢,G/Dspe和G/Dmsm无显著差异(图 2C);在基础盐培养基BSM中,工程菌与出发菌的生长趋势相似且未出现停滞期,菌体生长呈持续上升的趋势,菌体量显著高于BMMY培养条件下(图 2D)。因此,后继发酵SAM培养基采用生长较好的BSM培养基。
2.3 阻断SAM分解代谢途径对其产量的影响从工程菌分别挑选6个阳性转化子在摇瓶中检测其SAM产量,在基础盐培养基BSM中发酵,甲醇诱导12 h后,每隔24 h添加L-Met至终浓度为0.10% (质量体积分数),诱导96 h后测定各工程菌的菌体量和胞内SAM浓度。
与对照菌GS115/DS16的单位菌体干重SAM产量(98.8 mg/g-DCW)相比,工程菌G/Dspe、G/Dsah和G/Dmsm的SAM产量分别提高了29.3%、55.6%和24.8%,达到127.7、153.7和123.3 mg/g-DCW;其中G/Dsah的SAM产量提高幅度最大,提高了55.6% (图 3)。检测不同工程菌胞内的MAT酶活,与对照菌GS115/DS16的MAT酶活[(236.5±19.4) U/g-DCW]相比,各工程菌的MAT酶活[G/Dspe:(244.7±20.8) U/g-DCW;G/Dsah:(228.4±18.6) U/g DCW;G/Dmsm:(240.2±18.5) U/g-DCW]无显著性差异,说明工程菌SAM产量的提高并非其MAT酶活提高造成。
![]() |
图 3 工程菌G/Dspe、G/Dsah和G/Dmsm转化子的SAM产量盒须图 Figure 3 Box-plot representation of SAM specific production of G/Dspe, G/Dsah and G/Dmsm transformants. 每个工程菌挑选6个转化子进行摇瓶发酵,诱导96 h,将转化子的单位菌体干重SAM产量做成盒须图. 在盒须图中,—:样本中最大值和最小值;□:平均值;长方形盒子内的样本数占75%. 分别对工程菌和对照菌GS115/DS16的数据进行t检验显著性分析,*:P < 0.05 Six transformants from each engineered stain were cultivated in shake flask for 96 h. Box-plot is used to show the distribution of SAM specific production. In box plot, —: The maximum and minimum values in the sample; □: Average value; the box represents 75% of the sample size. *: P < 0.05 indicate significant differences between engineered strains and parental strain GS115/DS16 by Student's t-test. |
|
L-Met直接参与细胞中SAM的合成,利用微生物合成SAM时,优化L-Met添加策略可提高SAM产量。但额外添加的L-Met浓度过高时会抑制MAT酶活,对菌体生长也有影响[20]。因此,我们研究了不同的L-Met添加量(0.06%和0.10%)对工程菌SAM产量和菌体生长的影响。
2.4.1 L-Met添加量对工程菌G/Dspe合成SAM的影响在基础盐培养基BSM中,甲醇诱导96 h,诱导期间每隔24 h加入L-Met至终浓度为0.06%或0.10% (质量体积分数)。不同的L-Met添加量对工程菌G/Dspe的生长和单位菌体干重SAM产量无显著影响(图 4)。
![]() |
图 4 L-Met添加量对工程菌G/Dspe生长(A)和SAM产量(B)的影响 Figure 4 The influence of L-Met addition on cell growth (A) and SAM accumulation (B) of engineered strain G/Dspe. |
|
不同L-Met添加量条件下,工程菌G/Dsah的生长无显著差异。当L-Met添加量为0.10%时,G/Dsah的单位菌体干重SAM产量为(155.5±9.5) mg/g-DCW。L-Met添加量为0.06%时,G/Dsah的单位菌体干重SAM产量达到(196.6±12.2) mg/g-DCW,比0.10% L-Met添加量时提高了26.4% (图 5)。因此,0.06%的L-Met添加量更适合G/Dsah生产SAM。
![]() |
图 5 L-Met添加量对工程菌G/Dsah的生长(A)和SAM产量(B)的影响 Figure 5 The influence of L-Met addition on cell growth (A) and SAM accumulation (B) of engineered strain G/Dsah. 对数据进行t检验显著性分析. **:P < 0.01 **: P < 0.01 indicate significant differences between the results on different L-Met concentration by Student's t-test. |
|
当L-Met添加量为0.06%时,在发酵后期(72−96 h),工程菌G/Dmsm的生物量和单位菌体干重SAM产量显著高于L-Met添加量为0.10%时(图 6)。当L-Met添加量为0.10%时,G/Dmsm的单位菌体干重SAM产量为(136.8±7.1) mg/g-DCW,L-Met添加量为0.06%时,G/Dmsm的菌体量和单位菌体干重SAM产量[(176.4±9.2) mg/g-DCW]分别比0.10% L-Met添加量时提高了17.2%和28.9%。检测了工程菌G/Dmsm胞内的MAT酶活,当L-Met添加量为0.06%时MAT酶活为(274.4±21.3) U/g-DCW,较优化前[(240.2±18.5) U/g-DCW]提高了14.2%。结果表明,0.06% L-Met添加量比0.10% L-Met添加量更适合G/Dmsm生产SAM。
![]() |
图 6 L-Met添加量对工程菌G/Dmsm生长(A)和SAM产量(B)的影响 Figure 6 The influence of L-Met addition on cell growth (A) and SAM accumulation (B) of engineered strain G/Dmsm. 对数据进行t检验显著性分析. *:P < 0.05;**:P < 0.01 *: P < 0.05; **: P < 0.01 indicate significant differences between the results on different L-Met concentration by Student's t-test. |
|
本研究通过敲除重组菌GS115/DS16 (过表达高活性MAT的毕赤酵母重组菌)的S-腺苷同型半胱氨酸水解酶基因sah1、S-腺苷甲硫氨酸脱羧酶基因spe2和L-甲硫氨酰tRNA合酶基因msm1,分别抑制了SAM经转甲基向AdoHcy转化、经脱羧向脱羧S-腺苷甲硫氨酸转化以及向L-甲硫氨酰-tRNA转化,减少SAM在胞内的消耗利用,提高了工程菌积累SAM的能力。通过优化L-Met添加量,进一步提高了工程菌G/Dmsm和G/Dsah的SAM产量。
在毕赤酵母中,敲除spe2、sah1和msm1不会造成菌株的营养缺陷(图 2A)。SAM脱羧转化为脱羧S-腺苷甲硫氨酸是多胺合成的重要途径[21]。在粟酒裂殖酵母(Schizosaccharomyces pombe)和酿酒酵母(Saccharomyces cerevisiae)中,敲除S-腺苷甲硫氨酸脱羧酶基因spe2后,细胞不能合成亚精胺或精胺,耗尽胞内多胺后停止成长,会造成亚精胺营养缺陷型,培养基中需额外添加亚精胺菌体才能生长[22-23]。但我们的结果显示,敲除spe2后,工程菌G/Dspe在BMMY培养基或BSM基础盐培养基中都能正常生长。与对照菌GS115/DS16相比,G/Dspe菌株的单位菌体干重SAM产量提高了29.3%。
S-腺苷高半胱氨酸(AdoHcy)作为SAM众多转甲基化反应的共同产物,胞内的SAM/AdoHcy值处于一个稳定水平。SAH的功能很可能与L-Met/半胱氨酸的体内平衡有关,但敲除sah1并不影响毕赤酵母的正常生长;只有在缺乏硫同化的情况下,sah1在酵母中才是必需的[24]。合成培养基BMMY中,与出发菌株GS115/DS16相比,G/Dsah菌株的生长较缓慢;而在基础盐培养基BSM中,G/Dsah菌株的生长与对照菌无显著差异(图 2C、2D)。这很可能是因为与合成培养基BMMY相比,基础盐培养基BSM中含有更丰富的硫,可以补偿工程菌由于sah1敲除后不能进行的硫循环。sah1敲除后抑制了G/Dsah胞内的转甲基和转巯基作用,一定程度上减少了SAM的转化利用。因此,G/Dsah菌株的单位菌体干重SAM产量提高幅度最大,提高了55.6%。类似的研究发现,在日本清酒酵母中引入突变的sah1并敲除野生型SAH1后SAM产量提高了2.5倍[25]。
参与SAM合成的底物L-Met经L-甲硫氨酰tRNA合酶MSM1催化[10],先形成L-甲硫氨酰-tRNA,再生成N-甲酰-甲硫氨酰-tRNA,参与生理反应。敲除msm1阻断了工程菌G/Dmsm由L-Met生成L-甲硫氨酰-tRNA的途径,一定程度上提高了胞内的L-Met浓度,但并未影响其正常生长。在BMMY和BSM培养基中,G/Dmsm菌株和对照菌的生长曲线基本持平。细胞内L-Met浓度增加有利于SAM的合成,与对照菌DS16相比,G/Dmsm菌株的单位菌体干重SAM产量提高了24.8%。
L-Met是细胞内重要的含硫化合物,参与许多重要的生理代谢,包括合成蛋白质和活性甲基供体SAM。在植物的相关研究中发现,Lemna pausicostata将细胞中80%的L-Met用于合成SAM[26]。利用微生物合成SAM时,优化发酵培养中的L-Met添加量可提高SAM产量并降低发酵成本。但添加的L-Met浓度过高会抑制MAT酶活和菌体生长[20]。与出发菌株GS115/DS16相比,工程菌G/Dspe、G/Dmsm和G/Dsah胞内的L-Met浓度很可能会有不同程度的增加。发酵过程中添加相同量的L-Met,各工程菌的L-Met消耗量可能会由于胞内原有积累程度的不同而改变。敲除sah1后可能会影响到SAM合成反应底物L-Met的循环,从而影响SAM的积累。L-Met添加量为0.06%时,G/Dsah的单位菌体干重SAM产量比0.10% L-Met添加量时提高了26.4%。MSM1直接和L-Met代谢相关,敲除msm1很可能会提高胞内的L-Met浓度。L-Met添加量为0.06%时,G/Dmsm的菌体量、单位菌体干重SAM产量和MAT酶活水平比0.10% L-Met添加量时分别提高了17.2%、28.9%和14.2%。这说明低浓度的L-Met添加不仅有利于G/Dmsm菌体的生长,而且对MAT酶活和SAM产量也有促进作用。L-Met作为底物,是SAM生物合成的瓶颈之一,发酵过程要额外补加;当L-Met添加量较高时(0.15%),酵母的TCA循环和氧化磷酸化作用被显著抑制,胞内ATP也基本被耗尽[13]。ATP的减少不利于细胞的增殖,也很可能成为SAM生产的限制步骤。因此,相较于高浓度的L-Met添加量,在保证底物供应的情况下,低浓度L-Met添加量(0.06%)更适于工程菌SAM的生产。
本研究通过阻断毕赤酵母胞内SAM的转化利用途径,进一步提高了工程菌积累SAM的能力。与出发菌株相比,工程菌G/Dspe、G/Dsah和G/Dmsm的单位菌体干重SAM产量分别提高了29.3%、55.6%和24.8%。通过优化L-Met添加量,G/Dsah和G/Dmsm的单位菌体干重SAM产量分别达到(196.6±12.2) mg/g-DCW和(176.4±9.2) mg/g-DCW,是出发菌的2.0倍和1.8倍。通过代谢工程改造对SAM代谢途径相关基因进行多基因的过表达或敲除,毕赤酵母和酿酒酵母的单位菌体干重SAM产量最高可达到186.3 mg/g-DCW[4]和455.1 mg/g-DCW[3]。本研究构建的工程菌G/Dsah,在优化L-Met添加量后,单位菌体干重SAM产量达到目前报道的毕赤酵母最高水平;单基因敲除工程菌的SAM产量较出发菌的均有提高,双基因或三基因组合敲除后,工程菌的SAM产量很可能会进一步提升。由于各工程菌的基因型不同,其生理生化特性存在差异,SAM发酵的最优条件也不尽相同,因此,经发酵调控优化后工程菌的SAM产量还有进一步提升的潜力。
[1] |
MISCHOULON D, ALPERT JE, ARNING E, BOTTIGLIERI T, FAVA M, PAPAKOSTAS GI. Bioavailability of S-adenosyl methionine and impact on response in a randomized, double-blind, placebo-controlled trial in major depressive disorder[J]. The Journal of Clinical Psychiatry, 2012, 73(6): 843-848. DOI:10.4088/JCP.11m07139 |
[2] |
PARASHAR S, CHEISHVILI D, ARAKELIAN A, HUSSAIN Z, TANVIR I, KHAN HA, SZYF M, RABBANI SA. S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: therapeutic and diagnostic clinical applications[J]. Cancer Medicine, 2015, 4(5): 732-744. DOI:10.1002/cam4.386 |
[3] |
CHEN HL, ZHU NQ, WANG Y, GAO XX, SONG YH, ZHENG J, PENG JP, ZHANG X. Increasing glycolysis by deletion of kcs1 and arg82 improved S-adenosyl-L-methionine production in Saccharomyces cerevisiae[J]. AMB Express, 2021, 11(1): 20. DOI:10.1186/s13568-021-01179-8 |
[4] |
QIN XL, LU JJ, ZHANG Y, WU XL, QIAO XF, WANG ZP, CHU J, QIAN JC. Engineering Pichia pastoris to improve S-adenosyl-L-methionine production using systems metabolic strategies[J]. Biotechnology and Bioengineering, 2020, 117(5): 1436-1445. DOI:10.1002/bit.27300 |
[5] |
XU CT, SHI ZW, SHAO JQ, YU CK, XU ZN. Metabolic engineering of Lactococcus lactis for high level accumulation of glutathione and S-adenosyl-L-methionine[J]. World Journal of Microbiology & Biotechnology, 2019, 35(12): 185. |
[6] |
HAYAKAWA K, MATSUDA F, SHIMIZU H. 13 C-metabolic flux analysis of ethanol-assimilating Saccharomyces cerevisiae for S-adenosyl-L-methionine production[J]. Microbial Cell Factories, 2018, 17(1): 82. DOI:10.1186/s12934-018-0935-6 |
[7] |
GODSPOWER H, QIAO ZN, XU MJ, RAO ZM. Expression and catalytic application of S-adenosylmethionine synthase from different sources in Escherichia coli[J]. Food and Fermentation Industries, 2022. Hero Nmeri Godspower, 乔郅钠, 徐美娟, 饶志明. 不同来源S-腺苷甲硫氨酸合酶在大肠杆菌中的表达及催化应用[J]. 食品与发酵工业, 2022. DOI:10.13995/j.cnki.11-1802/ts.031256 |
[8] |
QIN XL, QIAN JC, YAO GF, ZHUANG YP, ZHANG SL, CHU J. GAP promoter library for fine-tuning of gene expression in Pichia pastoris[J]. Applied and Environmental Microbiology, 2011, 77(11): 3600-3608. DOI:10.1128/AEM.02843-10 |
[9] |
CHEN HL, WANG ZL, CAI HB, ZHOU CL. Progress in the microbial production of S-adenosyl-L-methionine[J]. World Journal of Microbiology & Biotechnology, 2016, 32(9): 153. |
[10] |
SERRE L, VERDON G, CHOINOWSKI T, HERVOUET N, RISLER JL, ZELWER C. How methionyl-tRNA synthetase creates its amino acid recognition pocket upon L-methionine binding[J]. Journal of Molecular Biology, 2001, 306(4): 863-876. DOI:10.1006/jmbi.2001.4408 |
[11] |
JIANG LL, WU L, XU HX, HUANG JL, ZHANG YJ, XU Q, YANG Y. Construction of ATP synthetic strain and its application in the production of S-adenosylmethionine[J]. Biotechnology Bulletin, 2019, 35(6): 221-226. (in Chinese) 江林林, 吴磊, 许海霞, 黄坚丽, 张永进, 徐期, 杨勇. ATP合成菌株的构建及用于联合生产S-腺苷甲硫氨酸[J]. 生物技术通报, 2019, 35(6): 221-226. DOI:10.13560/j.cnki.biotech.bull.1985.2018-0977 |
[12] |
ZHENG JR, CHEN LF, YANG SY, ZHU JR. Synthesis of S-adenosylmethionine from adenine in constructing engineered strain and the screening of high yield strain[J]. Food and Fermentation Industries, 2014, 40(9): 23-28. (in Chinese) 郑计瑞, 陈丽芬, 杨善岩, 朱家荣. 腺嘌呤合成腺苷甲硫氨酸的工程菌构建及其高产株筛选[J]. 食品与发酵工业, 2014, 40(9): 23-28. |
[13] |
KENSHI H, FUMIO M, HIROSHI S. Metabolome analysis of Saccharomyces cerevisiae and optimization of culture medium for S-adenosyl-L-methionine production[J]. AMB Express, 2016, 6(1): 38. DOI:10.1186/s13568-016-0210-3 |
[14] |
HU H, QIAN JC, CHU J, WANG YH, ZHUANG YP, ZHANG SL. Optimization of L: -methionine feeding strategy for improving S-adenosyl-L: -methionine production by methionine adenosyltransferase overexpressed Pichia pastoris[J]. Applied Microbiology and Biotechnology, 2009, 83(6): 1105-1114. DOI:10.1007/s00253-009-1975-y |
[15] |
LIU W, TANG DD, SHI R, LIAN JZ, HUANG L, CAI J, XU ZN. Efficient production of S-adenosyl-L-methionine from dl-methionine in metabolic engineered Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2019, 116(12): 3312-3323. DOI:10.1002/bit.27157 |
[16] |
RAVI KANT H, BALAMURALI M, MEENAKSHISUNDARAM S. Enhancing precursors availability in Pichia pastoris for the overproduction of S-adenosyl-L-methionine employing molecular strategies with process tuning[J]. Journal of Biotechnology, 2014, 188: 112-121. DOI:10.1016/j.jbiotec.2014.08.017 |
[17] |
CHEN H, WANG Z, WANG Z, DOU J, ZHOU C. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae[J]. World Journal of Microbiology & Biotechnology, 2016, 32(4): 56. |
[18] |
HU H, QIAN JC, CHU J, WANG Y, ZHUANG YP, ZHANG SL. DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-L-methionine production in Pichia pastoris[J]. Journal of Biotechnology, 2009, 141(3/4): 97-103. |
[19] |
YAO GF, QIN XL, CHU J, WU XL, QIAN JC. Expression, purification, and characterization of a recombinant methionine adenosyltransferase pDS16 in Pichia pastoris[J]. Applied Biochemistry and Biotechnology, 2014, 172(3): 1241-1253. DOI:10.1007/s12010-013-0594-3 |
[20] |
HE JY, DENG JJ, ZHENG YH, GU J. A synergistic effect on the production of S-adenosyl-L-methionine in Pichia pastoris by knocking in of S-adenosyl-L-methionine synthase and knocking out of cystathionine-beta synthase[J]. Journal of Biotechnology, 2006, 126(4): 519-527. DOI:10.1016/j.jbiotec.2006.05.009 |
[21] |
BALASUNDARAM D, DINMAN JD, TABOR CW, TABOR H. SPE1 and SPE2: two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in Saccharomyces cerevisiae[J]. International Journal of Molecular Sciences, 1994, 176(22): 7126-7128. |
[22] |
CHATTOPADHYAY MANAS K, WHITE TC, HERBERT T. Absolute requirement of spermidine for growth and cell cycle progression of fission yeast (Schizosaccharomyces pombe)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10330-10334. |
[23] |
CHATTOPADHYAY MK, TABOR CW, TABOR H. Spermidine but not spermine is essential for hypusine biosynthesis and growth in Saccharomyces cerevisiae: spermine is converted to spermidine in vivo by the FMS1-amine oxidase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(24): 13869-13874. |
[24] |
NERMINA M, INGO S, HEIMO W, GERALD R, KOHLWEIN SEPP D, OKSANA T. S-adenosyl-L-homocysteine hydrolase, key enzyme of methylation metabolism, regulates phosphatidylcholine synthesis and triacylglycerol homeostasis in yeast: implications for homocysteine as a risk factor of atherosclerosis[J]. The Journal of Biological Chemistry, 2008, 283(35): 23989-23999. |
[25] |
ANO A, SUEHIRO D, CHA-AIM K, ARITOMI K, PHONIMDAENG P, NONTASO N, HOSHIDA H, MIZUNUMA M, MIYAKAWA T, AKADA R. Combinatorial gene overexpression and recessive mutant gene introduction in sake yeast[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(3): 633-640. |
[26] |
STÉPHANE R, BLOCK MARYSE A, PASCAL R, SAMUEL J, GILLES C, FABRICE R, ROLAND D. Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol[J]. The Journal of Biological Chemistry, 2004, 279(21): 22548-22557. |