科微学术

微生物学通报

海假交替单胞菌fliC-02330基因缺失影响生物被膜形成及厚壳贻贝幼虫附着变态
作者:
基金项目:

国家自然科学基金(41876159,41476131);国家重点研发计划(2019YFC0312104,2020YFD0900804);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0402);上海市优秀学术带头人计划(20XD1421800);上海市科技创新行动计划青年科技英才扬帆计划(19YF1419500)


Deletion of fliC-02330 from Pseudoalteromonas marina affects the biofilm formation and the settlement and metamorphosis of Mytilus coruscus
Author:
  • CAI Yushan

    CAI Yushan

    International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China;Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquatic Animals, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • REN Hongyu

    REN Hongyu

    International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China;Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquatic Animals, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Youting

    ZHU Youting

    International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China;Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquatic Animals, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Jinlong

    YANG Jinlong

    International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China;Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquatic Animals, Shanghai 201306, China;Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 511458, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Junbo

    ZHANG Junbo

    College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WAN Rong

    WAN Rong

    College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China;Zhoushan Branch of National Engineering Research Center for Oceanic Fisheries, Zhoushan 316014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIANG Xiao

    LIANG Xiao

    International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China;Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquatic Animals, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [17]
  • | | |
  • 文章评论
    摘要:

    【背景】假交替单胞菌属是一种广泛分布于海洋环境的革兰氏阴性细菌,存在于海底沉积物中,能分泌大量的胞外产物形成海洋微生物被膜,从而诱导海洋无脊椎动物的附着。【目的】探究海假交替单胞菌鞭毛蛋白fliC基因对生物被膜形成及厚壳贻贝诱导活性的影响。【方法】通过基因敲除构建海假交替单胞菌fliC-02330基因缺失突变菌,研究突变菌和野生菌菌落形态、生物被膜形成能力、胞外物质以及对厚壳贻贝幼虫附着变态的诱导能力等的差异性。【结果】与野生菌相比,突变菌菌落表型出现褶皱,运动能力下降,形成被膜膜厚增加,以及对幼虫附着变态诱导活性下降。共聚焦扫描发现,fliC-02330基因缺失突变菌胞外多糖含量下降,而蛋白含量上升。【结论】海假交替单胞菌鞭毛蛋白fliC-02330基因缺失促进生物被膜形成,但抑制厚壳贻贝幼虫附着变态。本研究为探究细菌鞭毛蛋白基因与厚壳贻贝幼虫的作用机制,以及后续进一步探索微生物参与海洋无脊椎动物附着变态提供一定的理论依据。

    Abstract:

    [Background] Pseudoalteromonas is a group of Gram-negative bacteria ubiquitous in the marine environment.They exist in the seabed sediments and can secrete a large amount of extracellular products to form a biofilm,which induces the attachment of invertebrates.[Objective] To explore the effect of fliC-02330 deletion from Pseudoalteromonas marina on the biofilm formation and the activity of Mytilus coruscus.[Methods] We constructed the fliC-02330-deleted mutant of P. marina by gene knockout and then compared the phenotype,the biofilm-forming ability,and the effect on settlement and metamorphosis of M. coruscus between the mutant and the wild-type strain.Confocal laser scanning microscopy (CLSM) was conducted to detect changes in the content of extracellular products in the biofilm.[Results]Compared with the wild-type strain,the mutant showed wrinkled colony,weakened motility,thickened biofilm,and decreased activity of inducing the larval settlement and metamorphosis of M. coruscus.CLSM revealed that the fliC-02330-deleted mutant had decreased extracellular polysaccharide content and increased protein content.[Conclusion]The fliC-02330-deleted mutant has increased biofilm-forming ability and can inhibit the settlement and metamorphosis of M. coruscus larvae.This study provides a theoretical basis for exploring the mechanism of bacterial flagellin gene and the role of microorganisms in the settlement and metamorphosis of marine invertebrates.

    参考文献
    [1] Lau S, Mak K, Chen F, Qian PY. Bioactivity of bacterial strains isolated from marine biofilms in Hong Kong waters for the induction of larval settlement in the marine polychaete Hydroides elegans[J]. Marine Ecology Progress Series, 2002, 226:301-310
    [2] Pinhassi J, Zweifel UL, Hagström A. Dominant marine bacterioplankton species found among colony-forming bacteria[J]. Applied and Environmental Microbiology, 1997, 63(9):3359-3366
    [3] Holmström C, Kjelleberg S. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents[J]. FEMS Microbiology Ecology, 1999, 30(4):285-293
    [4] Webster NS, Smith LD, Heyward AJ, Watts JEM, Webb RI, Blackall LL, Negri AP. Metamorphosis of a scleractinian coral in response to microbial biofilms[J]. Applied and Environmental Microbiology, 2004, 70(2):1213-1221
    [5] Negri AP, Webster NS, Hill RT, Heyward AJ. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae[J]. Marine Ecology Progress Series, 2001, 223:121-131
    [6] Huggett MJ, Williamson JE, Nys R, Kjelleberg S, Steinberg PD. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae[J]. Oecologia, 2006, 149(4):604-619
    [7] Medigue C. Coping with cold:the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125[J]. Genome Research, 2005, 15(10):1325-1335
    [8] Thomas T, Evans FF, Schleheck D, Mai-Prochnow A, Burke C, Penesyan A, Dalisay DS, Stelzer-Braid S, Saunders N, Johnson J, et al. Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment[J]. PLoS One, 2008, 3(9):e3252
    [9] Qin QL, Li Y, Zhang YJ, Zhou ZM, Zhang WX, Chen XL, Zhang XY, Zhou BC, Wang L, Zhang YZ. Comparative genomics reveals a deep-sea sediment-adapted life style of Pseudoalteromonas sp. SM9913[J]. The ISME Journal, 2011, 5(2):274-284
    [10] Kroiher M, Berking S. On natural metamorphosis inducers of the cnidarians Hydractinia echinata(Hydrozoa) and Aurelia aurita(Scyphozoa)[J]. Helgoland Marine Research, 1999, 53(2):118-121
    [11] Dobretsov S, Qian PY. Facilitation and inhibition of larval attachment of the bryozoan Bugula neritina in association with mono-species and multi-species biofilms[J]. Journal of Experimental Marine Biology and Ecology, 2006, 333(2):263-274
    [12] Lau SCK, Qian PY. Larval settlement in the serpulid polychaete Hydroides elegans in response to bacterial films:an investigation of the nature of putative larval settlement cue[J]. Marine Biology, 2001, 138(2):321-328
    [13] Bao WY, Satuito CG, Yang JL, Kitamura H. Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis in response to biofilms[J]. Marine Biology, 2007, 150(4):565-574
    [14] Wang C, Bao WY, Gu ZQ, Li YF, Liang X, Ling Y, Cai SL, Shen HD, Yang JL. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to natural biofilms[J]. Biofouling, 2012, 28(3):249-256
    [15] Rahim SAKA, Li JY, Kitamura H. Larval metamorphosis of the sea urchins, Pseudocentrotus depressus and Anthocidaris crassispina in response to microbial films[J]. Marine Biology, 2004, 144(1):71-78
    [16] Wieczorek SK, Clare AS, Todd CD. Inhibitory and facilitatory effects of microbial films on settlement of Balanus amphitrite amphitrite larvae[J]. Marine Ecology Progress Series, 1995, 119:221-228
    [17] Wieczorek SK, Todd CD. Inhibition and facilitation of bryozoan and ascidian settlement by natural multi-species biofilms:effects of film age and the roles of active and passive larval attachment[J]. Marine Biology, 1997, 128(3):463-473
    [18] Flemming HC, Neu TR, Wozniak DJ. The EPS matrix:the"house of biofilm cells"[J]. Journal of Bacteriology, 2007, 189(22):7945-7947
    [19] Flemming HC, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9):623-633
    [20] Liang X, Zhang XK, Peng LH, Zhu YT, Yoshida A, Osatomi K, Yang JL. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis[J]. International Journal of Molecular Sciences, 2020, 21(3):710
    [21] Peng LH, Liang X, Guo XP, Yoshida A, Osatomi K, Yang JL. Complete genome of Pseudoalteromonas marina ECSMB14103, a mussel settlement-inducing bacterium isolated from the East China Sea[J]. Marine Genomics, 2018, 41:46-49
    [22] Dehio C, Meyer M. Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli[J]. Journal of Bacteriology, 1997, 179(2):538-540
    [23] Zeng ZS, Guo XP, Li BY, Wang PX, Cai XS, Tian XP, Zhang S, Yang JL, Wang XX. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities[J]. Applied Microbiology and Biotechnology, 2015, 99(23):10127-10139
    [24] Wang PX, Yu ZC, Li BY, Cai XS, Zeng ZS, Chen XL, Wang XX. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas[J]. Microbial Cell Factories, 2015, 14(1):1-11
    [25] Yang JL, Shen PJ, Liang X, Li YF, Bao WY, Li JL. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms[J]. Biofouling, 2013, 29(3):247-259
    [26] Qian PY, Lau SCK, Dahms HU, Dobretsov S, Harder T. Marine biofilms as mediators of colonization by marine macroorganisms:implications for antifouling and aquaculture[J]. Marine Biotechnology, 2007, 9(4):399-410
    [27] Zobell CE, Allen EC. The significance of marine bacteria in the fouling of submerged surfaces[J]. Journal of Bacteriology, 1935, 29(3):239-251
    [28] Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov. and proposal of twelve new species combinations[J]. International Journal of Systematic Bacteriology, 1995, 45(4):755-761
    [29] Dang HY, Lovell CR. Microbial surface colonization and biofilm development in marine environments[J]. Microbiology and Molecular Biology Reviews, 2016, 80(1):91-138
    [30] 王睿.细菌生物被膜耐药屏蔽及其防治[J].中华老年多器官疾病杂志, 2004, 3(1):61-66 Wang R. Bacterial biofilm drug-resistant barrier and its prevention[J]. Chinese Journal of Multiple Organ Diseases in the Elderly, 2004, 3(1):61-66(in Chinese)
    [31] 李彤,庄辉.细菌生物膜的研究进展[J].中华微生物学和免疫学杂志, 2002, 22(3):343-346 Li T, Zhuang H. Research progress of bacterial biofilm[J]. Chinese Journal of Microbiology and Immunology, 2002, 22(3):343-346(in Chinese)
    [32] Zeng ZS, Guo XP, Cai XS, Wang PX, Li BY, Yang JL, Wang XX. Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling[J]. Microbial Biotechnology, 2017, 10(6):1718-1731
    [33] Huang Y, Callahan S, Hadfield MG. Recruitment in the sea:bacterial genes required for inducing larval settlement in a polychaete worm[J]. Scientific Reports, 2012, 2:228
    [34] Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, Burley SK, Almo SC, Mekalanos JJ. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin[J]. PNAS, 2009, 106(11):4154-4159
    [35] Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures[J]. Science, 2014, 343(6170):529-533
    [36] Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation:roles of flagella, motility, chemotaxis and type I pili[J]. Molecular Microbiology, 1998, 30(2):285-293
    [37] Kearns DB. A field guide to bacterial swarming motility[J]. Nature Reviews Microbiology, 2010, 8(9):634-644
    [38] Zhu J, Mekalanos JJ. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae[J]. Developmental Cell, 2003, 5(4):647-656
    [39] Wang JS, Peng LH, Guo XP, Yoshida A, Osatomi K, Li YF, Yang JL, Liang X. Complete genome of Pseudoalteromonas atlantica ECSMB14104, a Gammaproteobacterium inducing mussel settlement[J]. Marine Genomics, 2019, 46:54-57
    [40] Peng LH, Liang X, Xu JK, Dobretsov S, Yang JL. Monospecific biofilms of Pseudoalteromonas promote larval settlement and metamorphosis of Mytilus coruscus[J]. Scientific Reports, 2020, 10:2577
    [41] 蔡雨珊,张秀坤,竹攸汀,杨金龙,梁箫.海假交替单胞菌(Pseudoalteromonas marina)鞭毛蛋白对生物被膜形成及厚壳贻贝附着的影响[J].海洋学报, 2021, 43(4):75-83 Cai YS, Zhang XK, Zhu YT, Yang JL, Liang X. Effects of Pseudoalteromonas marina flagellin on biofilm formation and settlement of Mytilus coruscus[J]. Haiyang Xuebao, 2021, 43(4):75-83(in Chinese)
    [42] McCarter LL. Polar flagellar motility of the Vibrionaceae[J]. Microbiology and Molecular Biology Reviews, 2001, 65(3):445-462
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡雨珊,任泓妤,竹攸汀,杨金龙,张俊波,万荣,梁箫. 海假交替单胞菌fliC-02330基因缺失影响生物被膜形成及厚壳贻贝幼虫附着变态[J]. 微生物学通报, 2022, 49(3): 899-910

复制
分享
文章指标
  • 点击次数:522
  • 下载次数: 1217
  • HTML阅读次数: 1292
  • 引用次数: 0
历史
  • 收稿日期:2021-08-25
  • 录用日期:2021-10-16
  • 在线发布日期: 2022-03-07
文章二维码