科微学术

微生物学通报

微生物原位产铁基纳米颗粒提高原油采收率
作者:
基金项目:

国家自然科学基金(52474053,51774257);中国地质大学(北京)大学生创新创业训练计划(202411415054)


Iron nano-particles produced by microorganisms in situ enhance oil recovery
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】 基于微生物原位产纳米可产生驱油用纳米流体设想。【目的】 将微生物产纳米能力与纳米流体提高原油采收率技术相结合,进行微生物原位产铁基纳米颗粒提高原油采收率研究。【方法】 从页岩岩屑获取实验所用菌株,经基因组测序分析对菌株进行鉴定,建立邻菲罗啉法Fe(II)浓度标准曲线测定菌株的Fe(III)还原能力,通过扫描电镜(scanning electron microscopy, SEM)、透射电镜(transmission electron microscopy, TEM)、Zeta电位分析对菌株与赤铁矿(Fe2O3)作用产纳米颗粒形态与粒径进行表征,通过油/水/岩界面动态润湿角测定与油滴剥离及运移实验对微生物产纳米进行驱油性能分析,最后探究微生物产纳米颗粒提高原油采收率的能力。【结果】 经鉴定分离的菌株为吉尔卡湖希瓦氏菌(Shewanella chilikensis),编号为FR1;菌株FR1能使赤铁矿(Fe2O3)快速还原,铁还原率达到65.26%;与赤铁矿(Fe2O3)作用10 d经显微电镜观察显示:在细菌细胞壁上、细胞内部及细菌蚕食的赤铁矿表面都附着大量的球状纳米颗粒;通过粒径分析表明未接菌的空白对照粒径>1 000 nm的颗粒含量达到88.05%,接菌后主要转化为尺寸在10−1 000 nm的纳米级颗粒;这些纳米颗粒作用于原油和岩石界面能明显改变油润湿界面的润湿性,并且对固体界面上的原油进行有效剥离;通过FR1原位产生的纳米流进行岩心驱替,排出液水相表面张力下降到27.9−28.6 mN/m,提高原油采收率为16.38%−17.76%。【结论】 研究结果为微生物提高原油采收率提供了一种新的技术思路。

    Abstract:

    [Background] Nano-particles produced by microorganisms in situ can enhance oil recovery. [Objective] To study the effects of iron nano-particles produced by microorganisms in situ on oil recovery by combining microbial production of nanoparticles with the technology of nano-fluids enhancing oil recovery. [Methods] We isolated the strains from shale rock debris and identified the strains by genome sequencing. Subsequently, we established the standard curve of Fe(II) concentration by the o-phenanthroline method to determine the Fe(III) reduction ability of the strain, and characterized the morphology and particle size of nano-particles produced by strain interaction with hematite (Fe2O3) by scanning electron microscopy, transmission electron microscopy, and Zeta potential analysis. Finally, we investigated the ability of the nano-particles to enhance oil recovery by determining the dynamic wetting angle at oil/water/rock interface and conducting oil droplet stripping and transport experiments. [Results] The isolated strain was identified as Shewanella chilikensis FR1. FR1 could rapidly reduce Fe2O3, with the iron reduction rate reaching 65.26%. After the strain was interacted with Fe2O3 for 10 days, a large number of spherical nano-particles were observed on the surface of hematite on the bacterial cell walls, inside of the cells, and eaten by bacteria. The particles with the size >1 000 nm accounted for 88.05% in the blank control without strain inoculation, and those in the bacterial inoculation group mainly had the size of 10–1 000 nm. The nanoparticles in the oil-rock interface could obviously change the wettability of oil-wetted interfaces and effectively strip crude oil on the solid interface. The nano-particles generated by FR1 in situ could be used for core flooding, decreasing the surface tension of the aqueous phase of the discharged fluid to 27.9–28.6 mN/m and increasing the oil recovery to 16.38%–17.76%. [Conclusion] The results of this study provide a new technical idea for microbial enhanced oil recovery (MEOR).

    参考文献
    [1] YAKASAI F, JAAFAR MZ, BANDYOPADHYAY S, AGI A, SIDEK MA. Application of iron oxide nanoparticles in oil recovery: a critical review of the properties, formulation, recent advances and prospects[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109438.
    [2] ZOU CN, YANG Z, ZHU RK, ZHANG GS, HOU LH, WU ST, TAO SZ, YUAN XJ, DONG DZ, WANG YM, WANG L, HUANG JL, WANG SF. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica (English Edition), 2015, 89(3): 938-971.
    [3] SUN XF, ZHANG YY, CHEN GP, GAI ZY. Application of nanoparticles in enhanced oil recovery: a critical review of recent progress[J]. Energies, 2017, 10(3): 345.
    [4] LIU ZX, LIANG Y, WANG Q, GUO YJ, GAO M, WANG ZB, LIU WL. Status and progress of worldwide EOR field applications[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107449.
    [5] OLAJIRE AA. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: prospects and challenges[J]. Energy, 2014, 77: 963-982.
    [6] 吴迪. 低渗透油田微生物代谢产物驱油技术研究[D]. 大庆: 东北石油大学硕士学位论文, 2017. WU D. Study on oil displacement technology of microbial metabolites in low permeability oilfield[D]. Daqing: Master’s Thesis of Northeast Petroleum University, 2017 (in Chinese).
    [7] 汪卫东. 微生物采油技术研究进展与发展趋势[J]. 油气地质与采收率, 2021, 28(2): 1-9. WANG WD. Research advance and development trend in microbial enhanced oil recovery technology[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(2): 1-9 (in Chinese).
    [8] NIENHAUS K, WANG H, NIENHAUS GU. Nanoparticles for biomedical applications: exploring and exploiting molecular interactions at the nano-bio interface[J]. Materials Today Advances, 2020, 5: 100036.
    [9] SARAVANAN A, KUMAR PS, VARDHAN KH, JEEVANANTHAM S, KARISHMA SB, YAASHIKAA PR, VELLAICHAMY P. A review on systematic approach for microbial enhanced oil recovery technologies: opportunities and challenges[J]. Journal of Cleaner Production, 2020, 258: 120777.
    [10] LAZAR I, PETRISOR IG, YEN TF. Microbial enhanced oil recovery (MEOR)[J]. Petroleum Science and Technology, 2007, 25(11): 1353-1366.
    [11] WANG XT, LIU B, LI XZ, LIN W, LI DA, DONG H, WANG L. Biosurfactants produced by novel facultative-halophilic Bacillus sp. XT-2 with biodegradation of long chain n-alkane and the application for enhancing waxy oil recovery[J]. Energy, 2022, 240: 122802.
    [12] BEVERIDGE TJ, MURRAY RG. Sites of metal deposition in the cell wall of Bacillus subtilis[J]. Journal of Bacteriology, 1980, 141(2): 876-887.
    [13] OVES M, KHAN MS, ZAIDI A, AHMED AS, AHMED F, AHMAD E, SHERWANI A, OWAIS M, AZAM A. Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia[J]. PLoS One, 2013, 8(3): e59140.
    [14] PRASAD SR, TELI SB, GHOSH J, PRASAD NR, SHAIKH VS, NAZERUDDIN GM, AL-SEHEMI AG, PATEL I, SHAIKH YI. A review on bio-inspired synthesis of silver nanoparticles: their antimicrobial efficacy and toxicity[J]. Engineered Science, 2021, 16: 90-128.
    [15] KHALIL AT, OVAIS M, IQBAL J, ALI A, AYAZ M, ABBAS M, AHMAD I, DEVKOTA HP. Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics[J]. Seminars in Cancer Biology, 2022, 86: 693-705.
    [16] DIVANDARI H, HEMMATI-SARAPARDEH A, SCHAFFIE M, RANJBAR M. Integrating synthesized citric acid-coated magnetite nanoparticles with magnetic fields for enhanced oil recovery: experimental study and mechanistic understanding[J]. Journal of Petroleum Science and Engineering, 2019, 174: 425-436.
    [17] 丁小惠, 周丹, 吴凯, 李栓, 贺勇, 余波, 陈丽. 纳米乳液渗吸驱油剂性能评价与应用[J]. 油田化学, 2022, 39(4): 651-657. DING XH, ZHOU D, WU K, LI S, HE Y, YU B, CHEN L. Performance evaluation and application of nanoemulsion imbibition oil-displacing agent[J]. Oilfield Chemistry, 2022, 39(4): 651-657 (in Chinese).
    [18] ESMAEILNEZHAD E, CHOI HJ, SCHAFFIE M, GHOLIZADEH M, RANJBAR M. Characteristics and applications of magnetized water as a green technology[J]. Journal of Cleaner Production, 2017, 161: 908-921.
    [19] MAJEED S, DANISH M, MOHAMAD IBRAHIM MN, SEKERI SH, ANSARI MT, NANDA A, AHMAD G. Bacteria mediated synthesis of iron oxide nanoparticles and their antibacterial, antioxidant, cytocompatibility properties[J]. Journal of Cluster Science, 2021, 32(4): 1083-1094.
    [20] ALI A, AASIM M, KÜBRA Ç, NADEEM MA, BALOCH FS. Frontiers in bacterial-based green synthesized nanoparticles (NPs): a sustainable strategy for combating infectious plant pathogens[J]. Biocatalysis and Agricultural Biotechnology, 2024, 60: 103293.
    [21] KAZEMZADEH Y, DEHDARI B, ETEMADAN Z, RIAZI M, SHARIFI M. Experimental investigation into Fe3O4/SiO2 nanoparticle performance and comparison with other nanofluids in enhanced oil recovery[J]. Petroleum Science, 2019, 16(3): 578-590.
    [22] REZVANI H, KAZEMZADEH Y, SHARIFI M, RIAZI M, SHOJAEI S. A new insight into Fe3O4-based nanocomposites for adsorption of asphaltene at the oil/water interface: an experimental interfacial study[J]. Journal of Petroleum Science and Engineering, 2019, 177: 786-797.
    [23] WASAN DT, NIKOLOV AD. Spreading of nanofluids on solids[J]. Nature, 2003, 423(6936): 156-159.
    [24] JIA LL, ZHONG LG, LI SH, LIU YH, HU CH, WANG GD, GONG YN, SHANG C, ZHANG XC, HAN YT, LI J. Study of the liquid resistance effect of water-in-oil emulsions in porous media[J]. Petroleum Science, 2024, 21(6): 4165-4175.
    [25] GREENE AC, PATEL BK, SHEEHY AJ. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir[J]. International Journal of Systematic Bacteriology, 1997, 47(2): 505-509.
    [26] CUI K, SUN SS, XIAO M, LIU TJ, XU QS, DONG HH, WANG D, GONG YJ, SHA T, HOU JR, ZHANG ZZ, FU PC. Microbial mineralization of montmorillonite in low-permeability oil reservoirs for microbial enhanced oil recovery[J]. Applied and Environmental Microbiology, 2018, 84(14): e00176-18.
    [27] 张涵, 孙珊珊, 董浩, 承磊, 佘跃惠. 铁还原菌降解石油烃的研究进展[J]. 微生物学报, 2020, 60(6): 1246-1258. ZHANG H, SUN SS, DONG H, CHENG L, SHE YH. Degradation of petroleum hydrocarbons by using iron-reducing bacteria[J]. Acta Microbiologica Sinica, 2020, 60(6): 1246-1258 (in Chinese).
    [28] CRESPO KA, BARONETTI JL, QUINTEROS MA, PÁEZ PL, PARAJE MG. Intra- and extracellular biosynthesis and characterization of iron nanoparticles from prokaryotic microorganisms with anticoagulant activity[J]. Pharmaceutical Research, 2017, 34(3): 591-598.
    [29] FATEMI M, MOLLANIA N, MOMENI- MOGHADDAM M, SADEGHIFAR F. Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines[J]. Journal of Biotechnology, 2018, 270: 1-11.
    [30] SAMUEL MS, DATTA S, CHANDRASEKAR N, BALAJI R, SELVARAJAN E, VUPPALA S. Biogenic synthesis of iron oxide nanoparticles using Enterococcus faecalis: adsorption of hexavalent chromium from aqueous solution and in vitro cytotoxicity analysis[J]. Nanomaterials, 2021, 11(12): 3290.
    [31] ANU K, HEMALATHA J. Viscosity studies of water based magnetite nanofluids[C]//Dae Solid State Physics Symposium 2015, Uttar Pradesh, India, 2016, 1731(1): 050148.
    [32] PE-PIPER G, WEIR-MURPHY S. Early diagenesis of inner-shelf phosphorite and iron-silicate minerals, lower cretaceous of the orpheus graben, southeastern Canada: implications for the origin of chlorite rims[J]. AAPG Bulletin, 2008, 92(9): 1153-1168.
    [33] POURSOLTANI MR, GIBLING MR. Composition, porosity, and reservoir potential of the Middle Jurassic Kashafrud Formation, northeast Iran[J]. Marine and Petroleum Geology, 2011, 28(5): 1094-1110.
    [34] 邸胜杰, 吕振山. 吉林油田微生物采油应用技术研究[J]. 南方油气, 2005(3): 54-59. DI SJ, LÜ ZS. Research on microbial oil recovery application technology in Jilin oilfield[J]. Southern Oil and Gas, 2005(3): 54-59 (in Chinese).
    [35] HOU ZW, DOU XM, JIN R, WANG R, WANG YL, LI W. The application of MEOR in Daqing oilfields[C]// SPE Enhanced Oil Recovery Conference. Kuala Lumpur: Society of Petroleum Engineers, 2011.
    [36] TOWN K, SHEEHY AJJ, GOVREAU BRR. MEOR success in southern Saskatchewan[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(5): 773-781.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈静文,郭浩,王鑫璐,姜义坤,刘晶晶,张凡,邓舒元,王博,魏士平. 微生物原位产铁基纳米颗粒提高原油采收率[J]. 微生物学通报, 2025, 52(4): 1415-1429

复制
分享
文章指标
  • 点击次数:85
  • 下载次数: 83
  • HTML阅读次数: 106
  • 引用次数: 0
历史
  • 收稿日期:2024-07-29
  • 录用日期:2024-10-27
  • 在线发布日期: 2025-04-21
  • 出版日期: 2025-04-20
文章二维码