科微学术

微生物学通报

烟草根际可培养微生物多样性及防病促生菌的筛选
作者:
基金项目:

中国烟草总公司贵州省公司科技项目(201809);中国烟草总公司重点科技项目(110201902003)


The culturable microbial diversity in tobacco rhizosphere and their plant growth-promoting and biocontrol properties
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [背景] 根际微生物在植物根部生态系统中扮演着重要角色,影响着植物的营养吸收和健康生长。[目的] 了解常年不发病烟田烤烟品种K326根际可培养微生物的多样性,筛选具有防病促生功能的菌株,为烟草病害绿色防控提供资源。[方法] 采用传统培养方法对烟草根际土壤中的细菌和真菌进行分离鉴定,评价菌株的促生特性及病原菌拮抗能力,并进一步验证典型菌株对盆栽烟苗的促生效果。[结果] 共获得261株微生物菌株,包括160株细菌和101株真菌。经分子鉴定,细菌中以变形菌门(Proteobacteria)和厚壁菌门(Firmicutes)为主要类群;真菌中以子囊菌门(Ascomycota)和毛霉菌门(Mucoromycota)为主要类群。在属水平上,细菌以假单胞菌属(Pseudomonas)和芽孢杆菌属(Bacillus)为主,真菌以曲霉属(Aspergillus)和青霉属(Penicillium)为主。从不同种水平上进一步选择44株细菌为代表菌株,发现它们均具有不同程度的吲哚-3-乙酸(Indole-3-Acetic Acid,IAA)产生能力,9株能够溶解有机磷,16株能够溶解无机磷,13株产生铁载体,14株产生生1-氨基环丙烷-1-羧酸(1-Aminocyclopropane-1-Carboxylate,ACC)脱氨酶。从160株细菌中筛选得到抑制青枯病菌和黑胫病菌的菌株数目分别为25、26株。经盆栽试验发现韩国假单胞菌(P. koreensis) HCH2-3、浅黄绿假单胞菌(P. lurida) FGD5-2和贝莱斯芽孢杆菌(B. velezensis) EM-1对烟苗呈现不同程度的促生作用,其中3株菌联合施加对烟苗的促生效果最明显。[结论] 烟草根际存在着丰富多样的具有防病促生潜力的微生物,并且合成菌群或功能互补的菌株联合施用是未来微生物菌剂研发的重要方向。

    Abstract:

    [Background] Studies have shown that rhizosphere microorganisms play an important role in the root ecosystem, influencing the nutrient absorption and health of plant. [Objective] To understand the culturable microbial diversity in the rhizosphere of flue-cured tobacco variety K326 growing in four tobacco fields, which does not occur disease for many years, and to screen strains with the biocontrol and plant-growth promoting function for tobacco diseases control. [Methods] Traditional culture-dependent methods were used to isolate and identify bacteria and fungi in tobacco rhizosphere soil. The plant growth-promoting characteristics and pathogen antagonism of the strains were evaluated, and the growth-promoting effects of typical strains were further verified on tobacco seedlings. [Results] In this study, 261 isolates were obtained, including 160 bacterial strains and 101 fungal strains. Bacterial phyla of Proteobacteria and Firmicutes and fungal phyla of Ascomycota and Mucoromycota are the main groups. At the genus level, Pseudomonas and Bacillus were the most abundant genera in bacteria, and Aspergillus and Penicillium dominated in fungi. Next, 44 bacterial strains were selected from different species as representatives. We found that they all have IAA production ability, 9 strains can dissolve organic phosphorus, 16 strains can dissolve inorganic phosphorus, 13 strains produce siderophores, and 14 strains produce ACC deaminase. 25 and 26 strains that inhibiting the pathogens of bacterial wilt and black shank diseases were obtained from 160 bacterial strains, respectively. The pot experiment found that P. koreensis HCH2-3, P. lurida FGD5-2 and B. velezensis EM-1 can promote growth of tobacco seedlings, and consortium of these three strains has the most obvious growth-promoting effect. [Conclusion] There are numerous microorganisms with the potential to control disease and promote plant growth in the tobacco rhizosphere. Application of synthetic bacteria or functional complementary strains is an important direction for the development of microbial agents in the future.

    参考文献
    [1] Kang LY, Liu ZB, Ou LJ, Yuan ZH. Research progress on effects of soil microbial on the growth and development of crops[J]. Hunan Agricultural Sciences, 2017(3):113-116(in Chinese)康林玉, 刘周斌, 欧立军, 袁祖华. 土壤微生物促进作物生长发育研究进展[J]. 湖南农业科学, 2017(3):113-116
    [2] Zhang JY, Liu YX, Zhang N, Hu B, Jin T, Xu HR, Qin Y, Yan PX, Zhang XN, Guo XX, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6):676-684
    [3] Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, De Hollander M, Ruiz-Buck D, Mendes LW, Van Ijcken WFJ, Gomez-Exposito R, Elsayed SS, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019, 366(6465):606-612
    [4] Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, Lee PA, Choi SY, Seo M, Lee HJ, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11):1100-1109
    [5] Mitter B, Brader G, Pfaffenbichler N, Sessitsch A. Next generation microbiome applications for crop production-limitations and the need of knowledge-based solutions[J]. Current Opinion in Microbiology, 2019, 49:59-65
    [6] Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria[J]. Annual Review of Microbiology, 2009, 63:541-556
    [7] Ji C, Wang XH, Liu XL. Research progress on the action mechanism of plant growth-promoting bacteria under salt stress[J]. Biotechnology Bulletin, 2020, 36(4):131-143(in Chinese)纪超, 王晓辉, 刘训理. 盐胁迫环境下植物促生菌的作用机制研究进展[J]. 生物技术通报, 2020, 36(4):131-143
    [8] Rao YP. Disease prevention and growth promoting effect of growth-promoting rhizosphere in cucumber[J]. Journal of Changjiang Vegetables, 2009(14):11-14(in Chinese)饶毅萍. 黄瓜根际促生菌的促生效应与防病作用[J]. 长江蔬菜, 2009(14):11-14
    [9] Lynch JM, Whipps JM. Substrate flow in the rhizosphere[J]. Plant and Soil, 1990, 129(1):1-10
    [10] Kyselková M, Kopecký J, Frapolli M, Défago G, Ságová-Marečková M, Grundmann GL, Moënne-Loccoz Y. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease[J]. The ISME Journal, 2009, 3(10):1127-1138
    [11] Hu QL, Tan L, Gu SS, Xiao YS, Xiong XY, Zeng WA, Feng K, Wei Z, Deng Y. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria[J]. npj Biofilms and Microbiomes, 2020, 6:8
    [12] Zheng YF, Han XB, Zhao DL, Wei KK, Yuan Y, Li YQ, Liu MH, Zhang CS. Exploring biocontrol agents from microbial keystone taxa associated to suppressive soil:a new attempt for a biocontrol strategy[J]. Frontiers in Plant Science, 2021. DOI:10.3389/fpls.2021.655673
    [13] Fang ZD. Plant Diseases Research Methods[M]. Beijing:China Agriculture Press, 1998:46-49(in Chinese)方中达. 植病研究方法[M]. 北京:中国农业出版社, 1998:46-49
    [14] Man J, Tang B, Deng B, Li JH, He YJ, Zhang JL. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Leymus chinensis[J]. Acta Prataculturae Sinica, 2021, 30(1):59-71(in Chinese)漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张家良. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1):59-71
    [15] Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1):47-56
    [16] Wang HC, Li WH, Chen QY, Huang YF, Li K, Xia HQ, Wang MS, Cai LT, Shang SH, Shi JX. A rapid microbioassay for discovery of antagonistic bacteria for Phytophthora parasitica var. nicotianae[J]. Phytopathology, 2012, 102(3):267-271
    [17] Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology, 1991, 173(2):697-703
    [18] Lee SB, Taylor JW. PCR protocols:a guide to methods and applications[EB/OL]. 1990
    [19] Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiologia Plantarum, 2003, 118(1):10-15
    [20] Liu BB, Guo SX, Chen X, Liu ZY, Zhou KX, Song HF, Chen W, Li WJ. Diversity and function of culturable rhizospheric bacteria of flue-cured tobacco K326 intercropped with five spice plants[J]. Microbiology China, 2020, 47(8):2436-2449(in Chinese)刘冰冰, 郭书贤, 陈兴, 刘正宇, 周开心, 宋豪锋, 陈微, 李文均. 烤烟K326与香料植物间作模式下根际土可培养细菌多样性及功能[J]. 微生物学通报, 2020, 47(8):2436-2449
    [21] Li ZF, Zhong L, Zhu J, Tang L, Wu T, Liao TG, Xia YZ, Yang LQ. Succession characteristics of fungal communities in tobacco rhizospheric soil in Yunnan[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(7):1545-1553(in Chinese)李正风, 钟莉, 朱杰, 唐丽, 吴涛, 廖头根, 夏玉珍, 杨利擎. 云南烟草根际土壤真菌群落演替特征[J]. 西南农业学报, 2020, 33(7):1545-1553
    [22] Wang N, Lü GZ, Sun XD, Mu DY, Zhao ZH, Wang FL. Fungal diversity in tobacco rhizosphere soil[J]. Mycosystema, 2012, 31(6):827-836(in Chinese)王娜, 吕国忠, 孙晓东, 慕东艳, 赵志慧, 王凤龙. 烟草根际土壤真菌多样性的研究[J]. 菌物学报, 2012, 31(6):827-836
    [23] Chuang CC, Kuo YL, Chao CC, Chao WL. Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger[J]. Biology and Fertility of Soils, 2007, 43(5):575-584
    [24] Waqas M, Khan AL, Hamayun M, Shahzad R, Kang SM, Kim JG, Lee IJ. Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot:an example of Penicillium citrinum and Aspergillus terreus[J]. Journal of Plant Interactions, 2015, 10(1):280-287
    [25] Salas-Marina MA, Silva-Flores MA, Cervantes-Badillo MG, Rosales-Saavedra MT, Islas-Osuna MA, Casas-Flores S. The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana[J]. Journal of Microbiology and Biotechnology, 2011, 21(7):686-696
    [26] Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP. Potassium-Solubilizing Microorganism in Evergreen Agriculture:An Overview[M]//Potassium Solubilizing Microorganisms for Sustainable Agriculture. New Delhi:Springer India, 2016:1-20
    [27] Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture[J]. Microbiological Research, 2018, 206:131-140
    [28] Etesami H, Maheshwari DK. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture:action mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018, 156:225-246
    [29] Wang YX, Xie ZH, Zhang L, Chang DY. Screening of plant growth promoting and salt tolerant rhizobacteria in Sesbania cannabina[J]. Acta Microbiologica Sinica, 2020, 60(5):1023-1035(in Chinese)王艳霞, 解志红, 张蕾, 常大勇. 田菁根际促生菌的筛选及其促生耐盐效果[J]. 微生物学报, 2020, 60(5):1023-1035
    [30] Haas D, Keel C. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease[J]. Annual Review of Phytopathology, 2003, 41(1):117-153
    [31] Kinsella K, Schulthess CP, Morris TF, Stuart JD. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere[J]. Soil Biology and Biochemistry, 2009, 41(2):374-379
    [32] Zhuang LB, Li Y, Wang ZS, Yu Y, Zhang N, Yang C, Zeng QC, Wang Q. Synthetic community with six Pseudomonas strains screened from garlic rhizosphere microbiome promotes plant growth[J]. Microbial Biotechnology, 2021, 14(2):488-502
    [33] Hu J, Wei Z, Friman VP, Gu SH, Wang XF, Eisenhauer N, Yang TJ, Ma J, Shen QR, Xu YC, et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio, 20166. DOI:10.1128/mbio.01790-16
    [34] Zhao Q, Ren GW, Wang J, Wang XW, Wei JY, Wang XQ, Lu YH, Chen X, Wang J. Effects of adding Pseudomonas koreensis CLP-7 on soil quality and soil microbial community functional diversity in continuous cropping tobacco fields[J]. Acta Ecologica Sinica, 2020, 40(15):5357-5366(in Chinese)赵倩, 任广伟, 王杰, 王新伟, 韦建玉, 王晓强, 卢燕回, 陈信, 王静. 施用韩国假单胞菌(Pseudomonas koreensis) CLP-7对连作烟田土壤质量及微生物群落功能多样性的影响[J]. 生态学报, 2020, 40(15):5357-5366
    [35] Liu YX, Qin Y, Bai Y. Reductionist synthetic community approaches in root microbiome research[J]. Current Opinion in Microbiology, 2019, 49:97-102
    [36] Wei Z, Huang JF, Yang TJ, Jousset A, Xu YC, Shen QR, Friman VP. Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions[J]. The Journal of Applied Ecology, 2017, 54(5):1440-1448
    [37] Zhang JY, Liu YX, Guo XX, Qin Y, Garrido-Oter R, Schulze-Lefert P, Bai Y. High-throughput cultivation and identification of bacteria from the plant root microbiota[J]. Nature Protocols, 2021, 16(2):988-1012
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周亚男,韩小斌,魏可可,芶剑渝,王先勃,张成省,郑艳芬. 烟草根际可培养微生物多样性及防病促生菌的筛选[J]. 微生物学通报, 2021, 48(12): 4649-4663

复制
分享
文章指标
  • 点击次数:643
  • 下载次数: 1389
  • HTML阅读次数: 2919
  • 引用次数: 0
历史
  • 收稿日期:2021-05-07
  • 录用日期:2021-07-02
  • 在线发布日期: 2021-12-03
文章二维码