科微学术

微生物学通报

基于“五位一体”新工科智能信息化教学理念的微生物学线上线下混合式教学改革及实践
作者:
基金项目:

国家自然科学基金(62007026);2022年陕西省自然科学基金重点研发项目(2022GY-313);2021年陕西省高等教育教学改革项目(21ZZ008,21BZ013);2021年陕西省高等教育学会教学研究项目(XGH21059);西安电子科技大学研究生教育教学改革项目;2021年西安电子科技大学教育教学改革重点攻关项目


Online and offline blended teaching for the national first-class blended course of Microbiology based on the “five-in-one” intelligent information teaching concept of emerging engineering
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年来,在教育部提出的“一流课程”建设背景下,涌现出了大量的混合式课程。作者团队通过近10年的本科生持续课程培养研究及分析,结合理工科院校背景及信息工程领域优势,初步建立起一套适用于当今“互联网+”背景下的“五位一体”微生物学课程混合式教学体系。课程基于新工科特色内容重构,有效打通了生命科学和工科类课程的联系;随后基于多维度信息化资源,为学生提供分层级和多元化的选择方式;线下开展的高阶性教学活动,为学生科研创新能力打下基础;课程中有效融合系统性育人要素,正确树立学生的价值导向;最后利用大数据开展形成性教学评价,为学生的全过程个性化学习质量保驾护航。该课程基于上述内容持续开展的改革和实践,在不断实践探索中取得了较好的成效。

    Abstract:

    In recent years, a large number of blended courses have emerged under the background of developing "first-class courses" (Ministry of Education). Through the research and analysis of courses for undergraduates in the past decade, and via the advantages of information engineering in the science and engineering universities, we developed a "five-in-one" blended teaching system for the course of Microbiology suited to the "Internet+" era. Based on the reconstruction of the characteristic content of the emerging engineering, it effectively integrated life science into engineering courses. Then, with multi-dimensional information resources, it provided students with hierarchical and diversified choices. The advanced offline teaching activities laid a foundation for the scientific research and innovation ability of students. The systematic ideological and political education in the course helped students develop correct values. Finally, big data was used for formative teaching evaluation, ensuring the personalized learning quality of students in the whole process. Based on the continuous reform and practices, we have made major headway.

    参考文献
    [1] 中华人民共和国教育部. 教育部关于一流本科课程建设的实施意见[EB/OL]. [2019-10-24] [2019-10-30]. http://www.moe.gov.cn/srcsite/A08/s7056/201910/t20191031_406269.html The Ministry of Education of the People’s Republic of China. Implementation opinions of the ministry of education on the construction of first-class undergraduate courses[EB/OL]. [2019-10-24] [2019-10-30]. http://www.moe.gov.cn/srcsite/A08/s7056/201910/t20191031_406269.html (in Chinese)
    [2] 谢晖, 詹勇华, 陈丹, 曾琦, 陈雪利, 沈晓敏, 徐欣怡, 梁继民. 基于网络微平台教学的微生物学实验精细化及个性化教学改革[J]. 微生物学通报, 2019, 46(1): 192-202 Xie H, Zhan YH, Chen D, Zeng Q, Chen XL, Shen XM, Xu XY, Liang JM. The research of refinement and individuation in Microbiology Experiment teaching reform based on micro platform of online teaching[J]. Microbiology China, 2019, 46(1): 192-202(in Chinese)
    [3] 谢晖, 罗艳霞, 沈晓敏, 应琼琼, 陈雪利. 虚拟仿真课程的“行为-能力”双模态智能评价: 以“现代工科微生物学仿真实验”课程为例[J]. 现代教育技术, 2020, 30(10): 105-111 Xie H, Luo YX, Shen XM, Ying QQ, Chen XL. The “behavior-capability” bimodal intelligent evaluation in the virtual simulation courses: taking the course of “modern engineering microbiology simulation experiment” as an example[J]. Modern Educational Technology, 2020, 30(10): 105-111(in Chinese)
    [4] 谢晖, 詹勇华, 曾琦, 陈丹, 徐欣怡, 陈雪利. 基于人工智能技术的生命科学类虚拟仿真实验课程学习评价研究[J]. 高校生物学教学研究(电子版), 2021, 11(1): 35-41 Xie H, Zhan YH, Zeng Q, Chen D, Xu XY, Chen XL. Research on the whole process evaluation of biology virtual simulation experiment course based on artificial intelligence technology[J]. Biology Teaching in University: Electronic Edition, 2021, 11(1): 35-41(in Chinese)
    [5] 杨帆, 陈萍, 何群力, 邓保国, 魏纪东, 赵林静. 建构主义教学模式在医学微生物学教学实践中的应用[J]. 微生物学通报, 2010, 37(1): 133-136 Yang F, Chen P, He QL, Deng BG, Wei JD, Zhao LJ. Application of constructivist teaching in Medical Microbiology[J]. Microbiology China, 2010, 37(1): 133-136(in Chinese)
    [6] Li XM, Song SQ. Mobile technology affordance and its social implications: a case of “Rain Classroom”[J]. British Journal of Educational Technology, 2018, 49(2): 276-291
    [7] Cantabella M, Martínez-España R, Ayuso B, Yáñez JA, Muñoz A. Analysis of student behavior in learning management systems through a Big Data framework[J]. Future Generation Computer Systems, 2019, 90: 262-272
    [8] Knoth IS, Lajnef T, Rigoulot S, Lacourse K, Vannasing P, Michaud JL, Jacquemont S, Major P, Jerbi K, Lippé S. Auditory repetition suppression alterations in relation to cognitive functioning in fragile X syndrome: a combined EEG and machine learning approach[J]. Journal of Neurodevelopmental Disorders, 2018, 10(1): 4
    [9] Yang S, Yin Z, Wang YG, Zhang W, Wang YX, Zhang JH. Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders[J]. Computers in Biology and Medicine, 2019, 109: 159-170
    [10] Macfadyen LP, Dawson S. Mining LMS data to develop an “early warning system” for educators: a proof of concept[J]. Computers & Education, 2010, 54(2): 588-599
    [11] Roy V, Shukla S, Shukla PK, Rawat P. Gaussian elimination-based novel canonical correlation analysis method for EEG motion artifact removal[J]. Journal of Healthcare Engineering, 2017, 2017: 9674712
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢晖,应琼琼,董明皓,沈晓敏,朱守平,陈雪利. 基于“五位一体”新工科智能信息化教学理念的微生物学线上线下混合式教学改革及实践[J]. 微生物学通报, 2022, 49(4): 1386-1396

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-18
  • 录用日期:2022-02-19
  • 在线发布日期: 2022-03-30
文章二维码