科微学术

微生物学通报

糙皮侧耳和鞘脂菌NS7对多环芳烃污染土壤的生物强化与协同作用
作者:
基金项目:

国家重点研发计划(2019YFC1805703);江苏省自然科学基金面上项目(BK20181512)


Bioaugmentation of polycyclic aromatic hydrocarbons-contaminated soil with Pleurotus ostreatus and Sphingobium sp. NS7 and their synergistic effect
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 真菌和细菌被认为在多环芳烃污染土壤生物修复过程中发挥协同作用,目前在真实土壤体系中开展真菌-细菌协同降解研究较少。[目的] 研究真菌和细菌对不同种类多环芳烃降解的差异及对蒽和苯并[a]蒽的生物强化与协同作用。[方法] 选用多环芳烃降解真菌和细菌各一株,在液体纯培养体系下分析它们对不同种类多环芳烃降解的差异,在土壤体系中采用放射性同位素示踪技术研究2种微生物对蒽和苯并[a]蒽的生物强化与协同作用。[结果] 供试细菌鞘脂菌NS7能够很好地降解低环种类多环芳烃,以蒽作为唯一碳源时可以将其完全降解,在复合污染条件下对菲、蒽、荧蒽、芘等降解效果突出(>90%),对苯并[a]芘降解效果较差(9.76%)。相比而言,供试真菌糙皮侧耳菌对苯并[a]芘具有更好的降解效果(21.18%),对低环多环芳烃降解效果明显不如降解菌NS7。在自然土壤中,蒽和苯并[a]蒽具有明显不同的矿化效率,分别为18.61%和4.28%,在蒽污染土壤中加入鞘脂菌NS7并未显著提高蒽的矿化率(P>0.05),相比而言,苯并[a]蒽污染土壤中加入糙皮侧耳显著提高了污染物矿化效率(2.24倍),表明真菌和细菌在土壤环境中的定殖存活能力可能影响了生物强化效果。采用灭菌土壤排除土著微生物的竞争排斥作用,研究了真菌菌丝对生物强化降解的影响,发现在蒽污染土壤中,真菌菌丝的迁移作用显著提高了细菌鞘脂菌NS7对污染物的矿化率,从1.75%提高到5.91%;而在苯并[a]蒽灭菌污染土壤中,接种糙皮侧耳却没有发现苯并[a]蒽矿化率提高的现象,表明自然土壤中真菌强化降解苯并[a]蒽的作用可能是源于真菌菌丝促进污染物和土著降解菌的接触,而非直接来自真菌本身。[结论] 细菌能够很好地降解低环种类多环芳烃,而真菌对高环种类多环芳烃降解效果较好。真菌可能通过菌丝促进土著微生物在土壤中的迁移,增大多环芳烃和土著降解菌的接触,从而促进了多环芳烃降解。研究加深了对多环芳烃污染土壤生物强化修复的认识,对发展基于真菌-细菌协同作用的生物强化与调控技术提供理论指导。

    Abstract:

    [Background] Fungi and bacteria are considered to play a synergistic role in the bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. However, there are limited studies on their synergistic degradation in soil. [Objective] This paper aims to investigate the different PAHs-degrading abilities of Pleurotus ostreatus and Sphingobium sp. NS7 and reveal their synergistic role in the biodegradation of anthracene and benzo[a]anthracene in soil. [Methods] The PAH degradation by P. ostreatus and Sphingobium sp. NS7 was performed in liquid culture. Soil microcosms were set up with radiolabeled anthracene and benzo[a]anthracene to investigate the fate of PAHs after bioaugmentation. [Results] NS7 can efficiently degrade low-molecular-weight (LMW) PAHs, as it removed almost all the anthracene when anthracene was the only carbon source. In the case of compound contamination, the bacterium removed >90% of phenanthrene, anthracene, fluoranthene, and pyrene while degraded benzo[a]pyrene with a low rate (9.76%). By contrast, P. ostreatus demonstrated relatively high removal rate (21.18%) of benzo[a]pyrene. The degradation rate of LMW PAHs by P. ostreatus was much lower than that by NS7. In the natural soil, the mineralization rate of anthracene and benzo[a]anthracene was 18.61% and 4.28%, respectively. P. ostreatus promoted benzo[a]anthracene mineralization in natural soil (increased by 2.24 folds) but NS7 failed to significantly improve anthracene mineralization. Thus, the competition of indigenous microbial communities might affect the survival of exogenous microorganisms. A sterile soil system excluding the microbial competition was used to investigate the helper role of fungal hyphae in the synergistic degradation. With the help of fungal hyphae, the mineralization of anthracene was enhanced by NS7 (mineralization rate up from 1.75% to 5.91%), but no promotion effect was observed in benzo[a]anthracene mineralization. Therefore, the reason for the enhancement of benzo[a]anthracene mineralization in natural soil by P. ostreatus might be that the fungal hyphae promoted the migration of indigenous PAHs-degrading bacteria in soil matrix and thus enhanced the contact of them with the contaminant. [Conclusion] Bacteria can efficiently degrade LMW PAHs while fungi showed high degradation rate of high-molecular-weight PAHs like benzo[a]pyrene. Enhanced PAH mineralization in natural soil was observed after P. ostreatus inoculation, and the mechanism might be that the fungal hyphae promoted migration of indigenous bacteria in the soil matrix. This study deepens our understanding of the synergistic degradation of PAHs in soil by fungus and bacterium and lays a theoretical basis for soil bioremediation based on the synergistic effect of fungi and bacteria.

    参考文献
    [1] Li Z, Gu GZ, Zhao CC, Zhao DF, Yang L. Co-metabolism biodegradation of polycyclic aromatic hydrocarbons with high relative molecular mass[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(3):720-725(in Chinese)李政, 顾贵洲, 赵朝成, 赵东风, 杨磊. 高相对分子质量多环芳烃的生物共代谢降解[J]. 石油学报(石油加工), 2015, 31(3):720-725
    [2] Seo JS, Keum YS, Li QX. Bacterial degradation of aromatic compounds[J]. International Journal of Environmental Research and Public Health, 2009, 6(1):278-309
    [3] Bojes HK, Pope PG. Characterization of EPA's 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas[J]. Regulatory Toxicology and Pharmacology, 2007, 47(3):288-295
    [4] Bamforth SM, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons:current knowledge and future directions[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(7):723-736
    [5] Keith LH, Telliard WA. Priority pollutants. I. A perspective view[J]. Environmental Science & Technology, 1979, 13(4):416-423
    [6] Report on the national general survey of soil contamination[EB/OL]. (2014-04-17). http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm (in Chinese)全国土壤污染状况调查公报[EB/OL]. (2014-04-17). http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm
    [7] Law of the People's Republic of China on the prevention and control of soil pollution[EB/OL]. (2018-08-31). http://www.mee.gov.cn/ywgz/fgbz/fl/201809/t20180907_549845.shtml (in Chinese)中华人民共和国土壤污染防治法[EB/OL]. (2018-08-31). http://www.mee.gov.cn/ywgz/fgbz/fl/201809/t20180907_549845.shtml
    [8] Haleyur N, Shahsavari E, Jain SS, Koshlaf E, Ravindran VB, Morrison PD, Osborn AM, Ball AS. Influence of bioaugmentation and biostimulation on PAH degradation in aged contaminated soils:response and dynamics of the bacterial community[J]. Journal of Environmental Management, 2019, 238:49-58
    [9] Simarro R, González N, Bautista LF, Molina MC. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures[J]. FEMS Microbiology Ecology, 2013, 83(2):438-449
    [10] Lipińska A, Wyszkowska J, Kucharski J. Microbiological and biochemical activity in soil contaminated with pyrene subjected to bioaugmentation[J]. Water, Air, & Soil Pollution, 2021, 232(2):1-18
    [11] Zeng J, Lin XG, Zhang J, Li XZ. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil[J]. Journal of Hazardous Materials, 2010, 183(1/3):718-723
    [12] Willison JC. Isolation and characterization of a novel sphingomonad capable of growth with chrysene as sole carbon and energy source[J]. FEMS Microbiology Letters, 2004, 241(2):143-150
    [13] Fu B, Li QX, Xu T, Cui ZL, Sun Y, Li J. Sphingobium sp. FB3 degrades a mixture of polycyclic aromatic hydrocarbons[J]. International Biodeterioration & Biodegradation, 2014, 87:44-51
    [14] Zhang YH, Ahmad M, Dong JD, Yang QS, Zhou WG, Ling J. Isolation, identification and degradation characteristics of a phenanthrene degrading bacteria derived from seagrass sediment[J]. Microbiology China, 2021:1-17(in Chinese)张煜航, Manzoor Ahmad, 董俊德, 杨清松, 周卫国, 凌娟. 一株海草沉积物菲降解菌的筛选、鉴定和降解特性[J]. 微生物学通报, 2021:1-17
    [15] Hadibarata T, Kristanti RA. Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022[J]. Bioresource Technology, 2012, 107:314-318
    [16] Igbiri S, Udowelle NA, Ekhator OC, Asomugha RN, Igweze ZN, Orisakwe OE. Polycyclic aromatic hydrocarbons in edible mushrooms from Niger Delta, Nigeria:carcinogenic and non-carcinogenic health risk assessment[J]. Asian Pacific Journal of Cancer Prevention, 2017, 18(2):437-447
    [17] Zeng J, Wu YC, Lin XG. Advances in microbial remediation of soils polluted by polycyclic aromatic hydrocarbons[J]. Acta Microbiologica Sinica, 2020, 60(12):2804-2815(in Chinese)曾军, 吴宇澄, 林先贵. 多环芳烃污染土壤微生物修复研究进展[J]. 微生物学报, 2020, 60(12):2804-2815
    [18] Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs):a review[J]. Frontiers in Microbiology, 2016, 7:1369
    [19] Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil[J]. Bioresource Technology, 2008, 99(7):2637-2643
    [20] Boonchan S, Britz ML, Stanley GA. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures[J]. Applied and Environmental Microbiology, 2000, 66(3):1007-1019
    [21] Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY. Taking the fungal highway:mobilization of pollutant-degrading bacteria by fungi[J]. Environmental Science & Technology, 2005, 39(12):4640-4646
    [22] Otto S, Banitz T, Thullner M, Harms H, Wick LY. Effects of facilitated bacterial dispersal on the degradation and emission of a desorbing contaminant[J]. Environmental Science & Technology, 2016, 50(12):6320-6326
    [23] Warmink JA, Nazir R, Corten B, Van Elsas JD. Hitchhikers on the fungal highway:the helper effect for bacterial migration via fungal hyphae[J]. Soil Biology and Biochemistry, 2011, 43(4):760-765
    [24] Knudsen BE, Ellegaard-Jensen L, Albers CN, Rosendahl S, Aamand J. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM)[J]. Environmental Pollution, 2013, 181:122-127
    [25] Furuno S, Foss S, Wild E, Jones KC, Semple KT, Harms H, Wick LY. Mycelia promote active transport and spatial dispersion of polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology, 2012, 46(10):5463-5470
    [26] Schamfuß S, Neu TR, Van Der Meer JR, Tecon R, Harms H, Wick LY. Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria[J]. Environmental Science & Technology, 2013, 47(13):6908-6915
    [27] Wick LY, Remer R, Würz B, Reichenbach J, Braun S, Schäfer F, Harms H. Effect of fungal hyphae on the access of bacteria to phenanthrene in soil[J]. Environmental Science & Technology, 2007, 41(2):500-505
    [28] Han HL, Chen Z, Yang JM, Miao CC, Zhang K, Jin WB, Liu Z. Field scale demonstration of fungi-bacteria augmented remediation of petroleum-contaminated soil[J]. Environmental Science, 2008(2):2454-2461(in Chinese)韩慧龙, 陈镇, 杨健民, 苗长春, 张坤, 金文标, 刘铮. 真菌-细菌协同修复石油污染土壤的场地试验[J]. 环境科学, 2008(2):2454-2461
    [29] Zeng J, Zhu QH, Li YJ, Dai YL, Wu YC, Sun YH, Miu LY, Chen H, Lin XG. Isolation of diverse pyrene-degrading bacteria via introducing readily utilized phenanthrene[J]. Chemosphere, 2019, 222:534-540
    [30] Xu DQ, Wang YM, Zhou DQ. Microbiology Experiment[M]. 4th ed. Beijing:Higher Education Press, 2019:286-289(in Chinese)徐德强, 王英明, 周德庆. 微生物学实验教程[M]. 4版. 北京:高等教育出版社, 2019:286-289
    [31] Lin XG. Principles and Methods of Soil Microbiology Research[M]. Beijing:Higher Education Press, 2010:364(in Chinese)林先贵. 土壤微生物研究原理与方法[M]. 北京:高等教育出版社, 2010:364
    [32] Song LC, Li PJ, Liu W, Xiao YN, Zhang YL. Isolation, identification and degradation characteristics of a PAHs-degrading bacteria from salt-alkaline soil[J]. Microbiology China, 2011, 38(2):282-287(in Chinese)宋立超, 李培军, 刘宛, 肖亦农, 张玉龙. 盐碱土壤PAHs降解菌的筛选鉴定及其降解特性[J]. 微生物学通报, 2011, 38(2):282-287
    [33] Brinch UC, Ekelund F, Jacobsen CS. Method for spiking soil samples with organic compounds[J]. Applied and Environmental Microbiology, 2002, 68(4):1808-1816
    [34] Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH. Microbial biodegradation of polyaromatic hydrocarbons[J]. FEMS Microbiology Reviews, 2008, 32(6):927-955
    [35] Kweon O, Kim SJ, Freeman JP, Song J, Baek S, Cerniglia CE. Substrate specificity and structural characteristics of the novel rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1[J]. mBio, 2010, 1(2):e00135-10.
    [36] Wu J, Liu J, Chen J. Degradation of single and mixed PAHs by Irpex lacteus F17[J]. Acta Microbiologica Sinica, 2020, 60(12):2734-2746(in Chinese)吴涓, 刘俊, 陈婕. 乳白耙齿菌F17对单一和复合多环芳烃的降解差异解析[J]. 微生物学报, 2020, 60(12):2734-2746
    [37] Steffen KT, Hatakka A, Hofrichter M. Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla:role of manganese peroxidase[J]. Applied and Environmental Microbiology, 2003, 69(7):3957-3964
    [38] Kotterman MJJ, Vis EH, Field JA. Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora[J]. Applied and Environmental Microbiology, 1998, 64(8):2853-2858
    [39] Adams GO, Fufeyin PT, Okoro SE, Ehinomen I. Bioremediation, biostimulation and bioaugmention:a review[J]. International Journal of Environmental Bioremediation & Biodegradation, 2015, 3(1):28-39
    [40] Zeng J, Zhu QH, Wu YC, Shan J, Ji R, Lin XG. Oxidation of benzo[a]pyrene by laccase in soil enhances bound residue formation and reduces disturbance to soil bacterial community composition[J]. Environmental Pollution, 2018, 242:462-469
    [41] Titaley IA, Simonich SLM, Larsson M. Recent advances in the study of the remediation of polycyclic aromatic compound (PAC)-contaminated soils:transformation products, toxicity, and bioavailability analyses[J]. Environmental Science & Technology Letters, 2020, 7(12):873-882
    [42] Worrich A, König S, Miltner A, Banitz T, Centler F, Frank K, Thullner M, Harms H, Kästner M, Wick LY. Mycelium-like networks increase bacterial dispersal, growth, and biodegradation in a model ecosystem at various water potentials[J]. Applied and Environmental Microbiology, 2016, 82(10):2902-2908
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜志德,戴叶亮,李艳洁,吴宇澄,林先贵,叶旭红,曾军. 糙皮侧耳和鞘脂菌NS7对多环芳烃污染土壤的生物强化与协同作用[J]. 微生物学通报, 2021, 48(12): 4530-4540

复制
分享
文章指标
  • 点击次数:516
  • 下载次数: 1169
  • HTML阅读次数: 1070
  • 引用次数: 0
历史
  • 收稿日期:2021-03-10
  • 录用日期:2021-04-21
  • 在线发布日期: 2021-12-03
文章二维码