科微学术

微生物学通报

三种致病性耶尔森氏菌噬菌体的分离鉴定研究进展
作者:
基金项目:

国家自然科学基金(31660043);云南省高层次卫生健康技术人才培养


Isolation and identification of three pathogenic Yersinia phages: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [105]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    3种致病性耶尔森氏菌包括鼠疫耶尔森氏菌、假结核耶尔森氏菌和小肠结肠炎耶尔森氏菌,其噬菌体可用于耶尔森氏菌的诊断、防治和生态进化学研究。本文重点分析3种致病性耶尔森氏菌噬菌体的分离鉴定史。将3种耶尔森氏菌噬菌体基因组进行比较分析,并对各菌的噬菌体受体进行总结,为研究及利用3种耶尔森氏菌噬菌体提供思路。

    Abstract:

    The three pathogenic Yersinia species Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica, and the phages can be used for the diagnosis, control, and evolutionary research of Yersinia. This review focuses on the isolation and identification of phages of the three species, compares the genomes of the phages, and summarizes the receptors of them, which is expected to lay a basis for studying and utilizing the phages of the three Yersinia species.

    参考文献
    [1] Leon-Velarde CG, Jun JW, Skurnik M. Yersinia phages and food safety[J]. Viruses, 2019, 11(12): 1105
    [2] Martínez-Chavarría LC, Vadyvaloo V. Yersinia pestis and Yersinia pseudotuberculosis infection: a regulatory RNA perspective[J]. Frontiers in Microbiology, 2015, 6: 956
    [3] Demeure CE, Dussurget O, Mas Fiol G, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination and diagnostics[J]. Genes & Immunity, 2019, 20(5): 357-370
    [4] Mead P. Epidemics of plague past, present, and future[J]. The Lancet Infectious Diseases, 2019, 19(5): 459-460
    [5] Platt-Samoraj A, Żmudzki J, Pajdak-Czaus J, Szczerba-Turek A, Bancerz-Kisiel A, Procajło Z, Łabuć S, Szweda W. The prevalence of Yersinia enterocolitica and Yersinia pseudotuberculosis in small wild rodents in Poland[J]. Vector Borne and Zoonotic Diseases, 2020, 20(8): 586-592
    [6] Aziz M, Yelamanchili VS. Yersinia enterocolitica[M]. Treasure Island (FL): StatPearls Publishing, 2021
    [7] Ofir G, Sorek R. Contemporary phage biology: from classic models to new insights[J]. Cell, 2018, 172(6): 1260-1270
    [8] Frederik C, Olsen NS, Djurhuus AIMSM, Hestbjerg HL. Bacteriophage therapy[J]. Ugeskrift for Laeger, 2020, 182(27): 1260-1270
    [9] Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: a renewed approach to combat antibiotic- resistant bacteria[J]. Cell Host & Microbe, 2019, 25(2): 219-232
    [10] Castro-Mejía JL, Muhammed MK, Kot W, Neve H, Franz CMAP, Hansen LH, Vogensen FK, Nielsen DS. Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut[J]. Microbiome, 2015, 3: 64
    [11] Wommack KE, Williamson KE, Helton RR, Bench SR, Winget DM. Methods for the isolation of viruses from environmental samples[J]. Methods in Molecular Biology: Clifton, NJ, 2009, 501: 3-14
    [12] Gerba CP. Applied and theoretical aspects of virus adsorption to surfaces[J]. Advances in Applied Microbiology, 1984, 30: 133-168
    [13] Raya RR, H’bert EM. Isolation of phage via induction of lysogens[M]. Bacteriophages, 2009, 501: 23-32
    [14] Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages by double agar overlay plaque assay[J]. Methods in Molecular Biology: Clifton, NJ, 2009, 501: 69-76
    [15] Ackermann HW. Basic phage electron microscopy[J]. Methods in Molecular Biology: Clifton, NJ, 2009, 501: 113-126
    [16] Kutter E. Phage host range and efficiency of plating[M]. Bacteriophages, 2009, 501: 141-149
    [17] Garcia E, Elliott JM, Ramanculov E, Chain PSG, Chu MC, Molineux IJ. The genome sequence of Yersinia pestis bacteriophage phiA1122 reveals an intimate history with the coliphage T3 and T7 genomes[J]. Journal of Bacteriology, 2003, 185(17): 5248-5262
    [18] Summers WC. Bacteriophage therapy[J]. Annual Review of Microbiology, 2001, 55: 437-451
    [19] D’Herelle F. Bacteriophage as a treatment in acute medical and surgical infections[J]. Bull N Y Acad Med, 1931, 5(7):329-348
    [20] Garcia E, Chain P, Elliott JM, Bobrov AG, Motin VL, Kirillina O, Lao V, Calendar R, Filippov AA. Molecular characterization of L-413C, a P2-related plague diagnostic bacteriophage[J]. Virology, 2008, 372(1): 85-96
    [21] Rashid MH, Revazishvili T, Dean T, Butani A, Verratti K, Bishop-Lilly KA, Sozhamannan S, Sulakvelidze A, Rajanna C. A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium[J]. Bacteriophage, 2012, 2(3): 168-177
    [22] Zhao XN, Cui YJ, Yan YF, Du ZM, Tan YF, Yang HY, Bi YJ, Zhang PP, Zhou L, Zhou DS, et al. Outer membrane proteins ail and OmpF of Yersinia pestis are involved in the adsorption of T7-related bacteriophage Yep-phi[J]. Journal of Virology, 2013, 87(22): 12260-12269
    [23] Smith DA, Burrows TW. Phage and bacteriocin investigations with Pasteurella pestis and other bacteria. Nature, 1962, 193: 397-8
    [24] Zhao XN, Wu WL, Qi ZZ, Cui YJ, Yan YF, Guo ZB, Wang ZY, Wang H, Deng HJ, Xue Y, et al. The complete genome sequence and proteomics of Yersinia pestis phage Yep-phi[J]. The Journal of General Virology, 2011, 92(Pt 1): 216-221
    [25] Molnar DM, Lawton WD. Pasteurella bacteriophage sex specific in Escherichia coli[J]. Journal of Virology, 1969, 4(6): 896-900
    [26] Hertman I. Bacteriophage common to Pasteurella pestis and Escherichia coli[J]. Journal of Bacteriology, 1964, 88(4): 1002-1005
    [27] Sergueev KV, He YX, Borschel RH, Nikolich MP, Filippov AA. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR[J]. PLoS One, 2010, 5(6): e11337
    [28] Schofield DA, Molineux IJ, Westwater C. Diagnostic bioluminescent phage for detection of Yersinia pestis[J]. Journal of Clinical Microbiology, 2009, 47(12): 3887-3894
    [29] Filippov AA, Sergueev KV, He YX, Nikolich MP. Bacteriophages capable of lysing Yersinia pestis and Yersinia pseudotuberculosis: efficiency of plating tests and identification of receptors in Escherichia coli K-12[J]. Advances in Experimental Medicine and Biology, 2012, 954: 123-134
    [30] Larina VS. Lysogenic clones of wild-type plague bacteria and characteristics of the phages produced by them[J]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, 1976(1): 119-122
    [31] Novosel’tsev NN, Marchenkov VI. Y. pestis phage of a new serovar[J]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, 1990(11): 9-12
    [32] Novosel’tsev NN, Marchenkov VI, Arutiunov I. Phages of the IV serovar of Yersinia pestis[J]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, 1994(6): 9-10
    [33] Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages using the small drop plaque assay system[J]. Methods in Molecular Biology: Clifton, NJ, 2009, 501: 81-85
    [34] Zhao XN, Skurnik M. Bacteriophages of Yersinia pestis[J]. Advances in Experimental Medicine and Biology, 2016, 918: 361-375
    [35] 李存香, 王鹏, 申小娜, 张海鹏, 丁奕博, 陈邬锦, 和映天, 和琼光, 黄英, 李振军, 李伟. 野生型鼠疫噬菌体YP060的分离和生物学特性鉴定[J]. 中华流行病学杂志, 2016, 37(6): 868-871
    Li CX, Wang P, Shen XN, Zhang HP, Ding YB, Chen WJ, He YT, He QG, Huang Y, Li ZJ, et al. Isolation and biological characteristics on Yersinia pestis phage YP060[J]. Chinese Journal of Epidemiology, 2016, 37(6): 868-871 (in Chinese)
    [36] Yuan Y, Xi HY, Dai JX, Zhong YH, Lu SG, Wang TQ, Yang LH, Guan Y, Wang P. The characteristics and genome analysis of the novel Y. pestis phage JC221[J]. Virus Research, 2020, 283: 197982
    [37] 李存香, 李伟, 王鹏, 李振军, 申小娜, 陈邬锦, 丁奕博, 和映天, 和琼光. 1株温和性噬菌体的发现及其流行病学意义[J]. 医学动物防制, 2017, 33(10): 1073-1075 Li CX, Li W, Wang P, Li ZJ, Shen XN, Chen WJ, Ding YB, He YT, He QG. Identification and epidemiological significance on lysogenic phage L128m[J]. Journal of Medical Pest Control, 2017, 33(10): 1073-1075 (in Chinese)
    [38] 钟佑宏, 赵丹妮, 段存娟, 张海鹏, 丁奕博, 谭红丽, 石丽媛, 钟国梁, 李柳琴, 李伟, 等. 一株分离自丽江野鼠疫源地鼠疫噬菌体裂解特性的研究[J]. 中国病原生物学杂志, 2018, 13(8): 839-842 Zhong YH, Zhao DN, Duan CJ, Zhang HP, Ding YB, Tan HL, Shi LY, Zhong GL, Li LQ, Li W, et al. A study of the lytic characteristics of a plague phage isolated from Lijiang plague foci in Yunnan province[J]. Journal of Pathogen Biology, 2018, 13(8): 839-842 (in Chinese)
    [39] Kawaoka Y, Mitani T, Otsuki K, Tsubokura M. Isolation and use of eight phages for typing Yersinia enterocolitica O3[J]. Journal of Medical Microbiology, 1987, 23(4): 349-352
    [40] 潘亮, 余家辉, 于恩庶. 17株小肠结肠炎耶尔森氏菌噬菌体的分离与鉴定(摘要)[J]. 中国公共卫生, 1986, 5(2): 50 Pan L, Yu JH, Yu ES. Isolation and identification of 17 Yersinia enterocolitica bacteriophages[J]. China Public Health, 1986, 5(2): 50 (in Chinese)
    [41] 李功惠, 于恩庶, 翁士珍, 陈贻锴. 小肠结肠炎耶氏菌诊断噬菌体的研究[J]. 福建医药杂志, 1986, 8(2): 15-16 Li GH, Yu ES, Weng SZ, Chen YK. Study on diagnostic phage of Yersinia enterocolitica[J]. Fujian Medical Journal, 1986, 8(2): 15-16 (in Chinese)
    [42] 张羽嘉, 薛宇, 高璐, 欧阳敏, 肖丽霞, 杨振泉. 小肠结肠炎耶尔森氏菌噬菌体的分离鉴定及在鲜切蔬菜中的靶向抑菌作用[J]. 美食研究, 2019, 36(2): 43-47 Zhang YJ, Xue Y, Gao L, Ouyang M, Xiao LX, Yang ZQ. Isolation and identification of Yersinia enterocolitica phage and its antibacterial effect in fresh-cut vegetables[J]. Journal of Researches on Dietetic Science and Culture, 2019, 36(2): 43-47 (in Chinese)
    [43] Salem M, Virtanen S, Korkeala H, Skurnik M. Isolation and characterization of Yersinia-specific bacteriophages from pig stools in Finland[J]. Journal of Applied Microbiology, 2015, 118(3): 599-608
    [44] Filik K, Szermer-Olearnik B, Wernecki M, Happonen LJ, Pajunen MI, Nawaz A, Qasim MS, Jun JW, Mattinen L, Skurnik M, et al. The podovirus ϕ80-18 targets the pathogenic American biotype 1B strains of Yersinia enterocolitica[J]. Frontiers in Microbiology, 2020, 11: 1356
    [45] Zhang L, Skurnik M. Isolation of an R–M+ mutant of Yersinia enterocolitica serotype O:8 and its application in construction of rough mutants utilizing mini-Tn5 derivatives and lipopolysaccharide-specific phage[J]. Journal of Bacteriology, 1994, 176(6): 1756-1760
    [46] Kiljunen S, Vilen H, Pajunen M, Savilahti H, Skurnik M. Nonessential genes of phage phiYeO312 include genes involved in adaptation to growth on Yersinia enterocolitica serotype O:3[J]. Journal of Bacteriology, 2005, 187(4): 1405-1414
    [47] Hammerl JA, Roschanski N, Lurz R, Johne R, Lanka E, Hertwig S. The molecular switch of telomere phages: high binding specificity of the PY54 cro lytic repressor to a single operator site[J]. Viruses, 2015, 7(6): 2771-2793
    [48] Kiljunen S, Hakala K, Pinta E, Huttunen S, Pluta P, Gador A, Lönnberg H, Skurnik M. Yersiniophage phiR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine[J]. Microbiology: Reading, England, 2005, 151(Pt 12): 4093-4102
    [49] Biedzka-Sarek M, Jarva H, Hyytiäinen H, Meri S, Skurnik M. Characterization of complement factor H binding to Yersinia enterocolitica serotype O:3[J]. Infection and Immunity, 2008, 76(9): 4100-4109
    [50] Liang J, Li X, Zha T, Chen Y, Hao H, Liu C, Duan R, Xiao Y, Su M, Wang X, et al. DTDP-rhamnosyl transferase RfbF, is a newfound receptor-related regulatory protein for phage phiYe-F10 specific for Yersinia enterocolitica serotype O:3[J]. Scientific Reports, 2016, 6: 22905
    [51] Leon-Velarde CG, Kropinski AM, Chen S, Abbasifar A, Griffiths MW, Odumeru JA. Complete genome sequence of bacteriophage vB_YenP_AP5 which infects Yersinia enterocolitica of serotype O:3[J]. Virology Journal, 2014, 11: 188
    [52] Leon-Velarde CG, Happonen L, Pajunen M, Leskinen K, Kropinski AM, Mattinen L, Rajtor M, Zur J, Smith D, Chen S, et al. Yersinia enterocolitica-specific infection by bacteriophages TG1 and ϕR1-RT is dependent on temperature-regulated expression of the phage host receptor OmpF[J]. Applied and Environmental Microbiology, 2016, 82(17): 5340-5353
    [53] Gwak KM, Choi IY, Lee J, Oh JH, Park MK. Isolation and characterization of a lytic and highly specific phage against Yersinia enterocolitica as a novel biocontrol agent[J]. Journal of Microbiology and Biotechnology, 2018, 28(11): 1946-1954
    [54] Liang JR, Kou ZQ, Qin S, Chen YH, Li ZP, Li CC, Duan R, Hao HJ, Zha T, Gu WP, et al. Novel Yersinia enterocolitica prophages and a comparative analysis of genomic diversity[J]. Frontiers in Microbiology, 2019, 10: 1184
    [55] Xue YB, Zhai SJ, Wang ZJ, Ji YL, Wang G, Wang TQ, Wang XW, Xi HY,??楡湩瘠潒汐瘬攠摚?楡湯?汒楈瀬漠灥潴氠祡獬愮挠捔桨慥爠椼摩放?潥畲瑳敩牮?捡漼爯敩 ̄戠楰潨獡祧湥琠桘攱猠楡獤孭?嵮???潥汲敥捤甠汯慲牡??楹挠牥潦扦楩潣汩潥杮祴??ㄠ???????????????????hronic enteritis model against Yersinia enterocolitica infection[J]. Frontiers in Microbiology, 2020, 11: 351
    [56] Popp A, Hertwig S, Lurz R, Appel B. Comparative study of temperate bacteriophages isolated from Yersinia[J]. Systematic and Applied Microbiology, 2000, 23(4): 469-478
    [57] Hertwig S, Klein I, Hammerl JA, Appel B. Characterization of two conjugative Yersinia plasmids mobilizing pYV[J]. Advances in Experimental Medicine and Biology, 2003, 529: 35-38
    [58] Biedzka-Sarek M, Salmenlinna S, Gruber M, Lupas AN, Meri S, Skurnik M. Functional mapping of YadA- and Ail-mediated binding of human factor H to Yersinia enterocolitica serotype O:3[J]. Infection and Immunity, 2008, 76(11): 5016-5027
    [59] Hertwig S, Klein I, Lurz R, Lanka E, Appel B. PY54, a linear plasmid prophage of Yersinia enterocolitica with covalently closed ends[J]. Molecular Microbiology, 2003, 48(4): 989-1003
    [60] Hertwig S, Klein I, Schmidt V, Beck S, Hammerl JA, Appel B. Sequence analysis of the genome of the temperate Yersinia enterocolitica phage PY54[J]. Journal of Molecular Biology, 2003, 331(3): 605-622
    [61] Hertwig S, Klein I, Appel B. Properties of the temperate Yersinia enterocolitica bacteriophage PY54[J]. Advances in Experimental Medicine and Biology, 2003, 529: 241-243
    [62] Ziegelin G, Tegtmeyer N, Lurz R, Hertwig S, Hammerl J, Appel B, Lanka E. The repA gene of the linear Yersinia enterocolitica prophage PY54 functions as a circular minimal replicon in Escherichia coli[J]. Journal of Bacteriology, 2005, 187(10): 3445-3454
    [63] Hammerl JA, Klein I, Appel B, Hertwig S. Interplay between the temperate phages PY54 and N15, linear plasmid prophages with covalently closed ends[J]. Journal of Bacteriology, 2007, 189(22): 8366-8370
    [64] Moye ZD, Woolston J, Sulakvelidze A. Bacteriophage applications for food production and processing[J]. Viruses, 2018, 10(4): 205
    [65] Schwudke D, Ergin A, Michael K, Volkmar S, Appel B, Knabner D, Konietzny A, Strauch E. Broad-host-range Yersinia phage PY100: genome sequence, proteome analysis of virions, and DNA packaging strategy[J]. Journal of Bacteriology, 2008, 190(1): 332-342
    [66] Filippov AA, Sergueev KV, Nikolich MP. Can phage effectively treat multidrug-resistant plague?[J]. Bacteriophage, 2012, 2(3): 186-189
    [67] Filippov AA, Sergueev KV, He YX, Huang XZ, Gnade BT, Mueller AJ, Fernandez-Prada CM, Nikolich MP. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice[J]. PLoS One, 2011, 6(9): e25486
    [68] Demerec M, Fano U. Bacteriophage-resistant mutants in Escherichia coli[J]. Genetics, 1945, 30(2): 119-136
    [69] Pajunen M, Kiljunen S, Skurnik M. Bacteriophage phiYeO312, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7[J]. Journal of Bacteriology, 2000, 182(18): 5114-5120
    [70] Jun JW, Park SC, Wicklund A, Skurnik M. Bacteriophages reduce Yersinia enterocolitica contamination of food and kitchenware[J]. International Journal of Food Microbiology, 2018, 271: 33-47
    [71] Casjens SR, Gilcrease EB, Huang WM, Bunny KL, Pedulla ML, Ford ME, Houtz JM, Hatfull GF, Hendrix RW. The pKO2 linear plasmid prophage of Klebsiella oxytoca[J]. Journal of Bacteriology, 2004, 186(6): 1818-1832
    [72] Pajunen MI, Kiljunen SJ, Söderholm ME, Skurnik M. Complete genomic sequence of the lytic bacteriophage phiYeO312 of Yersinia enterocolitica serotype O:3[J]. Journal of Bacteriology, 2001, 183(6): 1928-1937
    [73] Ravin V, Ravin N, Casjens S, Ford ME, Hatfull GF, Hendrix RW. Genomic sequence and analysis of the atypical temperate bacteriophage N15[J]. Journal of Molecular Biology, 2000, 299(1): 53-73
    [74] Rybchin VN, Svarchevsky AN. The plasmid prophage N15: a linear DNA with covalently closed ends[J]. Molecular Microbiology, 1999, 33(5): 895-903
    [75] Hammerl JA, Jäckel C, Funk E, Pinnau S, Mache C, Hertwig S. The diverse genetic switch of enterobacterial and marine telomere phages[J]. Bacteriophage, 2016, 6(2): 1-10
    [76] Comeau AM, Arbiol C, Krisch HM. Composite conserved promoter-terminator motifs (PeSLs) that mediate modular shuffling in the diverse T4-like myoviruses[J]. Genome Biology and Evolution, 2014, 6(7): 1611-1619
    [77] Skurnik M, Hyytiäinen HJ, Happonen LJ, Kiljunen S, Datta N, Mattinen L, Williamson K, Kristo P, Szeliga M, Kalin-Mänttäri L, et al. Characterization of the genome, proteome, and structure of Yersiniophage ϕR1-37[J]. Journal of Virology, 2012, 86(23): 12625-12642
    [78] Burkal’tseva MV, Krylov VN, Pleteneva EA, Shaburova OV, Krylov SV, Volkart G, Sykilinda NN, Kurochkina LP, Mesianzhinov VV. Phenogenetic characterization of a group of giant Phi KZ-like bacteriophages of Pseudomonas aeruginosa[J]. Genetika, 2002, 38(11): 1470-1479
    [79] São-José C, Baptista C, Santos MA. Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1[J]. Journal of Bacteriology, 2004, 186(24): 8337-8346
    [80] Krüger DH, Schroeder C. Bacteriophage T3 and bacteriophage T7 virus-host cell interactions[J]. Microbiological Reviews, 1981, 45(1): 9-51
    [81] Skurnik M. Yersinia surface structures and bacteriophages[J]. Advances in Experimental Medicine and Biology, 2012, 954: 293-301
    [82] Holst Sørensen MC, Van Alphen LB, Fodor C, Crowley SM, Christensen BB, Szymanski CM, Brøndsted L. Phase variable expression of capsular polysaccharide modifications allows Campylobacter jejuni to avoid bacteriophage infection in chickens[J]. Frontiers in Cellular and Infection Microbiology, 2012, 2: 11
    [83] Dentovskaya SV, Anisimov AP, Kondakova AN, Lindner B, Bystrova OV, Svetoch TE, Shaikhutdinova RZ, Ivanov SA, Bakhteeva IV, Titareva GM, et al. Functional characterization and biological significance of Yersinia pestis lipopolysaccharide biosynthesis genes[J]. Biochemistry, 2011, 76(7): 808-822
    [84] Kiljunen S, Datta N, Dentovskaya SV, Anisimov AP, Knirel YA, Bengoechea JA, Holst O, Skurnik M. Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage φA1122[J]. Journal of Bacteriology, 2011, 193(18): 4963-4972
    [85] Nobrega FL, Vlot M, De Jonge PA, Dreesens LL, Beaumont HJE, Lavigne R, Dutilh BE, Brouns SJJ. Targeting mechanisms of tailed bacteriophages[J]. Nature Reviews Microbiology, 2018, 16(12): 760-773
    [86] Derbise A, Carniel E. Ypfφ: a filamentous phage acquired by Yersinia pestis[J]. Frontiers in Microbiology, 2014, 5: 701
    [87] Marraffini LA. CRISPR-Cas immunity in prokaryotes[J]. Nature, 2015, 526(7571): 55-61
    [88] Fàbrega A, Vila J. Yersinia enterocolitica: pathogenesis, virulence and antimicrobial resistance[J]. Enfermedades Infecciosas y Microbiología Clínica, 2012, 30(1): 24-32
    [89] Skurnik M. My life with Yersinia[J]. Advances in Experimental Medicine and Biology, 2007, 603: 44-73
    [90] Perry RD, Fetherston JD. Yersinia pestis: etiologic agent of plague[J]. Clinical Microbiology Reviews, 1997, 10(1): 35-66
    [91] Born F, Braun P, Scholz HC, Grass G. Specific detection of Yersinia pestis based on receptor binding proteins of phages[J]. Pathogens: Basel, Switzerland, 2020, 9(8): 611
    [92] Vandamm JP, Rajanna C, Sharp NJ, Molineux IJ, Schofield DA. Rapid detection and simultaneous antibiotic susceptibility analysis of Yersinia pestis directly from clinical specimens by use of reporter phage[J]. Journal of Clinical Microbiology, 2014, 52(8): 2998-3003
    [93] Moses S, Aftalion M, Mamroud E, Rotem S, Steinberger-Levy I. Reporter-phage-based detection and antibiotic susceptibility testing of Yersinia pestis for a rapid plague outbreak response[J]. Microorganisms, 2021, 9(6): 1278
    [94] Filippov AA, Sergueev KV, He YX, Huang XZ, Gnade BT, Mueller AJ, Fernandez-Prada CM, Nikolich MP. Bacteriophage therapy of experimental bubonic plague in mice[J]. Advances in Experimental Medicine and Biology, 2012, 954: 337-348
    [95] Lukacik P, Barnard TJ, Buchanan SK. Using a bacteriocin structure to engineer a phage lysin that targets Yersinia pestis[J]. Biochemical Society Transactions, 2012, 40(6): 1503-1506
    [96] Schuch R, Nelson D, Fischetti VA. A bacteriolytic agent that detects and kills Bacillus anthracis[J]. Nature, 2002, 418(6900): 884-889
    [97] Loeffler JM, Nelson D, Fischetti VA. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase[J]. Science, 2001, 294(5549): 2170-2172
    [98] Bearden SW, Fetherston JD, Perry RD. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis[J]. Infection and Immunity, 1997, 65(5): 1659-1668
    [99] Heath DG, Anderson GW Jr, Mauro JM, Welkos SL, Andrews GP, Adamovicz J, Friedlander AM. Protection against experimental bubonic and pneumonic plague by a recombinant capsular F1-V antigen fusion protein vaccine[J]. Vaccine, 1998, 16(11/12): 1131-1137
    [100] Maura D, Debarbieux L. Bacteriophages as twenty-first century antibacterial tools for food and medicine[J]. Applied Microbiology and Biotechnology, 2011, 90(3): 851-859
    [101] Holtappels D, Kerremans A, Busschots Y, Van Vaerenbergh J, Maes M, Lavigne R, Wagemans J. Preparing for the KIL: receptor analysis of Pseudomonas syringae pv. porri phages and their impact on bacterial virulence[J]. International Journal of Molecular Sciences, 2020, 21(8): 2930
    [102] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278
    [103] Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096
    [104] Skurnik M, Venho R, Toivanen P, Al-Hendy A. A novel locus of Yersinia enterocolitica serotype O:
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄玲琼,王鹏. 三种致病性耶尔森氏菌噬菌体的分离鉴定研究进展[J]. 微生物学通报, 2022, 49(5): 1955-1968

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-21
  • 录用日期:2022-01-20
  • 在线发布日期: 2022-05-05
文章二维码