科微学术

微生物学通报

革兰氏阴性菌AcrAB-TolC多药外排泵结构数据对抑制剂研发的启示
作者:
  • 顾容兆

    顾容兆

    徐州医科大学 江苏省麻醉学重点实验室,江苏 徐州 221004;徐州医科大学 江苏省麻醉与镇痛应用技术重点实验室,江苏 徐州 221004;国家药品监督管理局麻醉精神药物研究与评价重点实验室,江苏 徐州 221004
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郑威

    郑威

    徐州医科大学 江苏省麻醉学重点实验室,江苏 徐州 221004;徐州医科大学 江苏省麻醉与镇痛应用技术重点实验室,江苏 徐州 221004;国家药品监督管理局麻醉精神药物研究与评价重点实验室,江苏 徐州 221004
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 石小东

    石小东

    徐州医科大学 江苏省麻醉学重点实验室,江苏 徐州 221004;徐州医科大学 江苏省麻醉与镇痛应用技术重点实验室,江苏 徐州 221004;国家药品监督管理局麻醉精神药物研究与评价重点实验室,江苏 徐州 221004
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

国家自然科学基金(82072312);江苏省自然科学基金(BK20211053)


Structural insights into the AcrAB-TolC efflux pump of Gram-negative bacteria promote the development of pump inhibitors
Author:
  • GU Rongzhao

    GU Rongzhao

    Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China;Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China;National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHENG Wei

    ZHENG Wei

    Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China;Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China;National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHI Xiaodong

    SHI Xiaodong

    Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China;Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China;National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    革兰氏阴性菌的多重耐药性已成为全球广泛聚焦的问题。近年研究发现,耐药结节细胞分化(resistance-nodulation-cell division,RND)家族外排泵的过表达,与革兰氏阴性菌的多重耐药性密切相关。在RND家族中,广泛存在于革兰氏阴性菌中的AcrAB-TolC外排泵被认为是导致多重耐药性的主要原因之一。为了开发有效的抑制剂,需要对AcrAB-TolC外排泵的结构有一个清晰的认识。以往对该外排泵结构的研究主要局限于体外采用X射线晶体学技术或冷冻电镜单颗粒分析技术来解析其单个组分或全泵的结构。细胞冷冻电子断层扫描技术为揭示AcrAB-TolC外排泵在天然细胞膜环境中的组装和运行机制提供了新的见解,本文综述了AcrAB-TolC不同层级的结构数据在研发外排泵抑制剂方面的贡献。

    Abstract:

    The emerging of multidrug resistance (MDR) in Gram-negative bacteria has aroused worldwide concern. Overexpression of efflux pumps, especially the resistance-nodulation-cell division (RND) efflux pumps, has been demonstrated to be closely associated with MDR in Gram-negative pathogens. In RND family, AcrAB-TolC efflux pump, which is widely present in Gram-negative bacteria, is a decisive factor of bacteria to develop MDR. To develop effective efflux pump inhibitors, we need to clear understand the structure of AcrAB-TolC. The available studies about the structure of this pump are limited to individual components or the whole pump structures determined by X-ray crystallography or single-particle cryo-electron microscopy. The recently developed cryo-electron tomography sheds new light on the assembly and operating mechanism of this pump in the native cell membrane environment. Here, we summarize the contributions of the structural data of AcrAB-TolC efflux pump to the discovery of pump inhibitors against antibiotic resistance in bacteria.

    参考文献
    [1] Antão EM, Vincze S, Hanke R, Klimmek L, Suchecka K, Lübke-Becker A, Wieler LH. Antibiotic resistance, the 3As and the road ahead[J]. Gut Pathogens, 2018, 10: 52
    [2] 王惠, 冯媛, 王崇刚. 主动外排系统RND家族最新研究进展[J]. 中国感染与化疗杂志, 2020, 20(4): 437-441 Wang H, Feng Y, Wang CG. Latest research progress in the RND family active efflux systems[J]. Chinese Journal of Infection and Chemotherapy, 2020, 20(4): 437-441 (in Chinese)
    [3] Spengler G, Kincses A, Gajdács M, Amaral L. New roads leading to old destinations: efflux pumps as targets to reverse multidrug resistance in bacteria[J]. Molecules, 2017, 22(3): 468
    [4] Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria[J]. Clinical Microbiology Reviews, 2015, 28(2): 337-418
    [5] Viale P, Giannella M, Tedeschi S, Lewis R. Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians[J]. Current Opinion in Pharmacology, 2015, 24: 30-37
    [6] Blair JMA, Richmond GE, Piddock LJV. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance[J]. Future Microbiology, 2014, 9(10): 1165-1177
    [7] Du DJ, Van Veen HW, Murakami S, Pos KM, Luisi BF. Structure, mechanism and cooperation of bacterial multidrug transporters[J]. Current Opinion in Structural Biology, 2015, 33: 76-91
    [8] Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae[J]. Research in Microbiology, 2018, 169(7/8): 425-431
    [9] Blair JMA, Smith HE, Ricci V, Lawler AJ, Thompson LJ, Piddock LJV. Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design[J]. Journal of Antimicrobial Chemotherapy, 2015, 70(2): 424-431
    [10] Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria[J]. Clinical Microbiology Reviews, 2006, 19(2): 382-402
    [11] 侯进慧. 大肠杆菌的AcrAB-TolC多药外排泵及其调控研究进展[J]. 微生物学通报, 2008, 35(12): 1932-1937 Hou JH. Progress on Escherichia coli AcrAB-TolC multidrug efflux pump and its regulation[J]. Microbiology, 2008, 35(12): 1932-1937 (in Chinese)
    [12] Tsukagoshi N, Aono R. Entry into and release of solvents by Escherichia coli in an organic-aqueous two-liquid-phase system and substrate specificity of the AcrAB-TolC solvent-extruding pump[J]. Journal of Bacteriology, 2000, 182(17): 4803-4810
    [13] Murakami S, Nakashima R, Yamashita E, Yamaguchi A. Crystal structure of bacterial multidrug efflux transporter AcrB[J]. Nature, 2002, 419(6907): 587-593
    [14] Su CC, Li M, Gu RY, Takatsuka Y, McDermott G, Nikaido H, Yu EW. Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway[J]. Journal of Bacteriology, 2006, 188(20): 7290-7296
    [15] Du DJ, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, Venter H, Chiu W, Luisi BF. Structure of the AcrAB-TolC multidrug efflux pump[J]. Nature, 2014, 509(7501): 512-515
    [16] Wang Z, Fan GZ, Hryc CF, Blaza JN, Serysheva II, Schmid MF, Chiu W, Luisi BF, Du DJ. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump[J]. eLife, 2017, 6: e24905
    [17] Yu EW, McDermott G, Zgurskaya HI, Nikaido H, Koshland DE Jr. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump[J]. Science, 2003, 300(5621): 976-980
    [18] Törnroth-Horsefield S, Gourdon P, Horsefield R, Brive L, Yamamoto N, Mori H, Snijder A, Neutze R. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist[J]. Structure, 2007, 15(12): 1663-1673
    [19] Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism[J]. Nature, 2006, 443(7108): 173-179
    [20] Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket[J]. Nature, 2011, 480(7378): 565-569
    [21] Eicher T, Cha HJ, Seeger MA, Brandstätter L, El-Delik J, Bohnert JA, Kern WV, Verrey F, Grütter MG, Diederichs K, et al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop[J]. PNAS, 2012, 109(15): 5687-5692
    [22] Oswald C, Tam HK, Pos KM. Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB[J]. Nature Communications, 2016, 7: 13819
    [23] Tam HK, Foong WE, Oswald C, Herrmann A, Zeng H, Pos KM. Allosteric drug transport mechanism of multidrug transporter AcrB[J]. Nature Communications, 2021, 12: 3889
    [24] Nakashima R, Sakurai K, Yamasaki S, Hayashi K, Nagata C, Hoshino K, Onodera Y, Nishino K, Yamaguchi A. Structural basis for the inhibition of bacterial multidrug exporters[J]. Nature, 2013, 500(7460): 102-106
    [25] Sjuts H, Vargiu AV, Kwasny SM, Nguyen ST, Kim HS, Ding XY, Ornik AR, Ruggerone P, Bowlin TL, Nikaido H, et al. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives[J]. PNAS, 2016, 113(13): 3509-3514
    [26] Wang YH, Alenazy R, Gu XJ, Polyak SW, Zhang PP, Sykes MJ, Zhang N, Venter H, Ma ST. Design and structural optimization of novel 2H-benzo[h]chromene derivatives that target AcrB and reverse bacterial multidrug resistance[J]. European Journal of Medicinal Chemistry, 2021, 213: 113049
    [27] Simsir M, Broutin I, Mus-Veteau I, Cazals F. Studying dynamics without explicit dynamics: a structure-based study of the export mechanism by AcrB[J]. Proteins: Structure, Function and Bioinformatics, 2021, 89(3): 259-275
    [28] Zgurskaya HI, Nikaido H. AcrA is a highly asymmetric protein capable of spanning the periplasm[J]. Journal of Molecular Biology, 1999, 285(1): 409-420
    [29] Mikolosko J, Bobyk K, Zgurskaya HI, Ghosh P. Conformational flexibility in the multidrug efflux system protein AcrA[J]. Structure, 2006, 14(3): 577-587
    [30] Hazel A, Abdali N, Leus IV, Parks JM, Smith JC, Zgurskaya HI, Gumbart JC. Conformational dynamics of AcrA govern multidrug efflux pump assembly[J]. ACS Infectious Diseases, 2019, 5(11): 1926-1935
    [31] Symmons MF, Bokma E, Koronakis E, Hughes C, Koronakis V. The assembled structure of a complete tripartite bacterial multidrug efflux pump[J]. PNAS, 2009, 106(17): 7173-7178
    [32] Blair JMA, Bavro VN, Ricci V, Modi N, Cacciotto P, Kleinekathӧfer U, Ruggerone P, Vargiu AV, Baylay AJ, Smith HE, et al. AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity[J]. PNAS, 2015, 112(11): 3511-3516
    [33] Bohnert JA, Schuster S, Kern WV, Karcz T, Olejarz A, Kaczor A, Handzlik J, Kieć-Kononowicz K. Novel piperazine arylideneimidazolones inhibit the AcrAB-TolC pump in Escherichia coli and simultaneously act as fluorescent membrane probes in a combined real-time influx and efflux assay[J]. Antimicrobial Agents and Chemotherapy, 2016, 60(4): 1974-1983
    [34] Abdali N, Parks JM, Haynes KM, Chaney JL, Green AT, Wolloscheck D, Walker JK, Rybenkov VV, Baudry J, Smith JC, et al. Reviving antibiotics: efflux pump inhibitors that interact with AcrA, a membrane fusion protein of the AcrAB-TolC multidrug efflux pump[J]. ACS Infectious Diseases, 2017, 3(1): 89-98
    [35] Haynes KM, Abdali N, Jhawar V, Zgurskaya HI, Parks JM, Green AT, Baudry J, Rybenkov VV, Smith JC, Walker JK. Identification and structure-activity relationships of novel compounds that potentiate the activities of antibiotics in Escherichia coli[J]. Journal of Medicinal Chemistry, 2017, 60(14): 6205-6219
    [36] Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export[J]. Nature, 2000, 405(6789): 914-919
    [37] Pei XY, Hinchliffe P, Symmons MF, Koronakis E, Benz R, Hughes C, Koronakis V. Structures of sequential open states in a symmetrical opening transition of the TolC exit duct[J]. PNAS, 2011, 108(5): 2112-2117
    [38] Higgins MK, Eswaran J, Edwards P, Schertler GFX, Hughes C, Koronakis V. Structure of the ligand-blocked periplasmic entrance of the bacterial multidrug efflux protein TolC[J]. Journal of Molecular Biology, 2004, 342(3): 697-702
    [39] Tamura N, Murakami S, Oyama Y, Ishiguro M, Yamaguchi A. Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking[J]. Biochemistry, 2005, 44(33): 11115-11121
    [40] Lobedanz S, Bokma E, Symmons MF, Koronakis E, Hughes C, Koronakis V. A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps[J]. PNAS, 2007, 104(11): 4612-4617
    [41] Schmidt TH, Raunest M, Fischer N, Reith D, Kandt C. Computer simulations suggest direct and stable tip to tip interaction between the outer membrane channel TolC and the isolated docking domain of the multidrug RND efflux transporter AcrB[J]. Biochimica et Biophysica Acta: BBA-Biomembranes, 2016, 1858(7): 1419-1426
    [42] McNeil HE, Alav I, Torres RC, Rossiter AE, Laycock E, Legood S, Kaur I, Davies M, Wand M, Webber MA, et al. Identification of binding residues between periplasmic adapter protein (PAP) and RND efflux pumps explains PAP-pump promiscuity and roles in antimicrobial resistance[J]. PLoS Pathogens, 2019, 15(12): e1008101
    [43] Tikhonova EB, Zgurskaya HI. AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex[J]. The Journal of Biological Chemistry, 2004, 279(31): 32116-32124
    [44] Zgurskaya HI, Nikaido H. Cross-linked complex between oligomeric periplasmic lipoprotein AcrA and the inner-membrane-associated multidrug efflux pump AcrB from Escherichia coli[J]. Journal of Bacteriology, 2000, 182(15): 4264-4267
    [45] Touzé T, Eswaran J, Bokma E, Koronakis E, Hughes C, Koronakis V. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system[J]. Molecular Microbiology, 2004, 53(2): 697-706
    [46] Shi XD, Chen MY, Yu ZL, Bell JM, Wang H, Forrester I, Villarreal H, Jakana J, Du DJ, Luisi BF, et al. In situ structure and assembly of the multidrug efflux pump AcrAB-TolC[J]. Nature Communications, 2019, 10: 2635
    [47] Meroueh SO, Bencze KZ, Hesek D, Lee M, Fisher JF, Stemmler TL, Mobashery S. Three-dimensional structure of the bacterial cell wall peptidoglycan[J]. PNAS, 2006, 103(12): 4404-4409
    [48] Chen MY, Shi XD, Yu ZL, Fan GZ, Serysheva II, Baker ML, Luisi BF, Ludtke SJ, Wang Z. In situ structure of the AcrAB-TolC efflux pump at subnanometer resolution[J]. Structure, 2021
    [49] 华炜聪, 邓在春, 张筠, 朱丹萍, 陈众博. AcrAB-TolC外排泵在多重耐药肠杆菌中的作用研究进展[J]. 中国现代医生, 2021, 59(4): 184-188 Hua WC, Deng ZC, Zhang Y, Zhu DP, Chen ZB. Research progress of AcrAB-TolC efflux pump in multidrug resistant enterobacteria[J]. China Modern Doctor, 2021, 59(4): 184-188 (in Chinese)
    [50] Vargiu AV, Ruggerone P, Opperman TJ, Nguyen ST, Nikaido H. Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(10): 6224-6234
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

顾容兆,郑威,石小东. 革兰氏阴性菌AcrAB-TolC多药外排泵结构数据对抑制剂研发的启示[J]. 微生物学通报, 2022, 49(5): 1863-1873

复制
分享
文章指标
  • 点击次数:344
  • 下载次数: 1283
  • HTML阅读次数: 1608
  • 引用次数: 0
历史
  • 收稿日期:2021-09-26
  • 录用日期:2021-11-16
  • 在线发布日期: 2022-05-05
文章二维码