科微学术

微生物学通报

裂解或溶源-细菌遭遇噬菌体后的命运抉择
作者:
基金项目:

国家自然科学基金(31960232)


Lysis or lysogen: the fate decision when bacteria encounter phages
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    噬菌体是地球上数量最丰富的有机体,其在自然生态系统的塑造和细菌进化驱动中发挥着至关重要的作用。在与宿主的相互斗争中,噬菌体可以选择以下2种方式决定其与宿主的命运:(1)裂解:通过裂解宿主细胞最终大量释放噬菌体颗粒;(2)溶源:将其染色体整合到宿主细胞基因组中,与宿主建立一种潜在的互存关系。对于一些温和的噬菌体,这种倾向进一步受到感染多样性的调节,其中单一感染主要是裂解性的,而多重感染则多是溶源性的。溶源性的噬菌体不仅可以根据外界环境的理化因子,还可以通过细菌自身的群体感应系统来启动裂解-溶源开关,进而决定其宿主菌的命运。与此同时,宿主细菌在与噬菌体长时间的斗争中也进化出了针对噬菌体的手段。总而言之,噬菌体深刻影响着细菌的群落动态、基因组进化和生态系统等,而这一切都取决于噬菌体与宿主间的斗争模式(裂解/溶源性感染)。本文探讨了导致温和噬菌体对宿主菌进行裂解-溶源命运抉择的影响因素并系统性总结了细菌在面对噬菌体侵染时的应对策略的最新研究进展,以期能为噬菌体与宿主的研究提供建议和帮助。

    Abstract:

    Phage, the most abundant organisms on the earth, play a vital role in the shaping of natural ecosystems and the driving of bacterial evolution. In the struggle with the host, phage can choose the following two ways to determine fate of itself and the host:(1) Lysis:lysing the host cell, and finally releasing a large amount of phage particles; (2) Lysogen:integrating its chromosome into the host cell, then establishing a potential coexistence relationship with the host. For some temperate phages, this tendency is further regulated by the diversity of infections, where single infections are mainly lytic, while multiple infections are mostly lysogenic. Lysogenic phage can not only activate the lysis-lysogen switch based on the physical and chemical factors of the external environment, but also use the bacteria's own quorum sensing system to initiate the lysis-lysogen switch, and then determine the fate of its host bacteria. Meanwhile, the host bacteria have evolved means to target phage during the long-term struggle. In general, phage profoundly affects bacterial community dynamics, genome evolution, and ecosystems, etc., and all of this depends on the mode of struggle between phages and host (lysis/lysogenic infection). This paper discusses the influencing factors that cause temperate phage to lyse the host bacteria-lysogenic fate, and systematically summarizes the latest research on coping strategies of bacteria facing phage infection, hoping to provide help and suggestions for the follow-up study on the interaction between phage and host.

    参考文献
    [1] Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens[J]. Virulence, 2013, 4(5):354-365
    [2] Ji XL, Zhang CJ, Fang Y, Zhang Q, Lin LB, Tang B, Wei YL. Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus[J]. Virologica Sinica, 2015, 30(1):52-58
    [3] Suttle CA. Marine viruses-major players in the global ecosystem[J]. Nature Reviews Microbiology, 2007, 5(10):801-812
    [4] Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean[J]. Genome Biology, 2013, 14(11):1-14
    [5] Dy RL, Richter C, Salmond GPC, Fineran PC. Remarkable mechanisms in microbes to resist phage infections[J]. Annual Review of Virology, 2014, 1(1):307-331
    [6] Van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic immune mechanisms[J]. Microbiology and Molecular Biology Reviews, 2016, 80(3):745-763
    [7] Samson JE, Magadán AH, Sabri M, Moineau S. Revenge of the phages:defeating bacterial defences[J]. Nature Reviews Microbiology, 2013, 11(10):675-687
    [8] Trinh JT, Székely T, Shao QY, Balázsi G, Zeng LY. Cell fate decisions emerge as phages cooperate or compete inside their host[J]. Nature Communications, 2017, 8:14341
    [9] Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, Ardyna M, Arkhipova K, Carmichael M, Cruaud C, et al. Marine DNA viral macro- and microdiversity from pole to pole[J]. Cell, 2019, 177(5):1109-1123
    [10] Xiang YY, Li W, Song F, Yang XH, Zhou J, Yu HB, Ji XL, Wei YL. Biological characteristics and whole-genome analysis of the Enterococcus faecalis phage PEf771[J]. Canadian Journal of Microbiology, 2020, 66(9):505-520
    [11] O'Sullivan L, Bolton D, McAuliffe O, Coffey A. Bacteriophages in food applications:from foe to friend[J]. Annual Review of Food Science and Technology, 2019, 10:151-172
    [12] Foss DV, Hochstrasser ML, Wilson RC. Clinical applications of CRISPR-based genome editing and diagnostics[J]. Transfusion, 2019, 59(4):1389-1399
    [13] Hampton HG, Watson BNJ, Fineran PC. The arms race between bacteria and their phage foes[J]. Nature, 2020, 577(7790):327-336
    [14] Silpe JE, Bridges AA, Huang XL, Coronado DR, Duddy OP, Bassler BL. Separating functions of the phage-encoded quorum-sensing-activated antirepressor qtip[J]. Cell Host & Microbe, 2020, 27(4):629-641
    [15] Guan JW, Ibarra D, Zeng LY. The role of side tail fibers during the infection cycle of phage lambda[J]. Virology, 2019, 527:57-63
    [16] Høyland-Kroghsbo NM, Maerkedahl RB, Svenningsen SL. A quorum-sensing-induced bacteriophage defense mechanism[J]. mBio, 2013, 4(1):e00362-e00312
    [17] Ng WL, Bassler BL. Bacterial quorum-sensing network architectures[J]. Annual Review of Genetics, 2009, 43(1):197-222
    [18] Sitnikov DM, Schineller JB, Baldwin TO. Control of cell division in Escherichia coli:regulation of transcription of ftsQA involves both rpoS and SdiA-mediated autoinduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(1):336-341
    [19] Soares JA, Ahmer BM. Detection of acyl-homoserine lactones by Escherichia and Salmonella[J]. Current Opinion in Microbiology, 2011, 14(2):188-193
    [20] Oliveira PH, Touchon M, Rocha EPC. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts[J]. Nucleic Acids Research, 2014, 42(16):10618-10631
    [21] Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters:a short history of the restriction enzymes[J]. Nucleic Acids Research, 2014, 42(1):3-19
    [22] Hoskisson PA, Sumby P, Smith MCM. The phage growth limitation system in Streptomyces coelicolor A(3)2 is a toxin/antitoxin system, comprising enzymes with DNA methyltransferase, protein kinase and ATPase activity[J]. Virology, 2015, 477:100-109
    [23] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712
    [24] Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJJ. CRISPR-Cas:adapting to change[J]. Science, 2017, 356(6333):eaal5056
    [25] Makarova KS, Wolf YI, Koonin EV. Classification and nomenclature of CRISPR-Cas systems:where from here?[J]. The CRISPR Journal, 2018, 1(5):325-336
    [26] Taylor HN, Warner EE, Armbrust MJ, Crowley VM, Olsen KJ, Jackson RN. Structural basis of Type IV CRISPR RNA biogenesis by a Cas6 endoribonuclease[J]. RNA Biology, 2019, 16(10):1438-1447
    [27] Samai P, Pyenson N, Jiang WY, Goldberg GW, Hatoum-Aslan A, Marraffini LA. Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity[J]. Cell, 2015, 161(5):1164-1174
    [28] Nicholson TJ, Jackson SA, Croft BI, Staals RHJ, Fineran PC, Brown CM. Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas systems[J]. RNA Biology, 2019, 16(4):566-576
    [29] Varble A, Marraffini LA. Three new Cs for CRISPR:collateral, communicate, cooperate[J]. Trends in Genetics, 2019, 35(6):446-456
    [30] Stokar-Avihail A, Tal N, Erez Z, Lopatina A, Sorek R. Widespread utilization of peptide communication in phages infecting soil and pathogenic bacteria[J]. Cell Host & Microbe, 2019, 25(5):746-755
    [31] Shin H, Lee JH, Yoon H, Kang DH, Ryu S. Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC[J]. Applied and Environmental Microbiology, 2014, 80(1):374-384
    [32] Bahl H, Echols H, Straus DB, Court D, Crowl R, Georgopoulos CP. Induction of the heat shock response of E. coli through stabilization of Sigma 32 by the phage lambda cIII protein[J]. Genes & Development, 1987, 1(1):57-64
    [33] Silpe JE, Bassler BL. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision[J]. Cell, 2019, 176(1/2):268-280
    [34] Papenfort K, Silpe JE, Schramma KR, Cong JP, Seyedsayamdost MR, Bassler BL. A Vibrio cholerae autoinducer-receptor pair that controls biofilm formation[J]. Nature Chemical Biology, 2017, 13(5):551-557
    [35] Trinh JT, Zeng LY. Structure regulates phage lysis-lysogeny decisions[J]. Trends in Microbiology, 2019, 27(1):3-4
    [36] Fang XN, Liu Q, Bohrer C, Hensel Z, Han W, Wang J, Xiao J. Cell fate potentials and switching kinetics uncovered in a classic bistable genetic switch[J]. Nature Communications, 2018, 9:2787
    [37] Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, et al. Communication between viruses guides lysis-lysogeny decisions[J]. Nature, 2017, 541(7638):488-493
    [38] Zeng LY, Skinner SO, Zong CH, Sippy J, Feiss M, Golding I. Decision making at a subcellular level determines the outcome of bacteriophage infection[J]. Cell, 2010, 141(4):682-691
    [39] Shao QY, Trinh JT, McIntosh CS, Christenson B, Balázsi G, Zeng LY. Lysis-lysogeny coexistence:prophage integration during lytic development[J]. MicrobiologyOpen, 2017, 6(1):e0395
    [40] Shao QY, Trinh JT, Zeng LY. High-resolution studies of lysis-lysogeny decision-making in bacteriophage lambda[J]. Journal of Biological Chemistry, 2019, 294(10):3343-3349
    [41] Cui ZH, Xu ZW, Wei YL, Zhang Q, Qin KH, Ji XL. Characterization and genome analysis of a novel mu-like phage VW-6B isolated from the napahai plateau wetland of China[J]. Current Microbiology, 2021, 78(1):150-158
    [42] Díaz-Muñoz SL, Sanjuán R, West S. Sociovirology:conflict, cooperation, and communication among viruses[J]. Cell Host & Microbe, 2017, 22(4):437-441
    [43] Ranquet C, Toussaint A, de de Jong H, Maenhaut-Michel G, Geiselmann J. Control of bacteriophage mu lysogenic repression[J]. Journal of Molecular Biology, 2005, 353(1):186-195
    [44] Waters LS, Sandoval M, Storz G. The Escherichia coli MntR miniregulon includes genes encoding a small protein and an efflux pump required for manganese homeostasis[J]. Journal of Bacteriology, 2011, 193(21):5887-5897
    [45] Kaur G, Sengupta S, Kumar V, Kumari A, Ghosh A, Parrack P, Dutta D. Novel MntR-independent mechanism of manganese homeostasis in Escherichia coli by the ribosome-associated protein HflX[J]. Journal of Bacteriology, 2014, 196(14):2587-2597
    [46] Bandyopadhyay K, Parua PK, Datta AB, Parrack P. Escherichia coli HflK and HflC can individually inhibit the HflB (FtsH)-mediated proteolysis of λ CII in vitro[J]. Archives of Biochemistry and Biophysics, 2010, 501(2):239-243
    [47] Shkilnyj P, Koudelka GB. Effect of salt shock on stability of λ imm434 lysogens[J]. Journal of Bacteriology, 2007, 189(8):3115-3123
    [48] Thomas Record M Jr, Zhang WT, Anderson CF. Analysis of effects of salts and uncharged solutes on protein and nucleic acid equilibria and processes:a practical guide to recognizing and interpreting polyelectrolyte effects, hofmeister effects, and osmotic effects of salts[A]//Advances in Protein Chemistry[M]. Amsterdam:Elsevier, 1998:281-353
    [49] Pirrotta V. Operators and promoters in the OR region of phage 434[J]. Nucleic Acids Research, 1979, 6(4):1495-1508
    [50] Bell AC, Koudelka GB. Operator sequence context influences amino acid-base-pair interactions in 434 repressor-operator complexes[J]. Journal of Molecular Biology, 1993, 234(3):542-553
    [51] Mauro SA, Koudelka GB. Monovalent cations regulate DNA sequence recognition by 434 repressor[J]. Journal of Molecular Biology, 2004, 340(3):445-457
    [52] Zhang KL, Young R, Zeng LY. Bacteriophage P1 does not show spatial preference when infecting Escherichia coli[J]. Virology, 2020, 542:1-7
    [53] Cortes MG, Trinh JT, Zeng LY, Balázsi G. Late-arriving signals contribute less to cell-fate decisions[J]. Biophysical Journal, 2017, 113(9):2110-2120
    [54] Uribe RV, Van Der Helm E, Misiakou MA, Lee SW, Kol S, Sommer MOA. Discovery and characterization of Cas9 inhibitors disseminated across seven bacterial phyla[J]. Cell Host & Microbe, 2019, 26(5):702
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

商俊杰,张春婷,谢立国,魏云林. 裂解或溶源-细菌遭遇噬菌体后的命运抉择[J]. 微生物学通报, 2021, 48(9): 3380-3387

复制
分享
文章指标
  • 点击次数:1216
  • 下载次数: 1375
  • HTML阅读次数: 3170
  • 引用次数: 0
历史
  • 收稿日期:2021-05-28
  • 录用日期:2021-08-17
  • 在线发布日期: 2021-09-08
文章二维码