科微学术

微生物学通报

碳青霉烯类耐药细菌的流行病学及耐药基因检测方法研究进展
作者:
基金项目:

国家自然科学基金(42277409);广州凯普生物科技股份有限公司企业合作研发项目(H2022054)


Research progress in epidemiology and detection methods for drug resistance genes of carbapenem-resistant bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [106]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    抗生素在传染性疾病预防和治疗方面发挥着重要作用,但抗生素的滥用导致微生物在选择性压力作用下获得并维持耐药性。碳青霉烯类抗生素是一类用于治疗多重耐药菌感染的重要抗菌药物,曾被认为是治疗革兰氏阴性菌严重感染的最后一道防线。但随着碳青霉烯酶的出现,碳青霉烯类耐药革兰氏阴性菌的检出率在全球范围内迅速增长,严重威胁着全球的公共卫生安全。本综述重点介绍了碳青霉烯类耐药细菌的全球流行病学和临床相关耐药基因的检测方法,为合理使用抗生素、有效控制耐药性传播提供参考。

    Abstract:

    Antibiotics serve a critical function in preventing and treating infectious diseases. However, their misuse has resulted in the development and persistence of resistance among microorganisms, driven by selective pressure. Carbapenems, vital antibacterial agents, were once considered the last resort for combating severe Gram-negative bacterial infections. Yet, the emergence of carbapenemases has led to a rapid rise in the detection rate of carbapenem-resistant Gram-negative bacteria worldwide, posing a significant threat to global public health security. This review focuses on the global epidemiology of carbapenem-resistant bacteria and the detection methods of clinically relevant resistance genes, providing reference for the rational use of antibiotics and effective control of drug resistance transmission.

    参考文献
    [1] COLLABORATORS AR. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. Lancet, 2022, 399(10325): 629-655.
    [2] WANG Q, WANG PL, YANG QX. Occurrence and diversity of antibiotic resistance in untreated hospital wastewater[J]. The Science of the Total Environment, 2018, 621: 990-999.
    [3] EL-GAMAL MI, BRAHIM I, HISHAM N, ALADDIN R, MOHAMMED H, BAHAAELDIN A. Recent updates of carbapenem antibiotics[J]. European Journal of Medicinal Chemistry, 2017, 131: 185-195.
    [4] HAWKEY PM, LIVERMORE DM. Carbapenem antibiotics for serious infections[J]. BMJ, 2012, 344: e3236.
    [5] NORDMANN P. Gram-negative bacteriae with resistance to carbapenems[J]. Medecine Sciences: M/S, 2010, 26(11): 950-959.
    [6] AMBLER RP. The structure of beta-lactamases[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1980, 289(1036): 321-331.
    [7] LUTGRING J D. Carbapenem-resistant: an emerging bacterial threat[J]. Seminars in Diagnostic Pathology, 2019, 36(3): 182-186.
    [8] BONOMO R A, BURD E M, CONLY J, LIMBAGO B M, POIREL L, SEGRE J A, WESTBLADE L F. Carbapenemase-producing organisms: a global scourge[J]. Clinical Infectious Diseases, 2018, 66(8): 1290-1297.
    [9] LOGAN L K, WEINSTEIN R A. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace[J]. Journal of Infectious Diseases, 2017, 215: S28-S36.
    [10] VAN DUIN D, DOI Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae[J]. Virulence, 2017, 8(4): 460-469.
    [11] MA JY, SONG XR, LI MC, YU ZY, CHENG W, YU ZD, ZHANG WC, ZHANG YD, SHEN AD, SUN HQ, LI LF. Global spread of carbapenem-resistant Enterobacteriaceae: epidemiological features, resistance mechanisms, detection and therapy[J]. Microbiological Research, 2023, 266: 127249.
    [12] ZHANG YW, WANG Q, YIN YY, CHEN HB, JIN LY, GU B, XIE LY, YANG CX, MA XB, LI HY, LI W, ZHANG XQ, LIAO K, MAN SJ, WANG SF, WEN HN, LI BB, GUO ZS, TIAN JJ, PEI FY, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae infections: report from the China CRE network[J]. Antimicrobial Agents and Chemotherapy, 2018, 62(2): e01882-17.
    [13] WANG Q, ZENG XP, YANG QX, YANG CZ. Identification of a bacteriophage from an environmental multidrug-resistant E. coli isolate and its function in horizontal transfer of ARGs[J]. The Science of the Total Environment, 2018, 639: 617-623.
    [14] YIGIT H, QUEENAN AM, ANDERSON GJ, DOMENECH-SANCHEZ A, BIDDLE JW, STEWARD CD, ALBERTI S, BUSH K, TENOVER FC. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae[J]. Antimicrobial Agents and Chemotherapy, 2001, 45(4): 1151-1161.
    [15] BRATU S, LANDMAN D, ALAM M, TOLENTINO E, QUALE J. Detection of KPC carbapenem-hydrolyzing enzymes in Enterobacter spp. from Brooklyn, New York[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(2): 776-778.
    [16] ENDIMIANI A, DEPASQUALE JM, FORERO S, PEREZ F, HUJER AM, ROBERTS-POLLACK D, FIORELLA PD, PICKENS N, KITCHEL B, CASIANO-COLÓN AE, TENOVER FC, BONOMO RA. Emergence of blaKPC-containing Klebsiella pneumoniae in a long-term acute care hospital: a new challenge to our healthcare system[J]. Journal of Antimicrobial Chemotherapy, 2009, 64(5): 1102-1110.
    [17] VILLEGAS MV, LOLANS K, CORREA A, SUAREZ CJ, LOPEZ JA, VALLEJO M, QUINN JP, GROUP CNRS. First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America[J]. Antimicrobial Agents and Chemotherapy, 2006, 50(8): 2880-2882.
    [18] LEAVITT A, NAVON-VENEZIA S, CHMELNITSKY I, SCHWABER MJ, CARMELI Y. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital[J]. Antimicrobial Agents and Chemotherapy, 2007, 51(8): 3026-3029.
    [19] WEI ZQ, DU XX, YU YS, SHEN P, CHEN YG, LI LJ. Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China[J]. Antimicrobial Agents and Chemotherapy, 2007, 51(2): 763-765.
    [20] CHEN L, MATHEMA B, CHAVDA KD, DeLEO FR, BONOMO RA, KREISWIRTH BN. Carbapenemase- producing Klebsiella pneumoniae: molecular and genetic decoding[J]. Trends in Microbiology, 2014, 22(12): 686-696.
    [21] MUNOZ-PRICE LS, POIREL L, BONOMO RA, SCHWABER MJ, DAIKOS GL, CORMICAN M, CORNAGLIA G, GARAU J, GNIADKOWSKI M, HAYDEN MK, KUMARASAMY K, LIVERMORE DM, MAYA JJ, NORDMANN P, PATEL JB, PATERSON DL, PITOUT J, VILLEGAS MV, WANG H, WOODFORD N, QUINN JP. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases[J]. The Lancet Infectious Diseases, 2013, 13(9): 785-796.
    [22] WALTHER-RASMUSSEN J, HØIBY N. Class A carbapenemases[J]. Journal of Antimicrobial Chemotherapy, 2007, 60(3): 470-482.
    [23] CODJOE FS, DONKOR ES. Carbapenem resistance: a review[J]. Medical Sciences, 2017, 6(1): 1.
    [24] LUO HY, YANG ZS, LEI T, LI CX, ZHOU ZY, WANG MS, ZHU DK, LI P, CHENG AC. RATA: a novel class A carbapenemase with broad geographic distribution and potential for global spread[J]. The Science of the Total Environment, 2024, 931: 172873.
    [25] SUAY-GARCÍA B, PÉREZ-GRACIA MT. Present and future of carbapenem-resistant Enterobacteriaceae (CRE) infections[J]. Antibiotics, 2019, 8(3): 122.
    [26] CORNAGLIA G, GIAMARELLOU H, ROSSOLINI GM. Metallo-β-lactamases: a last frontier for β-lactams?[J]. The Lancet Infectious Diseases, 2011, 11(5): 381-393.
    [27] NORDMANN P, NAAS T, POIREL L. Global spread of carbapenemase-producing Enterobacteriaceae[J]. Emerging Infectious Diseases, 2011, 17(10): 1791-1798.
    [28] LAURETTI L, RICCIO ML, MAZZARIOL A, CORNAGLIA G, AMICOSANTE G, FONTANA R, ROSSOLINI GM. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate[J]. Antimicrobial Agents and Chemotherapy, 1999, 43(7): 1584-1590.
    [29] NORDMANN P, POIREL L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide[J]. Clinical Microbiology and Infection, 2014, 20(9): 821-830.
    [30] VATOPOULOS A. High rates of metallo-beta- lactamase-producing Klebsiella pneumoniae in Greece: a review of the current evidence[J]. European Communicable Disease Bulletin, 2008, 13(4): 8023.
    [31] YONG D, TOLEMAN MA, GISKE CG, CHO HS, SUNDMAN K, LEE K, WALSH TR. Characterization of a new metallo-beta-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(12): 5046-5054.
    [32] SNYDER BM, MONTAGUE BT, ANANDAN S, MADABHUSHI AG, PRAGASAM AK, VERGHESE VP, BALAJI V, SIMÕES EAF. Risk factors and epidemiologic predictors of blood stream infections with New Delhi metallo-β-lactamase (NDM-1) producing Enterobacteriaceae[J]. Epidemiology and Infection, 2019, 147: e137.
    [33] RAABE NJ, VALEK AL, GRIFFITH MP, MILLS E, WAGGLE K, SRINIVASA VR, AYRES AM, BRADFORD C, CREAGER H, PLESS LL, SUNDERMANN AJ, van TYNE D, SNYDER GM, HARRISON LH. Genomic epidemiologic investigation of a multispecies hospital outbreak of NDM-5-producing enterobacterales infections[J]. MedRxiv: the Preprint Server for Health Sciences, 2023: 2023.08.31.23294545.
    [34] WANG Q, JIN L, SUN S, YIN Y, WANG R, CHEN F, WANG X, ZHANG Y, HOU J, ZHANG Y, ZHANG Z, LUO L, GUO Z, LI Z, LIN X, BI L, WANG H. Occurrence of high levels of cefiderocol resistance in carbapenem-resistant escherichia coli before its approval in China: a report from china cre-network[J]. Microbiology Spectrum, 2022, 10(3): e02670-21.
    [35] NISHIDA S, MATSUNAGA N, KAMIMURA Y, ISHIGAKI S, FURUKAWA T, ONO Y. Emergence of Enterobacter cloacae complex co-producing IMP-10 and CTX-M, and Klebsiella pneumoniae producing VIM-1 in clinical isolates in Japan[J]. Microorganisms, 2020, 8(11): 1816.
    [36] NORDMANN P, POIREL L, TOLEMAN MA, WALSH TR. Does broad-spectrum beta-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria?[J]. Journal of Antimicrobial Chemotherapy, 2011, 66(4): 689-692.
    [37] SCHAUER J, GATERMANN SG, EISFELD J, HANS JB, ZIESING S, SCHLÜTER D, PFENNIGWERTH N. Characterization of GMB-1, a novel metallo-β-lactamase (MBL) found in three different Enterobacterales species[J]. Journal of Antimicrobial Chemotherapy, 2022, 77(5): 1247-1253.
    [38] MA L, WANG JT, WU TL, SIU LK, CHUANG YC, LIN JC, LU MC, LU PL. Emergence of OXA-48-producing Klebsiella pneumoniae in Taiwan[J]. PLoS One, 2015, 10(9): e0139152.
    [39] POIREL L, POTRON A, NORDMANN P. OXA-48-like carbapenemases: the phantom menace[J]. Journal of Antimicrobial Chemotherapy, 2012, 67(7): 1597-1606.
    [40] POIREL L, HÉRITIER C, TOLÜN V, NORDMANN P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae[J]. Antimicrobial Agents and Chemotherapy, 2004, 48(1): 15-22.
    [41] PÉREZ-BLANCO V, REDONDO-BRAVO L, RUÍZ- CARRASCOSO G, PAÑO-PARDO JR, GÓMEZ-GIL R, ROBUSTILLO-RODELA A, GARCÍA-RODRÍGUEZ J, MINGORANCE J, HERRUZO R. Epidemiology and control measures of an OXA-48-producing Enterobacteriaceae hospital-wide oligoclonal outbreak[J]. Epidemiology and Infection, 2018, 146(5): 656-662.
    [42] MATASEJE LF, BOYD DA, FULLER J, HALDANE D, HOANG L, LEFEBVRE B, MELANO RG, POUTANEN S, van CAESEELE P, MULVEY MR. Characterization of OXA-48-like carbapenemase producers in Canada, 2011–14[J]. Journal of Antimicrobial Chemotherapy, 2018, 73(3): 626-633.
    [43] HAMPRECHT A, SOMMER J, WILLMANN M, BRENDER C, STELZER Y, KRAUSE FF, TSVETKOV T, WILD F, RIEDEL-CHRIST S, KUTSCHENREUTER J, IMIRZALIOGLU C, GONZAGA A, NÜBEL U, GÖTTIG S. Pathogenicity of clinical OXA-48 isolates and impact of the OXA-48 IncL plasmid on virulence and bacterial fitness[J]. Frontiers in Microbiology, 2019, 10: 2509.
    [44] GUO L, AN JN, MA YN, YE LY, LUO YP, TAO CM, YANG JY. Nosocomial outbreak of OXA-48-producing Klebsiella pneumoniae in a Chinese hospital: clonal transmission of ST147 and ST383[J]. PLoS One, 2016, 11(8): e0160754.
    [45] 姜雪琪, 李娟. 水解碳青霉烯类OXA型β-内酰胺酶的研究进展[J]. 中国感染控制杂志, 2023, 22(9): 1121-1128. JIANG XQ, LI J. Advances in carbapenem-hydrolyzing OXA-type β-lactamases[J]. Chinese Journal of Infection Control, 2023, 22(9): 1121-1128(in Chinese).
    [46] PITOUT JDD, PEIRANO G, KOCK MM, STRYDOM KA, MATSUMURA Y. The global ascendency of OXA-48-type carbapenemases[J]. Clinical Microbiology Reviews, 2019, 33(1): e00102-19.
    [47] LI P, YANG ZS, LEI T, DAI YJ, ZHOU Y, ZHU DK, LUO HY. Identification of a novel carbapenem- hydrolysing class D β-lactamase RAD-1 in Riemerella anatipestifer[J]. Journal of Antimicrobial Chemotherapy, 2023, 78(4): 1117-1124.
    [48] GIRLICH D, POIREL L, NORDMANN P. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae[J]. Journal of Clinical Microbiology, 2012, 50(2): 477-479.
    [49] CARVALHAES CG, PICÃO RC, NICOLETTI AG, XAVIER DE, GALES AC. Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results[J]. Journal of Antimicrobial Chemotherapy, 2010, 65(2): 249-251.
    [50] SIMNER PJ, GILMOUR MW, DeGAGNE P, NICHOL K, KARLOWSKY JA. Evaluation of five chromogenic agar media and the Rosco Rapid Carb screen kit for detection and confirmation of carbapenemase production in Gram-negative bacilli[J]. Journal of Clinical Microbiology, 2015, 53(1): 105-112.
    [51] VRIONI G, DANIIL I, VOULGARI E, RANELLOU K, KOUMAKI V, GHIRARDI S, KIMOULI M, ZAMBARDI G, TSAKRIS A. Comparative evaluation of a prototype chromogenic medium (ChromID CARBA) for detecting carbapenemase-producing Enterobacteriaceae in surveillance rectal swabs[J]. Journal of Clinical Microbiology, 2012, 50(6): 1841-1846.
    [52] de OLIVEIRA SANTOS IC, da CONCEIÇĀO NETO OC, da COSTA BS, TEIXEIRA CBT, da SILVA PONTES L, SILVEIRA MC, ROCHA-de- SOUZA CM, CARVALHO-ASSEF APD. Evaluation of phenotypic detection of carbapenemase-producing Pseudomonas spp. from clinical isolates[J]. Brazilian Journal of Microbiology, 2023, 54(1): 135-141.
    [53] TAMMA PD, OPENE BNA, GLUCK A, CHAMBERS KK, CARROLL KC, SIMNER PJ. Comparison of 11 phenotypic assays for accurate detection of carbapenemase-producing Enterobacteriaceae[J]. Journal of Clinical Microbiology, 2017, 55(4): 1046-1055.
    [54] BOUTAL H, VOGEL A, BERNABEU S, DEVILLIERS K, CRETON E, COTELLON G, PLAISANCE M, OUESLATI S, DORTET L, JOUSSET A, SIMON S, NAAS T, VOLLAND H. A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae[J]. Journal of Antimicrobial Chemotherapy, 2018, 73(4): 909-915.
    [55] KON H, ABRAMOV S, FRENK S, SCHWARTZ D, SHALOM O, ADLER A, CARMELI Y, LELLOUCHE J. Multiplex lateral flow immunochromatographic assay is an effective method to detect carbapenemases without risk of OXA-48-like cross reactivity[J]. Annals of Clinical Microbiology and Antimicrobials, 2021, 20(1): 61.
    [56] van der ZWALUW K, de HAAN A, PLUISTER GN, BOOTSMA HJ, de NEELING AJ, SCHOULS LM. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods[J]. PLoS One, 2015, 10(3): e0123690.
    [57] HINDIYEH M, SMOLLEN G, GROSSMAN Z, RAM D, DAVIDSON Y, MILEGUIR F, VAX M, BEN DAVID D, TAL I, RAHAV G, SHAMISS A, MENDELSON E, KELLER N. Rapid detection of blaKPC carbapenemase genes by real-time PCR[J]. Journal of Clinical Microbiology, 2008, 46(9): 2879-2883.
    [58] LUTGRING JD, LIMBAGO BM. The problem of carbapenemase-producing-carbapenem-resistant-Enterobacteriaceae detection[J]. Journal of Clinical Microbiology, 2016, 54(3): 529-534.
    [59] WONG YP, OTHMAN S, LAU YL, RADU S, CHEE HY. Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro- organisms[J]. Journal of Applied Microbiology, 2018, 124(3): 626-643.
    [60] HEMWARANON P, SRISRATTAKARN A, LULITANOND A, TIPPAYAWAT P, TAVICHAKORNTRAKOOL R, WONGLAKORN L, DADUANG J, CHANAWONG A. Recombinase polymerase amplification combined with lateral flow strip for rapid detection of OXA-48-like carbapenemase genes in Enterobacterales[J]. Antibiotics, 2022, 11(11): 1499.
    [61] WANG L, BAI LL, WANG HM, HE KY, WANG R, WANG Q, ZHANG F, XU XH. Graphene oxide assisting the visual detection of Salmonella by CRISPR/Cas12a[J]. Microchemical Journal, 2023, 191: 108870.
    [62] LI XP, ZHONG JY, LI HY, QIAO YB, MAO XL, FAN HY, ZHONG YW, IMANI S, ZHENG SS, LI JH. Advances in the application of CRISPR-Cas technology in rapid detection of pathogen nucleic acid[J]. Frontiers in Mistance[J]. Chinese Journal of Biochemistry and Molecular Biology, 2024, 40(6): 759-769(in Chinese). NORDMANN P. Evaluation of a DNA microarray for the rapid detection of extended-spectrum β-lactamases (TEM, SHV and CTX-M), plasmid-mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/MIR and CMY-1-like/MOX) and carbapenemases (KPC, OXA-48, VIM, IMP and NDM)[J]. Journal of Antimicrobial Chemotherapy, 2012, 67(8): 1865-1869.
    [64] BOGATY C, MATASEJE L, GRAY A, LEFEBVRE B, LÉVESQUE S, MULVEY M, LONGTIN Y. Investigation of a Carbapenemase-producing Acinetobacter baumannii outbreak using whole genome sequencing versus a standard epidemiologic investigation[J]. Antimicrobial Resistance and Infection Control, 2018, 7: 140.
    [65] TAMMA PD, SIMNER PJ. Phenotypic detection of carbapenemase-producing organisms from clinical isolates[J]. Journal of Clinical Microbiology, 2018, 56(11): e01140-18.
    [66] BUTLER-WU SM, ABBOTT AN. Is this the carbapenemase test we’ve been waiting for? A multicenter evaluation of the modified carbapenem inactivation method[J]. Journal of Clinical Microbiology, 2017, 55(8): 2309-2312.
    [67] VALIDI M, SOLTAN DALLAL M M, DOURAGHI M, FALLAH MEHRABADI J, RAHIMI FOROUSHANI A. Identification of Klebsiella pneumoniae carbapenemase-producing Klebsiella oxytoca in clinical isolates in Tehran hospitals, Iran by chromogenic medium and molecular methods[J]. Osong Public Health and Research Perspectives, 2016, 7(5): 301-306.
    [68] BOUSLAH Z. Carba NP test for the detection of carbapenemase-producing Pseudomonas aeruginosa[J]. Medecine et Maladies Infectieuses, 2020, 50(6): 466-479.
    [69] DORTET L, POIREL L, NORDMANN P. Rapid detection of carbapenemase-producing Pseudomonas spp.[J]. Journal of Clinical Microbiology, 2012, 50(11): 3773-3776.
    [70] PIRES J, NOVAIS, PEIXE L. Blue-Carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures[J]. Journal of Clinical Microbiology, 2013, 51(12): 4281-4283.
    [71] GARG A, GARG J, UPADHYAY GC, AGARWAL A, BHATTACHARJEE A. Evaluation of the Rapidec Carba NP test kit for detection of carbapenemase- producing Gram-negative bacteria[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(12): 7870-7872.
    [72] McMULLEN AR, WALLACE MA, LaBOMBARDI V, HINDLER J, CAMPEAU S, HUMPHRIES R, PROCOP GW, RICHTER SS, WISE MG, BURNHAM CA D. Multicenter evaluation of the RAPIDEC® CARBA NP assay for the detection of carbapenemase production in clinical isolates of Enterobacterales and Pseudomonas aeruginosa[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2020, 39(11): 2037-2044.
    [73] BOUTAL H, NAAS T, DEVILLIERS K, OUESLATI S, DORTET L, BERNABEU S, SIMON S, VOLLAND H. Development and validation of a lateral flow immunoassay for rapid detection of NDM-producing Enterobacteriaceae[J]. Journal of Clinical Microbiology, 2017, 55(7): 2018-2029.
    [74] NOTAKE S, MATSUDA M, TAMAI K, YANAGISAWA H, HIRAMATSU K, KIKUCHI K. Detection of IMP metallo-β-lactamase in carbapenem-nonsusceptible Enterobacteriaceae and non-glucose-fermenting Gram-negative rods by immunochromatography assay[J]. Journal of Clinical Microbiology, 2013, 51(6): 1762-1768.
    [75] DORTET L, JOUSSET A, SAINTE-ROSE V, CUZON G, NAAS T. Prospective evaluation of the OXA-48K-SeT assay, an immunochromatographic test for the rapid detection of OXA-48-type carbapenemases[J]. Journal of Antimicrobial Chemotherapy, 2016, 71(7): 1834-1840.
    [76] TIJET N, PATEL SN, MELANO RG. Detection of carbapenemase activity in Enterobacteriaceae: comparison of the carbapenem inactivation method versus the Carba NP test[J]. Journal of Antimicrobial Chemotherapy, 2016, 71(1): 274-276.
    [77] PIERCE VM, SIMNER PJ, LONSWAY DR, ROE-CARPENTER DE, JOHNSON JK, BRASSO WB, BOBENCHIK AM, LOCKETT ZC, CHARNOT- KATSIKAS A, FERRARO MJ, THOMSON RB Jr, JENKINS SG, LIMBAGO BM, DAS S. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae[J]. Journal of Clinical Microbiology, 2017, 55(8): 2321-2333.
    [78] RIZVI M, SAMI H, AZAM M, BEN KHALID D, AL JABRI Z, KHAN F, SULTAN A, SINGH A, PERWEEN N, AL QURAINI M, AL MUHARRMI Z, RIZVI SG. Reliability of carbapenem inactivation method (CIM) and modified carbapenem inactivation method (mCIM) for detection of OXA-48-like and NDM-1[J]. Indian Journal of Medical Microbiology, 2021, 39(4): 451-456.
    [79] TSAI YM, WANG SN, CHIU HC, KAO CY, WEN LL. Combination of modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) for phenotypic detection of carbapenemase-producing Enterobacteriaceae[J]. BMC Microbiology, 2020, 20(1): 315.
    [80] YOSHIOKA N, HAGIYA H, DEGUCHI M, HAMAGUCHI S, KAGITA M, NISHI I, AKEDA Y, TOMONO K. Multiplex real-time PCR assay for six major carbapenemase genes[J]. Pathogens, 2021, 10(3): 276.
    [81] CEREZALES M, BINIOSSEK L, GERSON S, XANTHOPOULOU K, WILLE J, WOHLFARTH E, KAASE M, SEIFERT H, HIGGINS PG. Novel multiplex PCRs for detection of the most prevalent carbapenemase genes in Gram-negative bacteria within Germany[J]. Journal of Medical Microbiology, 2021. DOI: 10.1099/jmm.0.001310.
    [82] CAI Z, TAO J, JIA TY, FU HY, ZHANG X, ZHAO M, DU H, YU H, SHAN B, HUANG B, CHEN L, TANG YW, JIA W, QU F. Multicenter evaluation of the Xpert Carba-R assay for detection and identification of carbapenemase genes in sputum specimens[J]. Journal of Clinical Microbiology, 2020, 58(9): e00644-20.
    [83] LI J, MACDONALD J, von STETTEN F. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification[J]. The Analyst, 2018, 144(1): 31-67.
    [84] SHIRATO K. Detecting amplicons of loop-mediated isothermal amplification[J]. Microbiology and Immunology, 2019, 63(10): 407-412.
    [85] FENG WJ, NIU SQ, CHANG YB, JIA XJ, HUANG SF, YANG P. Design of rapid detection system for five major carbapenemase families (blaKPC, blaNDM, blaVIM, blaIMP and blaOXA-48-like) by colorimetric loop-mediated isothermal amplification[J]. Infection and Drug Resistance, 2021, 14: 1865-1874.
    [86] CHEN JS, MA EB, HARRINGTON LB, da COSTA M, TIAN XR, PALEFSKY JM, DOUDNA JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439.
    [87] QIAN S, CHEN YJ, WANG XF, WANG TZ, CHE Y, WU J, YE ZY, XU JF. CRISPR/Cas12a-assisted dual visualized detection of SARS-CoV-2 on frozen shrimps[J]. Biosensors, 2023, 13(1): 138.
    [88] PAUL B, MONTOYA G. CRISPR-Cas12a: functional overview and applications[J]. Biomedical Journal, 2020, 43(1): 8-17.
    [89] XU HM, TANG H, LI RR, XIA ZX, YANG WS, ZHU Y, LIU Z, LU GP, NI SW, SHEN JL. A new method based on LAMP-CRISPR-Cas12a-lateral flow immunochromatographic strip for detection[J]. Infection and Drug Resistance, 2022, 15: 685-696.
    [90] SARENGAOWA, HU WZ, FENG K, JIANG AL, XIU ZL, LAO Y, LI YZ, LONG Y. An in situ-synthesized gene chip for the detection of food-borne pathogens on fresh-cut cantaloupe and lettuce[J]. Frontiers in Microbiology, 2019, 10: 3089.
    [91] BILOZOR A, BALODE A, CHAKHUNASHVILI G, CHUMACHENKO T, EGOROVA S, IVANOVA M, KAFTYREVA L, KÕLJALG S, KÕRESSAAR T, LYSENKO O, MICIULEVICIENE J, MÄNDAR R, LIS DO, WESOLOWSKA MP, RATNIK K, REMM M, RUDZKO J, RÖÖP T, SAULE M, SEPP E, et al. Application of molecular methods for carbapenemase detection[J]. Frontiers in Microbiology, 2019, 10: 1755.
    [92] ZHANG YP, LI ZC, HE XL, DING FL, WU WQ, LUO Y, FAN B, CAO H. Overproduction of efflux pumps caused reduced susceptibility to carbapenem under consecutive imipenem-selected stress in Acinetobacter baumannii[J]. Infection and Drug Resistance, 2018, 11: 457-467.
    [93] KIM CH, KANG HY, KIM BR, JEON H, LEE YC, LEE SH, LEE JC. Mutational inactivation of OprD in carbapenem-resistant Pseudomonas aeruginosa isolates from Korean hospitals[J]. Journal of Microbiology, 2016, 54(1): 44-49.
    [94] GONZÁLEZ-VÁZQUEZ MC, del CARMEN ROCHA- GRACIA R, CARABARÍN-LIMA A, BELLO-LÓPEZ E, HUERTA-ROMANO F, MARTÍNEZ-LAGUNA Y, LOZANO-ZARAIN P. Location of OprD porin in Pseudomonas aeruginosa clinical isolates[J]. APMIS, 2021, 129(4): 213-224.
    [95] STALLBAUM LR, PRUSKI BB, AMARAL SC, de FREITAS SB, WOZEAK DR, HARTWIG DD. Phenotypic and molecular evaluation of biofilm formation in Klebsiella pneumoniae carbapenemase (KPC) isolates obtained from a hospital of Pelotas, RS, Brazil[J]. Journal of Medical Microbiology, 2021, 70(11): 001451.
    [96] FENG YF, PALANISAMI A, KURIAKOSE J, PIGULA M, ASHRAF S, HASAN T. Novel rapid test for detecting carbapenemase[J]. Emerging Infectious Diseases, 2020, 26(4): 793-795.
    [97] PETIT M, CAMÉLÉNA F, COINTE A, PONCIN T, MERIMÈCHE M, BONACORSI S, BIRGY A, BERÇOT B. Rapid detection and characterization of carbapenemases in Enterobacterales with a new modified carbapenem inactivation method, mCIMplus[J]. Journal of Clinical Microbiology, 2020, 58(11): e01370-20.
    [98] LIAO QF, YUAN Y, ZHANG WL, DENG J, WU SY, LIU Y, XIAO YL, KANG M. Detection and characterization of carbapenemases in Enterobacterales with a new rapid and simplified carbapenemase detection method called rsCDM[J]. Frontiers in Microbiology, 2022, 13: 860288.
    [99] LU ZM, WANG XN, MA LC, DOU LN, ZHAO XJ, TAO J, WANG Y, WANG SL, LIU DJ, SHEN YB, YU XZ, YU WB, JIA LX, WANG ZH, SHEN JZ, WEN K. Carba PBP: a novel penicillin-binding protein-based lateral flow assay for rapid phenotypic detection of carbapenemase-producing Enterobacterales[J]. Journal of Clinical Microbiology, 2024, 62(2): e0012023.
    [100] EZADI F, ARDEBILI A, MIRNEJAD R. Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations[J]. Journal of Clinical Microbiology, 2019, 57(4): e01390-18.
    [101] 徐鹃鹃, 葛瑛. 碳青霉烯类耐药肠杆菌科细菌感染治疗研究进展[J]. 中国感染与化疗杂志, 2019, 19(6): 680-686. XU JJ, GE Y. Research progress in the treatment of carbapenem-resistant Enterobacteriaceae[J]. Chinese Journal of Infection and Chemotherapy, 2019, 19(6): 680-686(in Chinese).
    [102] TILAHUN M, KASSA Y, GEDEFIE A, ASHAGIRE M. Emerging carbapenem-resistant Enterobacteriaceae infection, its epidemiology and novel treatment options: a review[J]. Infection and Drug Resistance, 2021, 14: 4363-4374.
    [103] TAMMA PD, AITKEN SL, BONOMO RA, MATHERS AJ, van DUIN D, CLANCY CJ. Infectious diseases society of America guidance on the treatment of extended- spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa)[J]. Clinical Infectious Diseases, 2021, 72(7): e169-e183.
    [104] 刘长鑫, 张侃, 王博, 丁俊谕, 郭桦, 宋曼雅, 赵慧珺, 管希周. 碳青霉烯耐药肠杆菌科细菌感染的抗菌药物治疗现状及研究进展[J]. 中华医院感染学杂志, 2022, 32(5): 795-800. LIU CX, ZHANG K, WANG B, DING JY, GUO H, SONG MY, ZHAO HJ, GUAN XZ. Current situation and research progress of drug therapy for carbapenem-resistant Enterobacteriaceae infection[J]. Chinese Journal of Nosocomiology, 2022, 32(5): 795-800(in Chinese).
    [105] POGUE JM, BONOMO RA, KAYE KS. Ceftazidime/ avibactam, meropenem/vaborbactam, or both? clinical and formulary considerations[J]. Clinical Infectious Diseases, 2019, 68(3): 519-524.
    [106] MACAREÑO-CASTRO J, SOLANO-SALAZAR A, DONG LT, MOHIUDDIN M, LUIS ESPINOZA J. Fecal microbiota transplantation for carbapenem- resistant Enterobacteriaceae: a systematic review[J]. The Journal of Infection, 2022, 84(6): 749-759.
    [107] 李虎良, 张蕾. 抗生素耐药性的分子机制及抑菌策略[J]. 中国生物化学与分子生物学报, 2024, 40(6): 759-769. LI HL, ZHANG L. Molecular mechanisms and antibacterial strategies of antibiotic res
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙韦地,王强,谢龙旭,郭轶,路遥雅洁,魏茵茵,邵雪,贾梦涛,陈建军. 碳青霉烯类耐药细菌的流行病学及耐药基因检测方法研究进展[J]. 微生物学通报, 2025, 52(3): 948-964

复制
分享
文章指标
  • 点击次数:194
  • 下载次数: 164
  • HTML阅读次数: 149
  • 引用次数: 0
历史
  • 收稿日期:2024-05-10
  • 录用日期:2024-07-07
  • 在线发布日期: 2025-03-19
文章二维码