科微学术

微生物学通报

酵母乙醇耐受性状遗传不稳定的表观遗传探讨
作者:
基金项目:

福建省自然科学基金项目(No. 2010J01204); 福州大学人才基金资助项目(No. XSJRC2007-22)


The study of epigenetic mechanism of ethanol tolerance genetic instability of yeast
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    诱变、驯化等传统手段获得理想性状的酵母菌株, 其性能在传代和保存过程中很容易发生性状丢失现象。从表观遗传学的角度出发, 初步探讨酵母菌株在传统的诱变、驯化等育种过程及其性状丢失的表观遗传的分子机理。采用驯化等手段选育耐乙醇酵母, 并通过无压力方式传代,研究此过程中酵母乙醇耐受性状遗传的稳定性与耐受相关的pro1、tps1、sod1 基因启动子区域结合组蛋白上H3K4 甲基化水平的关系。结果表明酵母乙醇耐受性状的变化受到酵母表观遗传控制。控制表观遗传的修饰过程易受环境改变的影响, 因此经过选育获得的乙醇耐性性状遗传的不稳定性可能与表观遗传分子机理密切相关。

    Abstract:

    The improved yeast strains obtained through classical breeding methods, such as the mutation and the acclimatization, easily lost their acquired characteristics during the process of passage or conservation. We investigated the epigenetic molecular mechanism of genetic instability about the yeast acquired traits. The relationship between the genetic stability of ethanol tolerance and the change of H3K4 methylation level of promoters of pro1, tps1, sod1 was studied in the process of yeast strain breeding for improving ethanol tolerance or passage of improved strains without ethanol stress. The results showed that the genetic stability of ethanol tolerance was regulated by epigenetic variation of some genes in the yeast. The genetic instability of acquired traits of yeast might result from its epigenetic variation of relative genes because many environmental factors influenced on the epigenetic molecular modification in cells.

    参考文献
    [1] Aguilera A, Benítez T. Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae[J]. Arch Microbiol, 1985, 142(4): 389?392.
    [2] Hu XH, Wang, MH, Tan T, et al. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae[J]. Genetics, 2007, 175(3): 1479?1487.
    [3] Jeffries TW, Jin YS. Ethanol and thermotolerance in the bioconversion of xylose by yeasts[J]. Adv Appl Microbiol, 2000, 47: 221?268.
    [4] Chandler M, Stanley GA, Rogers P, et al. A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae[J]. Ann Microb, 2004, 54(4): 427?454.
    [5] Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3[J]. Nature, 2002, 419(6905): 407?411.
    [6] Morillon, A, Karabetsou, N, Nair, A, et al. Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription[J]. Mol Cell, 2005, 18(6): 723–734.
    [7] Pokholok DK, Harbison CT, Levine S, et al. Genome-wide map of nucleosome acetylation and methylation in yeast[J]. Cell, 2005, 122(4): 517–527.
    [8] Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression[J]. Annu Rev Biochem, 2006, 75: 243–269.
    [9] Roguev A, Schaft D, Shevchenko A, et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4[J]. EMBO J, 2001, 20(24): 7137–7148.
    [10] Briggs SD, Bryk M, Strahl BD, et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae[J]. Genes Dev, 2001, 15(24): 3286–3295.
    [11] Nagy PL, Griesenbeck J, Kornberg RD, et al. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3[J]. Proc Natl Acad Sci USA, 2002, 99(1): 90–94.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孟春,王航,任鸿桢,李锋,郭养浩. 酵母乙醇耐受性状遗传不稳定的表观遗传探讨[J]. 微生物学通报, 2011, 38(3): 424-429

复制
分享
文章指标
  • 点击次数:1989
  • 下载次数: 3556
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2010-10-15
  • 最后修改日期:2010-12-17
文章二维码