科微学术

微生物学通报

酸性矿山废水的微生物多样性及其在生物冶金中的应用
作者:
基金项目:

国家重点研发计划(2022YFC2105301)


Microorganisms in acidic mine drainage: diversity and application in bioleaching
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [60]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    酸性矿山废水中存在的微生物具有独特的特性,这些特性使其能够在极端酸性的环境中生存。本文回顾了酸性矿山废水中主要的微生物类群及其在生物冶金中的应用,概述了生物冶金的原理及国内外研究现状,并分析了生物冶金技术的未来发展前景。目前生物冶金技术已经在工业应用中有广泛的实例,但如何培育出效率更高、适应性更强的冶金微生物类群,依然是当前相关领域工作的重点和难点。

    Abstract:

    Acid mine drainage contains microorganisms with unique characteristics that enable them to survive in highly acidic environments. This paper details the key microbial groups in AMD and evaluates their application potential in bioleaching. It then introduces the principle, reviews the current research status, and offers insights into the future development of bioleaching. Bioleaching has been applied in industrial applications. However, enhancing the efficiency and adaptability of microbial communities for bioleaching remains a focus and challenge in this field at present.

    参考文献
    [1] KEFENI KK, MSAGATI TAM, MAMBA BB. Acid mine drainage: prevention, treatment options, and resource recovery: a review[J]. Journal of Cleaner Production, 2017, 151: 475-493.
    [2] TIGUE AA, MALENAB RA, PROMENTILLA MA. A systematic mapping study on the development of permeable reactive barrier for acid mine drainage treatment[J]. MATEC Web of Conferences, 2019, 268: 06019.
    [3] MÉNDEZ-GARCÍA C, PELÁEZ AI, MESA V, SÁNCHEZ J, GOLYSHINA OV, FERRER M. Microbial diversity and metabolic networks in acid mine drainage habitats[J]. Frontiers in Microbiology, 2015, 6: 475.
    [4] 苑楠楠. 酸性矿山废水中微生物群落变化及不同季节样品宏基因组学研究[D]. 北京: 中国地质大学(北京)硕士学位论文, 2020. YUAN NN. Study on microbial community changes in acid mine wastewater and metagenomics of samples in different seasons[D]. Beijing: Master’s Thesis of China University of Geosciences, 2020(in Chinese).
    [5] SETHURAJAN M, van HULLEBUSCH ED, NANCHARAIAH YV. Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances[J]. Journal of Environmental Management, 2018, 211: 138-153.
    [6] 刘虎, 贺欣, 晋华. 酸性矿井水中微生物群落探讨及其在生物修复的应用分析[J]. 能源环境保护, 2022, 36(4): 18-25. LIU H, HE X, JIN H. Discussion on the microbial communities in acid mine drainage and their application to bioremediation[J]. Energy Environmental Protection, 2022, 36(4): 18-25(in Chinese).
    [7] 刘佳晨, 刘金辉, 徐玲玲, 周义朋, 文旭祥. 生物浸矿微生物群落结构研究进展[J]. 稀有金属, 2021, 45(10): 1258-1268. LIU JC, LIU JH, XU LL, ZHOU YP, WEN XX. Recent research advances on microbial community structure in bioleaching[J]. Chinese Journal of Rare Metals, 2021, 45(10): 1258-1268(in Chinese).
    [8] 刘毅. 土著浸矿微生物群落引种机制研究[D]. 长沙: 中南大学博士学位论文, 2011. LIU Y. Study on introduction mechanism of indigenous leaching microbial communities[D]. Changsha: Doctoral Dissertation of Central South University, 2011(in Chinese).
    [9] PARTE AC, CARBASSE JS, MEIER-KOLTHOFF JP, REIMER LC, GÖKER M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(11): 5607-5612.
    [10] 钱林. Acidithiobacilius ferrooxidansAcidiphilium spp.细菌的分离鉴定及其协同浸出黄铜矿能力研究[D]. 长沙: 中南大学硕士学位论文, 2008. Qian L. Isolation, identification of Acidithiobacilius ferrooxidans andAcidiphilium spp. and studies on their synergistic effect of leaching chalcopyrite[D]. Changsha: Master’s Thesis of Central South University, 2008(in Chinese).
    [11] 尹华群, 刘征华, 刘学端. 冶金微生物的铁硫代谢多样性及其与矿物的相互作用[J]. 微生物学报, 2018, 58(4): 560-572. YIN HQ, LIU ZH, LIU XD. Diversity of iron and sulfur metabolism in bioleaching microorganisms and their interaction with minerals[J]. Acta Microbiologica Sinica, 2018, 58(4): 560-572(in Chinese).
    [12] ZHANG X, LIU XD, LIANG YL, XIAO YH, MA LY, GUO X, MIAO B, LIU HW, PENG DL, HUANG WK, YIN HQ. Comparative genomics unravels the functional roles of co-occurring acidophilic bacteria in bioleaching heaps[J]. Frontiers in Microbiology, 2017, 8: 790.
    [13] MO HY, CHEN Q, DU J, TANG L, QIN F, MIAO B, WU XL, ZENG J. Ferric reductase activity of the ArsH protein from Acidithiobacillus ferrooxidans[J]. Journal of Microbiology and Biotechnology, 2011, 21(5): 464-469.
    [14] DIAO MH, DYKSMA S, KOEKSOY E, NGUGI DK, ANANTHARAMAN K, LOY A, PESTER M. Global diversity and inferred ecophysiology of microorganisms with the potential for dissimilatory sulfate/sulfite reduction[J]. FEMS Microbiology Reviews, 2023, 47(5): fuad058.
    [15] HALTER D, GOULHEN-CHOLLET F, GALLIEN S, CASIOT C, HAMELIN J, GILARD F, HEINTZ D, SCHAEFFER C, CARAPITO C, van DORSSELAER A, TCHERKEZ G, ARSÈNE-PLOETZE F, BERTIN PN. In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis[J]. The ISME Journal, 2012, 6(7): 1391-1402.
    [16] HAO CB, WANG LH, GAO YN, ZHANG LN, DONG HL. Microbial diversity in acid mine drainage of Xiang Mountain sulfide mine, Anhui Province, China[J]. Extremophiles, 2010, 14(5): 465-474.
    [17] BAKER BJ, TYSON GW, GOOSHERST L, BANFIELD JF. Insights into the diversity of eukaryotes in acid mine drainage biofilm communities[J]. Applied and Environmental Microbiology, 2009, 75(7): 2192-2199.
    [18] BURLACOT A, DAO O, AUROY P, CUINÉ S, LI-BEISSON Y, PELTIER G. Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism[J]. Nature, 2022, 605(7909): 366-371.
    [19] PINTO J, HENRIQUES B, SOARES J, COSTA M, DIAS M, FABRE E, LOPES CB, VALE C, PINHEIRO-TORRES J, PEREIRA E. A green method based on living macroalgae for the removal of rare-earth elements from contaminated waters[J]. Journal of Environmental Management, 2020, 263: 110376.
    [20] 王雨桐, 艾光华, 肖国圣. 微生物技术在矿物选冶过程中的研究进展[J]. 矿产综合利用, 2022(5): 91-95, 108. WANG YT, AI GH, XIAO GS. Research progress of microbial technology in mineral processing and metallurgy[J]. Multipurpose Utilization of Mineral Resources, 2022(5): 91-95, 108(in Chinese).
    [21] TRIBUTSCH H. Direct versus indirect bioleaching[J]. Hydrometallurgy, 2001, 59(2/3): 177-185.
    [22] ROHWERDER T, GEHRKE T, KINZLER K, SAND W. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation[J]. Applied Microbiology and Biotechnology, 2003, 63(3): 239-248.
    [23] 王秀美, 郝福来, 张世镖, 赵国惠, 李健, 张修超, 王鹏, 张磊, 郑晔. 生物冶金技术在黄金领域的应用及展望[J]. 黄金, 2023, 44(9): 84-92. WANG XM, HAO FL, ZHANG SB, ZHAO GH, LI J, ZHANG XC, WANG P, ZHANG L, ZHENG Y. Application and prospects of biometallurgical technology in the gold industry[J]. Gold, 2023, 44(9): 84-92(in Chinese).
    [24] 张仕奇, 杨洪英, 佟琳琳, 李佳峰, 马鹏程, 陈国民.硫化矿细菌浸出机理及协同作用研究现状[J]. 有色金属(冶炼部分), 2021(4): 1-10. Zhang SQ, Yang HY, Dong LL, Li JF, Ma PC, Chen GM. Research status of bioleaching of sulphide minerals and bacteria synergy mechanisms[J]. Nonferrous Metals (Extractive Metallurgy), 2021(4): 1-10(in Chinese).
    [25] JIA Y, TAN QY, SUN HY, ZHANG YP, GAO HS, RUAN RM. Sulfide mineral dissolution microbes: Community structure and function in industrial bioleaching heaps[J]. Green Energy & Environment, 2019, 4(1): 29-37.
    [26] 陆现彩, 李娟, 刘欢, 李伟洁, 王睿勇, 陆建军. 金属硫化物微生物氧化的机制和效应[J]. 岩石学报, 2019, 35(1): 153-163. LU XC, LI J, LIU H, LI WJ, WANG RY, LU JJ. Microbial oxidation of metal sulfides and its consequences[J]. Acta Petrologica Sinica, 2019, 35(1): 153-163(in Chinese).
    [27] 朱宏飞, 李辉, 刘东奇. 三种浸矿细菌协同作用的回顾及展望[J]. 微生物学通报, 2016, 43(12): 2730-2737. ZHU HF, LI H, LIU DQ. A review of synergy development and prospect of three leaching bacteria[J]. Microbiology China, 2016, 43(12): 2730-2737(in Chinese).
    [28] LIU HW, YIN HQ, DAI YX, DAI ZM, LIU Y, LI Q, JIANG HD, LIU XD. The co-culture of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum enhances the growth, iron oxidation, and CO2 fixation[J]. Archives of Microbiology, 2011, 193(12): 857-866.
    [29] XIA LX, LIU JS, XIAO L, ZENG J, LI BM, GENG MM, QIU GZ. Single and cooperative bioleaching of sphalerite by two kinds of bacteria: Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1): 190-195.
    [30] 吴俊子. 中等嗜热浸矿菌共培养体系的培养条件优化研究[D]. 长沙: 中南大学硕士学位论文, 2013. WU JZ. Study on optimization of culture conditions of medium thermophilic leaching bacteria co-culture system[D]. Changsha: Master’s Thesis of Central South University, 2013(in Chinese).
    [31] JIANG CY, LIU Y, LIU YY, YOU XY, GUO X, LIU SJ. Alicyclobacillus ferrooxydans sp. nov., a ferrous-oxidizing bacterium from solfataric soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(Pt 12): 2898-2903.
    [32] 李帅. 基于含砷金矿的生物冶炼关键菌群调控及浸出过程强化[D]. 北京: 北京化工大学硕士学位论文, 2023. LI S. Regulation of key flora in bio-smelting and strengthening of leaching process based on arsenic-bearing gold ore[D]. Beijing: Master’s Thesis of Beijing University of Chemical Technology, 2023(in Chinese).
    [33] 王芷晴. 基于高效嗜酸铁氧化菌的尾矿渣资源回收研究[D]. 沈阳: 东北大学硕士学位论文, 2021. WANG ZQ. Study on recovery of tailings resources based on high-efficiency acidophilic iron oxidizing bacteria[D]. Shenyang: Master’s Thesis of Northeastern University, 2021(in Chinese).
    [34] XU ML, LIU YZ, DENG Y, ZHANG SY, HAO XD, ZHU P, ZHOU JY, YIN HQ, LIANG YL, LIU HW, LIU XD, BAI LY, JIANG LH, JIANG HD. Bioremediation of cadmium-contaminated paddy soil using an autotrophic and heterotrophic mixture[J]. RSC Advances, 2020, 10(44): 26090-26101.
    [35] 哈一凡. 嗜酸性硫杆菌硫氧化种群中群体感应系统功能研究[D]. 济南: 山东大学硕士学位论文, 2021. HA YF. Study on the function of quorum sensing system in thiobacillus acidophilus sulfur oxidation population[D]. Jinan: Master’s Thesis of Shandong University, 2021(in Chinese).
    [36] YIN QD, HE K, COLLINS G, de VRIEZE J, WU GX. Microbial strategies driving low concentration substrate degradation for sustainable remediation solutions[J]. NPJ Clean Water, 2024, 7: 52.
    [37] 李敏, 闻建平. 极端环境胁迫下金精矿生物氧化过程研究进展[J]. 冶金工程, 2021, 8(3): 95-104. LI M, WEN JP. Research progress on biological oxidation process of gold concentrate under extreme environmental stress[J]. Metallurgical Engineering, 2021, 8(3): 95-104(in Chinese).
    [38] 程珂珂, 曾艳华, 蔡中华, 何永红, 周进. 微生物的交流信号[J]. 生物化学与生物物理进展, 2022, 49(6): 960-974. CHENG KK, ZENG YH, CAI ZH, HE YH, ZHOU J. The communication signal of microorganism[J]. Progress in Biochemistry and Biophysics, 2022, 49(6): 960-974(in Chinese).
    [39] 刘杰. 黄铁矿浸出过程微生物演替规律与外加菌种对黄铁矿浸出的影响规律研究[D]. 长沙: 中南大学硕士学位论文, 2010. LIU J. Study on the law of microbial succession in pyrite leaching process and the influence of additional strains on pyrite leaching[D]. Changsha: Master’s Thesis of Central South University, 2010(in Chinese).
    [40] WANG YG, CHEN XH, ZHOU HB. Disentangling effects of temperature on microbial community and copper extraction in column bioleaching of low grade copper sulfide[J]. Bioresource Technology, 2018, 268: 480-487.
    [41] CÁRDENAS JP, MOYA F, COVARRUBIAS P, SHMARYAHU A, LEVICÁN G, HOLMES DS, QUATRINI R. Comparative genomics of the oxidative stress response in bioleaching microorganisms[J]. Hydrometallurgy, 2012, 127: 162-167.
    [42] GUEZENNEC AG, JOULIAN C, JACOB J, ARCHANE A, IBARRA D, de BUYER R, BODÉNAN F, D’HUGUES P. Influence of dissolved oxygen on the bioleaching efficiency under oxygen enriched atmosphere[J]. Minerals Engineering, 2017, 106: 64-70.
    [43] 刘慧. 微生物对黄铁矿表面性质的影响及优化黄铁矿生物浸出的研究[D]. 长沙: 中南大学硕士学位论文, 2012. LIU H. Effect of microorganism on surface properties of pyrite and optimization of pyrite bioleaching[D]. Changsha: Master’s Thesis of Central South University, 2012(in Chinese).
    [44] 王利, 温建康, 刘美林. 紫外可见分光光度法对EPS与金属离子的相互作用的研究[J]. 金属矿山, 2008(7): 34-37, 147. WANG L, WEN JK, LIU ML. Study on interaction between EPS and metallic ions by UV spectrophotometry[J]. Metal Mine, 2008(7): 34-37, 147(in Chinese).
    [45] SHU WS, HUANG LN. Microbial diversity in extreme environments[J]. Nature Reviews Microbiology, 2022, 20(4): 219-235.
    [46] 胡莉, 谭泽文, 郜晨, 谭习羽, 谭志远. Sigma因子高效调控微生物多功能研究进展[J]. 生命科学, 2018, 30(3): 285-292. HU L, TAN ZW, GAO C, TAN XY, TAN ZY. Advances in the high efficient regulation of microbiological functions by sigma factors[J]. Chinese Bulletin of Life Sciences, 2018, 30(3): 285-292(in Chinese).
    [47] ZHANG FY, LI BQ, DONG HJ, CHEN M, YAO S, LI JW, ZHANG HH, LIU XG, WANG HW, SONG NN, ZHANG KD, DU N, XU SJ, GU LC. YdiV regulates Escherichia coli ferric uptake by manipulating the DNA-binding ability of Fur in a SlyD-dependent manner[J]. Nucleic Acids Research, 2020, 48(17): 9571-9588.
    [48] YIN ZW, FENG SS, TONG YJ, YANG HL. Adaptive mechanism of Acidithiobacillus thiooxidans CCTCC M 2012104 under stress during bioleaching of low-grade chalcopyrite based on physiological and comparative transcriptomic analysis[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(12): 1643-1656.
    [49] JIA Y, SUN HY, CHEN DF, GAO HS, RUAN RM. Characterization of microbial community in industrial bioleaching heap of copper sulfide ore at Monywa mine, Myanmar[J]. Hydrometallurgy, 2016, 164: 355-361.
    [50] 国务院发展研究中心国际技术经济研究所. 世界前沿技术发展报告-2021[M]. 北京: 电子工业出版社, 2021: 101-102. International Technology and Economy Institute, Development Research Center of the State Council. World frontier technology development report-2021[M]. Beijing: Publishing House of Electronics Industry, 2021: 101-102(in Chinese).
    [51] 杨宝军, 刘洋, 刘红昌, 李咏梅, 甘敏, 王军, 廖蕤, 章可, 朱振宇, 邱冠周. 生物冶金技术的研究现状及发展趋势[J]. 生物学杂志, 2024, 41(3): 1-10. YANG BJ, LIU Y, LIU HC, LI YM, GAN M, WANG J, LIAO R, ZHANG K, ZHU ZY, QIU GZ. Research status and development trend of bio-metallurgical technology[J]. Journal of Biology, 2024, 41(3): 1-10(in Chinese).
    [52] OLSON GJ, BRIERLEY JA, BRIERLEY CL. Bioleaching review part B:[J]. Applied Microbiology and Biotechnology, 2003, 63(3): 249-257.
    [53] SOLEIMANI M, PETERSEN J, ROOSTAAZAD R, HOSSEINI S, MOHAMMAD MOUSAVI S, NAJAFI A, VASIRI AK. Leaching of a zinc ore and concentrate using the Geocoat™ technology[J]. Minerals Engineering, 2011, 24(1): 64-69.
    [54] 杨海麟, 康文亮, 张玲, 冷云伟, 冯守帅, 王武. 生物浸出工艺工业化进展(二)[J]. 现代矿业, 2010, 26(4): 6-10. YANG HL, KANG WL, ZHANG L, LENG YW, FENG SS, WANG W. Industrialization progress of bioleaching technology (II)[J]. Morden Mining, 2010, 26(4): 6-10(in Chinese).
    [55] 罗宁, 张晓伟, 柳召刚, 李健飞, 冯福山, 胡艳宏. 微生物冶金及其在稀土资源利用中的研究进展[J]. 化工矿物与加工, 2023, 52(8): 75-82. LUO N, ZHANG XW, LIU ZG, LI JF, FENG FS, HU YH. Research progress of microbial metallurgical technology applied in the utilization of rare earth resources[J]. Industrial Minerals & Processing, 2023, 52(8): 75-82(in Chinese).
    [56] 丘晓斌. 紫金山金铜矿生物提铜尾废资源再生初步研究[J]. 有色金属(冶炼部分), 2023(9): 122-125. QIU XB. Preliminary study on regeneration of bioleaching copper tailings from Zijinshan gold and copper mine[J]. Nonferrous Metals (Extractive Metallurgy), 2023(9): 122-125(in Chinese).
    [57] LIU QM, YU RL, QIU GZ, FANG Z, CHEN AL, ZHAO ZW. Optimization of separation processing of copper and iron of dump bioleaching solution by Lix 984N in Dexing Copper Mine[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(5): 1258-1261.
    [58] 邱冠周, 刘学端. 用生物技术的钥匙开启矿产资源利用的大门[J]. 中国有色金属学报, 2019, 29(9): 1848-1858. QIU GZ, LIU XD. Biotech key to unlock mineral resources value[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1848-1858(in Chinese).
    [59] 陈功新. 相山铀矿微生物浸出试验及机理初步探讨[D]. 北京: 中国地质大学(北京)博士学位论文, 2012. CHEN GX. Microbial leaching test and mechanism of Xiangshan uranium mine[D]. Beijing: Doctoral Dissertation of China University of Geosciences, 2012(in Chinese).
    [60] FU CL, XU M. Achieving carbon neutrality through ecological carbon sinks: a systems perspective[J]. Green Carbon, 2023, 1(1): 43-46.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李文星,刘畅,刘缨,郑艳宁. 酸性矿山废水的微生物多样性及其在生物冶金中的应用[J]. 微生物学通报, 2024, 51(12): 4869-4883

复制
分享
文章指标
  • 点击次数:113
  • 下载次数: 241
  • HTML阅读次数: 343
  • 引用次数: 0
历史
  • 收稿日期:2024-07-03
  • 录用日期:2024-10-27
  • 在线发布日期: 2024-12-24
  • 出版日期: 2024-12-20
文章二维码