科微学术

微生物学通报

拮抗北细辛菌核病木霉菌的分离、鉴定及生防效果
作者:
基金项目:

吉林省科技厅技术攻关项目(20190304017YY);国家重点研发计划(2019YFC1710700);吉林省中医药管理局项目(L202009)


Isolation, identification and biocontrol effect of Trichoderma antagonistic to Sclerotinia disease of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim) Kitag.
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 菌核病是北细辛根部主要病害之一,木霉菌作为目前应用最广泛的生物防治真菌,利用木霉菌防治北细辛菌核病是目前研究的热点。[目的] 通过稀释分离法对健康北细辛植株根际土壤进行菌株分离,以期筛选出有效拮抗北细辛菌核病的生防木霉菌。[方法] 以北细辛菌核病菌为靶标菌,采用平板对峙培养、挥发性与非挥发性物质抑菌的方法对分离得到的木霉菌进行筛选,采用生长速率法对筛选出的木霉菌的发酵液进行抑菌效果测定,并采用硫代巴比妥酸法测定筛选出的木霉对北细辛菌核病菌的丙二醛(Malondialdehyde,MDA)含量、紫外吸收法测定过氧化氢酶(Catalase,CAT)活性、氮蓝四唑法测定超氧化物歧化酶(Superoxide Dismutase,SOD)活性、愈创木酚法测定过氧化物酶(Peroxidase,POD)活性的影响。[结果] 从土壤中分离出木霉菌共14株,通过形态学和ITS-RPB2双基因联合构建系统发育树,鉴定其为哈茨木霉(Trichoderma harzianum)、钩状木霉(Trichoderma hamatum)、拟康氏木霉(Trichoderma koningiopsis)、深绿木霉(Trichoderma atroviride)、短密木霉(Trichoderma brevicompactum)和装絮木霉(Trichoderma tomentosum)。对峙培养试验表明,钩状木霉A26、拟康氏木霉B30、钩状木霉C6、哈茨木霉A17对北细辛菌核病菌抑制率均在90%以上,挥发性物质抑制测定结果显示钩状木霉C6抑制率最高,为53.73%±0.07%,木霉菌的非挥发性物质抑菌作用较强,哈茨木霉A17、钩状木霉A26、钩状木霉C6的非挥发性物质对细辛菌核病菌的抑制率均在75%以上,而拟康氏木霉B30抑制率可达100%。因此,筛选出的哈茨木霉A17、钩状木霉A26、拟康氏木霉B30、钩状木霉C6为拮抗效果较强的生防木霉菌,这4株木霉菌的发酵液对北细辛菌核病菌的抑制率分别为56.33%±0.12%、77.22%±0.06%、82.28%±0.03%、46.20%±0.04%。经这4株木霉菌的非挥发性物质处理7 d后,菌核病菌MDA含量显著增加,钩状木霉A26是对照组的7.7倍,最为显著;菌核病菌抗氧化酶活性均降低,与对照组相比,CAT、SOD、POD活性分别下降了19.67%-75.84%、4.71%-68.71%和3.57%-67.86%。[结论] 从北细辛健康植株根际土壤中分离的木霉菌株哈茨木霉A17、钩状木霉A26、拟康氏木霉B30、钩状木霉C6对北细辛菌核病菌均有较好的抑制效果,可用于北细辛菌核病的生物防治。

    Abstract:

    [Background] Sclerotinia disease is one of the main root diseases of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim) Kitag. Trichoderma is extensively used for biocontrol owing to the fungistatic activity. Recently, the control of Sclerotinia asari by Trichoderma has attracted the interest of scholars. [Objective] Trichoderma strains were isolated from the rhizosphere soil of healthy A. heterotropoides Fr. Schmidt var. mandshuricum (Maxim) Kitag. with the dilution-plate method and those antagonistic to S. asari were screened out. [Methods] The inhibition of the isolated strains (plate confrontation method), the volatile and non-volatile strain metabolites, and strain fermentation broth (growth rate method) on S. asari was respectively determined. The malondialdehyde (MDA) content (thiobarbituric acid method), catalase (CAT) activity (ultraviolet absorption method), superoxide dismutase (SOD) activity (nitroblue tetrazolium assay), and peroxidase (POD) activity (guaiacol method) of S. asari treated with the selected Trichoderma were determined. [Results] A total of 14 Trichoderma strains were isolated and identified based on morphological observation and ITS-RPB2 sequence alignment as T. harzianum, T. hamatum, T. koningiopsis, T. atroviride, T. brevicompactum, and T. tomentosum, respectively. The inhibition rates of T. hamatum A26, T. koningiopsis B30, T. hamatum C6, and T. harzianum A17 on S. asari were all above 90%. The volatile metabolites of T. hamatum C6 demonstrated the highest inhibition rate (53.73%±0.07%), and the non-volatile metabolites showed stronger inhibitory effect, particularly those of A17 (inhibition rate: >75%), A26 (inhibition rate: >75%), C6 (inhibition rate: >75%), and B30 (inhibition rate: 100%). Thus, strains A17, A26, B30, and C6 had the strongest control effect and the inhibition rates of the fermentation broth of these 4 Trichoderma strains against S. asari were 56.33%±0.12%, 77.22%±0.06%, 82.28%±0.03%, and 46.20%±0.04%, respectively. After being treated with the non-volatile metabolites of the 4 strains for 7 days, S. asari saw significantly increased MDA content, particularly the S. asari strains treated with the non-volatile metabolites of A26 (MDA content was 7.7 times that of the control). Besides, the antioxidant enzyme activity of S. asari decreased. To be specific, the activity of CAT, SOD, and POD declined by 19.67%-75.84%, 4.71%-68.71%, and 3.57%-67.86%, respectively, as compared with that of the control. [Conclusion] Trichoderma A17, A26, B30, and C6 isolated from the rhizosphere soil of healthy plants of A. heterotropoides Fr. Schmidt var. mandshuricum (Maxim) Kitag. can be used for the biocontrol of S. asari.

    参考文献
    [1] National Pharmacopoeia Commission. Chinese Pharmacopoeia (I)[S]. Beijing:China Medical Science Press, 2015:230(in Chinese)国家药典委员会. 中国药典(一部)[S]. 北京:中国医药科技出版社, 2015:230
    [2] Wang ZQ, Xiao SY, Wang YF, Liu JY, Ma HQ, Wang YP, Tian YX, Hou W. Effects of light irradiation on essential oil biosynthesis in the medicinal plant Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim) Kitag.[J]. PLoS One, 2020, 15(9):e0237952
    [3] Haque ASMT, Moon JN, Saravana PS, Tilahun A, Chun BS. Composition of Asarum heterotropoides var. mandshuricum Radix oil from different extraction methods and activities against human body odor-producing bacteria[J]. Journal of Food and Drug Analysis, 2016, 24(4):813-821
    [4] Wang ZQ, Song J, Ma HQ, Pang SF, Ma L, Cui LL, Tian YX. Analysis and evaluation on main active ingredients of Asarum heterotropoides var. mandshuricum from different habitats[J]. Chinese Traditional and Herbal Drugs, 2020, 51(3):748-756(in Chinese)王志清, 宋佳, 马海琴, 逄世峰, 马琳, 崔丽丽, 田义新. 不同产地细辛中主要有效成分含量测定与比较[J]. 中草药, 2020, 51(3):748-756
    [5] Li L, Sun WS, Zhang TJ, Shen BY, Liu Y. Identification and biological characteristics of antagonistic fungal strains against Sclerotinia asari[J]. Journal of Sichuan Agricultural University, 2020, 38(5):558-563,579(in Chinese)李玲, 孙文松, 张天静, 沈宝宇, 刘莹. 辽细辛菌核病拮抗菌的鉴定及生物学特性研究[J]. 四川农业大学学报, 2020, 38(5):558-563,579
    [6] Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species:opportunistic, avirulent plant symbionts[J]. Nature Reviews Microbiology, 2004, 2(1):43-56
    [7] Kashyap PL, Rai P, Srivastava AK, Kumar S. Trichoderma for climate resilient agriculture[J]. World Journal of Microbiology & Biotechnology, 2017, 33(8):155
    [8] Zhang J, Ma JH, Han BB, Wang J, Wu F. Screening and biocontrol efficiency of Trichoderma spp. with antagonistic effect against mulberry fruit sclerotiniosis' pathogen[J]. Science of Sericulture, 2015, 41(5):825-832(in Chinese)张健, 马佳慧, 韩蓓蓓, 王俊, 吴福安. 对桑椹菌核病病原菌有拮抗作用的木霉菌菌株筛选及生防效果试验[J]. 蚕业科学, 2015, 41(5):825-832
    [9] Zhang JZ. Study on the biological characters and biocontrol of Sclerotinia sclerotiniorum in Heilongjiang China[D]. Harbin:Doctoral Dissertation of Harbin Institute of Technology, 2009(in Chinese)张军政. 黑龙江省大豆核盘菌生物学特性和生物防治的研究[D]. 哈尔滨:哈尔滨工业大学博士学位论文, 2009
    [10] He MJ. Endophytic fungi (Trichoderma viride) on biological control of Sclerotinia stem rot of oilseed rape[D]. Yaan:Master's Thesis of Sichuan Agricultural University, 2010(in Chinese)何明静. 植物内生菌绿色木霉(Trichoderma viride)对油菜菌核病的生物防治[D]. 雅安:四川农业大学硕士学位论文, 2010
    [11] Adnan M, Islam W, Shabbir A, Khan KA, Ghramh HA, Huang ZQ, Chen HYH, Lu GD. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus[J]. Microbial Pathogenesis, 2019, 129:7-18
    [12] Fang ZD. Research Methods of Plant Diseases[M]. 3ed. Beijing:Chinese Agriculture Press, 1998:195(in Chinese)方中达. 植病研究方法[M]. 3版. 北京:中国农业出版社, 1998:195
    [13] Hatvani L, Homa M, Chenthamara K, Cai F, Kocsubé S, Atanasova L, Mlinaric-Missoni E, Manikandan P, Revathi R, Dóczi I, et al. Agricultural systems as potential sources of emerging human mycoses caused by Trichoderma:a successful, common phylotype of Trichoderma longibrachiatum in the frontline[J]. FEMS Microbiology Letters, 2019, 366(21):fnz246
    [14] Li SY, Huang Z, Zhu WY, Lin Y. Biological characteristics and genomic analysis of a lytic Proteus mirabilis phage with C3 morphotype[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4):1069-1078(in Chinese)
    [15] Wang BL, Li GJ, Guo YR, Chen J. Comparison of antagonistic effects of four Trichoderma strains[J]. Chinese Journal of Biological Control, 2012, 28(1):147-151(in Chinese)王秉丽, 李广纪, 郭玉人, 陈捷. 不同野生木霉菌拮抗作用的比较[J]. 中国生物防治学报, 2012, 28(1):147-151
    [16] Zhao XL, Tao G, Lou X, Gu JG. Colonization dynamics of Trichoderma hamatum in pepper rhizosphere and its biological control against pepper Phytophthora blight[J]. Journal of Agricultural Science and Technology, 2020, 22(5):106-114(in Chinese)赵兴丽, 陶刚, 娄璇, 顾金刚. 钩状木霉在辣椒根际定殖动态及其对辣椒疫病的生物防治[J]. 中国农业科技导报, 2020, 22(5):106-114
    [17] Hao ZB, Cang J, Xu Z. Plant Physiology Experiments[M]. Harbin:Harbin Institute of Technology Press, 2004:110-115(in Chinese)郝再彬, 苍晶, 徐仲. 植物生理实验[M]. 哈尔滨:哈尔滨工业大学出版社, 2004:110-115
    [18] Li HS, Sun Q, Zhao SJ. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing:Higher Education Press, 2000:135-136(in Chinese)李合生, 孙群, 赵世杰. 植物生理生化试验原理和技术[M]. 北京:高等教育出版社, 2000:135-136
    [19] Kochba J, Lavee S, Spiegel-Roy P. Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic ‘Shamouti’ orange ovular callus lines[J]. Plant and Cell Physiology, 1977, 18(2):463-467
    [20] Kato M, Shimizu S. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation[J]. Canadian Journal of Botany, 1987, 65(4):729-735
    [21] Chang Y, Yang XT, Jiang CY, Yao ZH, Jia R, Ren LH, Zhang RS. A Trichoderma longibrachiatum strain with antagonistic effects against three soil-borne pathogenic fungi[J]. Pratacultural Science, 2017, 34(2):246-254(in Chinese)常媛, 杨兴堂, 姜传英, 姚志红, 贾让, 任龙辉, 张荣沭. 一株能拮抗3种土传病害病原真菌的长枝木霉[J]. 草业科学, 2017, 34(2):246-254
    [22] Kang YP, Yan LY, Lei Y, Wan LY, Huai DX, Wang ZH, Liao BS. Biocontrol mechanism of Trichoderma koningiopsis against Sclerotinia sclerotiorum in peanut[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(6):842-847(in Chinese)康彦平, 晏立英, 雷永, 万丽云, 淮东欣, 王志慧, 廖伯寿. 拟康氏木霉对花生菌核病的生防机制[J]. 中国油料作物学报, 2017, 39(6):842-847
    [23] Vos CMF, De Cremer K, Cammue BPA, De Coninck B. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinereadisease[J]. Molecular Plant Pathology, 2015, 16(4):400-412
    [24] Zhan X, Tai LM, Liu T, Zhang YL, Zheng W, Jin YZ. Antagonistic effects of two Trichoderma species on pathogen of rice seedling blight in cold region[J]. China Rice, 2020, 26(4):96-99(in Chinese)战鑫, 台莲梅, 刘铜, 张有利, 郑雯, 靳亚忠. 2种木霉菌对寒地水稻立枯病病原菌的拮抗作用研究[J]. 中国稻米, 2020, 26(4):96-99
    [25] Zhao DL, He HY, Wu SP, Chen XJ, Tan QQ, Yang XH. Biocontrol mechanisms and control effects of Trichoderma asperellum GYSW-6m1 on strawberry anthracnose and growth-promoting effects on strawberry[J]. Chinese Journal of Biological Control, 2020, 36(4):587-595(in Chinese)赵玳琳, 何海永, 吴石平, 陈小均, 谭清群, 杨学辉. 棘孢木霉GYSW-6m1对草莓炭疽病的生防机制及其防病促生作用研究[J]. 中国生物防治学报, 2020, 36(4):587-595
    [26] Khaledi N, Taheri P. Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina[J]. Journal of Plant Protection Research, 2016, 56(1):21-31
    [27] Tapwal A, Nisha, Garg S, Gautam N, Kumar R. In vitro antifungal potency of plant extracts against five phytopathogens[J]. Brazilian Archives of Biology and Technology, 2011, 54(6):1093-1098
    [28] Yang LB, Song RQ, Li CW. Effects of ethyl acetate extract of Trichoderma harzianum fermentation liquid on physiological index of Phytophthora infestans[J]. Journal of Beijing Forestry University, 2013, 35(2):92-96(in Chinese)杨立宾, 宋瑞清, 李冲伟. 哈茨木霉发酵液乙酸乙酯提取物对致病疫霉生理指标的影响[J]. 北京林业大学学报, 2013, 35(2):92-96
    [29] Deng X, Song RQ, Song XS, Yin DC. High efficient Trichoderma strains and theirs bio-control effects on shoot blight of Pinus sylvestris var. ongolica[J]. Journal of Central South University of Forestry & Technology, 2012, 32(11):21-27(in Chinese)邓勋, 宋瑞清, 宋小双, 尹大川. 高效木霉菌株对樟子松枯梢病的抑菌机理[J]. 中南林业科技大学学报, 2012, 32(11):21-27
    [30] Liu SY, Chen FH, Yu X, Yang PB, Liu L. Inhibitory effects of postharvest treatment with Trichoderma vride fermentation broth on anthracnose in mango fruit[J]. Journal of Northwest A&F University:Natural Science Edition, 2013, 41(4):133-138,146(in Chinese)刘淑宇, 陈发河, 于新, 杨鹏斌, 刘丽. 绿色木霉菌发酵液对芒果采后炭疽病的抑制作用及保鲜效果[J]. 西北农林科技大学学报(自然科学版), 2013, 41(4):133-138,146
    [31] Wei LM, Zou XW, Xu TL, Yuan WT, Wei SJ. Effects of antifungalmycin 211 on cell membrane and antioxidant enzyme activity of Rhizoctonia solani[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(5):1084-1090(in Chinese)魏丽梅, 邹小文, 徐婷璐, 袁文涛, 魏赛金. 农抗211对水稻纹枯病菌细胞膜和抗氧化酶活性的影响[J]. 核农学报, 2021, 35(5):1084-1090
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王子晴,卢宝慧,田义新,王玉珍,张敏,权兴周,赵光远,陈磊,王志清. 拮抗北细辛菌核病木霉菌的分离、鉴定及生防效果[J]. 微生物学通报, 2021, 48(12): 4624-4635

复制
分享
文章指标
  • 点击次数:609
  • 下载次数: 1417
  • HTML阅读次数: 2078
  • 引用次数: 0
历史
  • 收稿日期:2021-03-13
  • 录用日期:2021-04-21
  • 在线发布日期: 2021-12-03
文章二维码