科微学术

微生物学通报

龙江河近岸沉积物细菌群落结构特征及其影响因素
作者:
基金项目:

广西高校中青年教师基础能力提升项目(2020KY15016,2019KY0626)


Characteristics of bacterial community structure in the nearshore sediments of Longjiang River and the environmental impact factors
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】2012年“溃坝事件”发生以来,龙江河重金属污染持续受到关注。【目的】揭示重金属污染河流近岸沉积物中细菌群落结构特征及环境影响因子。【方法】基于高通量测序方法(Illumina MiSeq PE300)研究龙江河近岸沉积物细菌群落多样性、分布特征及其与环境因子的相关性。【结果】龙江河近岸沉积物中As、Cd和Zn平均含量分别为25.06、3.20和205.36 mg/kg,分别达到广西土壤环境背景值的1.22、11.97和2.72倍,均存在不同程度的污染;C/N值在3.66-13.15之间,平均值为10.55,沉积物中有机氮处于矿化消耗状态。细菌群落在门水平上的优势物种有绿弯菌门(Chloroflexi,12.16%-35.36%)、变形菌门(Proteobacteria,7.69%-30.85%)、酸杆菌门(Acidobacteria,8.56%-22.48%)、拟杆菌门(Bacteroidetes,5.26%-30.41%)、脱硫杆菌门(Desulfurobacteria,1.14%-10.65%)和放线菌门(Actinobacteria,1.55%-4.17%)这6个门;纲水平上有:厌氧绳菌纲(Anaerolineae,8.92%-30.04%)、γ-变形菌纲(Gammaproteobacteria,5.10%-24.98%)、拟杆菌纲(Bacteroidetes,1.54%-26.95%)、酸杆菌纲(Acidobacteria,1.69%-9.40%)、Vicinamibacteria(1.23%-9.09%)和α-变形菌纲(Alphaproteobacteria,2.42%-6.67%)这6个纲。相关性分析表明,沉积物细菌群落丰度主要与NH4+-N和pH存在显著相关性,细菌群落的ACE指数、Chao1指数与NH4+-N呈显著负相关(P<0.05)。【结论】沉积物细菌群落丰度和多样性主要受NH4+-N和pH影响,细菌群落丰富物种与碳、氮、磷、硫等元素生物地球化学循环有关,可能存在污染指示微生物和病原微生物群落。

    Abstract:

    [Background] Heavy metal pollution in Longjiang River has been a great concern since the “dam collapse” in 2012. [Objective] To reveal the bacterial community structure in nearshore sediments of heavy metal-polluted rivers and the environmental influencing factors. [Methods] With the high-throughput sequencing method (Illumina MiSeq PE300), we investigated the bacterial community characteristics in nearshore sediments of Longjiang River and the correlation with environmental factors. [Results] The average content of As, Cd, and Zn in the nearshore sediments of Longjiang River was 25.06, 3.20 and 205.36 mg/kg, 1.22, 11.97 and 2.72 folds of the soil environmental background values of Guangxi, respectively. The C/N ratio ranged from 3.66 to 13.15, with the average of 10.55, indicating that the organic nitrogen was mineralized in the sediments. The dominant bacterial phyla were Chloroflexi (12.16%–35.36%), Proteobacteria (7.69%–30.85%), Acidobacteria(8.56%–22.48%), Bacteroidetes (5.26%–30.41%), Desulfurobacteria (1.14%–10.65%), and Actinobacteria (1.55%–4.17%), and the dominant classes were Anaerolineae (8.92%–30.04%), Gammaproteobacteria (5.10%–24.98%), Bacteroidetes (1.54%–26.95%), Acidobacteria (1.69%–9.40%), Vicinamibacteria (1.23%–9.09%), and Alphaproteobacteria (2.42%–6.67%). Correlation analysis showed that the abundance of bacterial community in sediments was significantly correlated with NH4+-N and pH, and ACE and Chao 1 indexes of bacterial community were negatively correlated with NH4+-N (P<0.05). [Conclusion] The abundance and diversity of bacterial community in sediments were mainly affected by NH4+-N and pH, and the dominant communities were related to the biogeochemical cycle of carbon, nitrogen, phosphorus and sulfur. The sediments might be the home to some pollution indicator microorganisms and pathogenic microorganisms.

    参考文献
    [1] 齐鹏, 余树全, 张超, 梁立成, 车继鲁. 城市地表水表层沉积物重金属污染特征与潜在生态风险评估: 以永康市为例[J]. 环境科学, 2015, 36(12): 4486-4493 Qi P, Yu SQ, Zhang C, Liang LC, Che JL. Pollution characteristics and potential ecological risk of heavy metals in urban surface water sediments from Yongkang[J]. Environmental Science, 2015, 36(12): 4486-4493(in Chinese)
    [2] 邓渠成, 王晓飞, 尹娟, 邓超冰. 西江上游有色金属产业集聚区河流沉积物重金属空间分布特征与来源解析[J]. 环境科学研究, 2017, 30(8): 1221-1229 Deng QC, Wang XF, Yin J, Deng CB. Spatial distribution and source analysis of heavy metals in sediments of the upstream Xijiang Basin within nonferrous metal accumulation areas[J]. Research of Environmental Sciences, 2017, 30(8): 1221-1229(in Chinese)
    [3] 蓝小龙, 宁增平, 肖青相, 黄正玉, 刘意章, 肖唐付, 赵彦龙, 吴世良. 广西龙江沉积物重金属污染现状及生物有效性[J]. 环境科学, 2018, 39(2): 748-757 Lan XL, Ning ZP, Xiao QX, Huang ZY, Liu YZ, Xiao TF, Zhao YL, Wu SL. Spatial distribution, sources and bioavailability of heavy metals in the surface sediments of Longjiang River, Southern China[J]. Environmental Science, 2018, 39(2): 748-757(in Chinese)
    [4] Ma QL, Yao LA, Guo QW, Zhou GJ, Liang RC, Fang QL, Xu ZC, Zhao XM. Long-term impact of accidental pollution on the distribution and risks of metals and metalloids in the sediment of the Longjiang River, China[J]. Environmental Science and Pollution Research, 2021, 28: 1889-1900
    [5] 姚胜勋, 韦富椿, 陆素芬, 韦岩松. 龙江河近岸沉积物重金属含量与污染评价[J]. 湿法冶金, 2020, 39(2): 164-170 Yao SX, Wei FC, Lu SF, Wei YS. Heavy metal contents and pollution assessment of nearshore sediments in Longjiang River[J]. Hydrometallurgy of China, 2020, 39(2): 164-170(in Chinese)
    [6] Rajeev M, Sushmitha TJ, Aravindraja C, Toleti SR, Pandian SK. Exploring the impacts of heavy metals on spatial variations of sediment-associated bacterial communities[J]. Ecotoxicology and Environmental Safety, 2021, 209: 111808
    [7] 刘鹏远, 张海坤, 陈琳, 孙延瑜, 王彩霞, 宋虹, 胡晓珂. 黄渤海海草分布区日本鳗草根际微生物群落结构特征及其功能分析[J]. 微生物学报, 2019, 59(8): 1484-1499 Liu PY, Zhang HK, Chen L, Sun YY, Wang CX, Song H, Hu XK. Rhizosphere microbial community structure and function of Zostera japonica in the distribution area of seagrass beds in the Yellow Sea and Bohai Sea[J]. Acta Microbiologica Sinica, 2019, 59(8): 1484-1499(in Chinese)
    [8] Guo XP, Lu DP, Niu ZS, Feng JN, Chen YR, Tou FY, Liu M, Yang Y. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China[J]. Marine Pollution Bulletin, 2018, 126: 141-149
    [9] Wu WZ, Yang LH, Wang JL. Denitrification performance and microbial diversity in a packed-bed bioreactor using PCL as carbon source and biofilm carrier[J]. Applied Microbiology and Biotechnology, 2013, 97(6): 2725-2733
    [10] Chen C, Xu XJ, Xie P, Yuan Y, Zhou X, Wang AJ, Lee DJ, Ren NQ. Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations[J]. Chemosphere, 2017, 171: 294-301
    [11] 陈俊松, 杨渐, 蒋宏忱. 湖泊硫循环微生物研究进展[J]. 微生物学报, 2020, 60(6): 1177-1191 Chen JS, Yang J, Jiang HC. Research progress on microbes involved in lacustrine sulfur cycling[J]. Acta Microbiologica Sinica, 2020, 60(6): 1177-1191(in Chinese)
    [12] Cifuentes GR, Jiménez-Millán J, Quevedo CP, Gálvez A, Castellanos-Rozo J, Jiménez-Espinosa R. Trace element fixation in sediments rich in organic matter from a saline lake in tropical latitude with hydrothermal inputs (Sochagota Lake, Colombia): the role of bacterial communities[J]. Science of the Total Environment, 2021, 762: 143113
    [13] Liu JS, Ma Q, Hui XL, Ran JY, Ma QX, Wang XS, Wang ZH. Long-term high-P fertilizer input decreased the total bacterial diversity but not phoD-harboring bacteria in wheat rhizosphere soil with available-P deficiency[J]. Soil Biology and Biochemistry, 2020, 149: 107918
    [14] Ge Y, Lou YH, Xu MM, Wu C, Meng J, Shi L, Xia F, Xu Y. Spatial distribution and influencing factors on the variation of bacterial communities in an urban river sediment[J]. Environmental Pollution, 2021, 272: 115984
    [15] Zhang X, Gu Q, Long XE, Li ZL, Liu DX, Ye DH, He CQ, Liu XY, Väänänen K, Chen XP. Anthropogenic activities drive the microbial community and its function in urban river sediment[J]. Journal of Soils and Sediments, 2016, 16(2): 716-725
    [16] Yuan QS, Wang PF, Wang C, Chen J, Wang X, Liu S. Indicator species and co-occurrence pattern of sediment bacterial community in relation to alkaline copper mine drainage contamination[J]. Ecological Indicators, 2021, 120: 106884
    [17] Zampieri BDB, Nogueira EW, De Oliveira AJFC, Sánchez-Andrea I, Brucha G. Effects of metals on activity and community of sulfate-reducing bacterial enrichments and the discovery of a new heavy metal-resistant SRB from Santos Port sediment (São Paulo, Brazil)[J]. Environmental Science and Pollution Research, 2022, 29(1): 922-935
    [18] Dell’Anno A, Mei ML, Ianni C, Danovaro R. Impact of bioavailable heavy metals on bacterial activities in coastal marine sediments[J]. World Journal of Microbiology & Biotechnology, 2003, 19(1): 93-100
    [19] Wang YP, Shi JY, Wang H, Lin Q, Chen XC, Chen YX. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter[J]. Ecotoxicology and Environmental Safety, 2007, 67(1): 75-81
    [20] Sullivan TS, McBride MB, Thies JE. Soil bacterial and archaeal community composition reflects high spatial heterogeneity of pH, bioavailable Zn, and Cu in a metalliferous peat soil[J]. Soil Biology and Biochemistry, 2013, 66: 102-109
    [21] Chen JH, He F, Zhang XH, Sun X, Zheng JF, Zheng JW. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil[J]. FEMS Microbiology Ecology, 2014, 87(1): 164-181
    [22] Jie SQ, Li MM, Gan M, Zhu JY, Yin HQ, Liu XD. Microbial functional genes enriched in the Xiangjiang River sediments with heavy metal contamination[J]. BMC Microbiology, 2016, 16(1): 179
    [23] Zhang XH, Tang S, Wang M, Sun WM, Xie YW, Peng H, Zhong AM, Liu HL, Zhang XW, Yu HX, et al. Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river[J]. Chemosphere, 2019, 217: 790-799
    [24] Song WJ, Qi R, Zhao L, Xue NN, Wang LY, Yang YY. Bacterial community rather than metals shaping metal resistance genes in water, sediment and biofilm in lakes from arid northwestern China[J]. Environmental Pollution, 2019, 254: 113041
    [25] Long SQ, Tong H, Zhang XX, Jia SY, Chen MJ, Liu CS. Heavy metal tolerance genes associated with contaminated sediments from an E-waste recycling river in southern China[J]. Frontiers in Microbiology, 2021, 12: 665090
    [26] Li CC, Quan Q, Gan YD, Dong JY, Fang JH, Wang LF, Liu J. Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management[J]. Science of the Total Environment, 2020, 749: 141555
    [27] Sun HY, Wu YH, Bing HJ, Zhou J, Li N. Available forms of nutrients and heavy metals control the distribution of microbial phospholipid fatty acids in sediments of the Three Gorges Reservoir, China[J]. Environmental Science and Pollution Research, 2018, 25(6): 5740-5751
    [28] Lu MQ, Luo X, Jiao JJ, Li HL, Wang XJ, Gao JY, Zhang XL, Xiao K. Nutrients and heavy metals mediate the distribution of microbial community in the marine sediments of the Bohai Sea, China[J]. Environmental Pollution, 2019, 255: 113069
    [29] Giannopoulos G, Hartop KR, Brown BL, Song B, Elsgaard L, Franklin RB. Trace metal availability affects greenhouse gas emissions and microbial functional group abundance in freshwater wetland sediments[J]. Frontiers in Microbiology, 2020, 11: 560861
    [30] Wang F, Dong WY, Zhao ZL, Wang HJ, Li WZ, Chen GH, Wang FF, Zhao Y, Huang J, Zhou T. Heavy metal pollution in urban river sediment of different urban functional areas and its influence on microbial community structure[J]. Science of the Total Environment, 2021, 778: 146383
    [31] 牛凤霞, 吉芳英, 赵艮, 张倩, 沈秋实, 何强, 颜海波. 龙景湖沉积物的细菌群落垂向分布特征[J]. 中国环境科学, 2017, 37(6): 2322-2331 Niu FX, Ji FY, Zhao G, Zhang Q, Shen QS, He Q, Yan HB. Vertical distribution of bacterial communities in sediments of Longjing Lake[J]. China Environmental Science, 2017, 37(6): 2322-2331(in Chinese)
    [32] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000 Bao SD. Soil and Agricultural Chemistry Analysis[M]. Beijing: Chinese Agriculture Press, 2000(in Chinese)
    [33] Xu N, Tan GC, Wang HY, Gai XP. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1-8
    [34] 黄家庆, 赖永翔, 翁伯琦, 叶菁, 刘岑薇, 王义祥. 花生壳生物炭对镉污染菜园土壤细菌群落结构的影响[J]. 应用与环境生物学报, 2020, 26(5): 1115-1128 Huang JQ, Lai YX, Weng BQ, Ye J, Liu CW, Wang YX. Effect of peanut shell biochar on the bacterial community structure in cadmium-containing vegetable soil[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(5): 1115-1128(in Chinese)
    [35] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990 China National Environmental Monitoring Centre. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990(in Chinese)
    [36] Dai TJ, Zhang Y, Tang YS, Bai YH, Tao YL, Huang B, Wen DH. Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: a case study of microbial communities in the sediments of Hangzhou Bay[J]. FEMS Microbiology Ecology, 2016, 92(10): fiw150
    [37] Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, Hasnain S, McInerney MJ, Krumholz LR. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure[J]. PLoS One, 2012, 7(6): e40059
    [38] 骆永明. 长江、珠江三角洲土壤及其环境[M]. 北京: 科学出版社, 2012 Luo YM. Soil Environment of the Yangtze River and Pearl River Delta[M]. Beijing: Science Press, 2012(in Chinese)
    [39] 耿思敏, 李发鹏, 王建平. 河池市龙江河健康评估[J]. 中国水利水电科学研究院学报, 2020, 18(6): 508-514 Geng SM, Li FP, Wang JP. Study on health assessment of Longjiang River in Hechi city[J]. Journal of China Institute of Water Resources and Hydropower Research, 2020, 18(6): 508-514(in Chinese)
    [40] 袁瑞强, 牛漾聃, 王鹏, 王仕琴. 引黄对受水河段沉积物微生物群落的影响[J]. 环境科学学报, 2019, 39(2): 499-508 Yuan RQ, Niu YD, Wang P, Wang SQ. Effects of the Yellow River diversion on microbial communities in sediments of the receiving reach[J]. Acta Scientiae Circumstantiae, 2019, 39(2): 499-508(in Chinese)
    [41] 申立娜, 张璐璐, 秦珊, 姚波, 崔建升, 剧泽佳, 付雨. 白洋淀喹诺酮类抗生素与微生物群落结构和多样性相关性研究[J]. 环境科学学报, 2020, 40(2): 574-584 Shen LN, Zhang LL, Qin S, Yao B, Cui JS, Ju ZJ, Fu Y. The correlation between quinolone antibiotics and microbial community structure and diversity in Baiyangdian Lake[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 574-584(in Chinese)
    [42] Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA, Woese CR. The green non-sulfur bacteria: a deep branching in the eubacterial line of descent[J]. Systematic and Applied Microbiology, 1987, 9(1/2): 47-53
    [43] Pfennig N. Multicellular filamentous green bacteria[A]//Staley JT, Bryant MP, Pfennig N, Holt JC. Bergey’s Manual of Systematic Bacteriology[M]. Baltimore: Williams and Wilkins, 1989: 1697-1707
    [44] 鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9): 1801-1820 Xian WD, Zhang XT, Li WJ. Research status and prospect on bacterial phylum Chloroflexi[J]. Acta Microbiologica Sinica, 2020, 60(9): 1801-1820(in Chinese)
    [45] Madigan MT, Brock TD. Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic, gliding bacterium[J]. Journal of Bacteriology, 1975, 122(2): 782-784
    [46] McLellan SL, Newton RJ, Vandewalle JL, Shanks OC, Huse SM, Eren AM, Sogin ML. Sewage reflects the distribution of human faecal Lachnospiraceae[J]. Environmental Microbiology, 2013, 15(8): 2213-2227
    [47] 张晓华. 海洋微生物学[M]. 2版. 北京: 科学出版社, 2016 Zhang XH. Marine Microbiology[M]. 2nd ed. Beijing: Science Press, 2016(in Chinese)
    [48] 李彬, 杨爱江, 胡霞, 徐琨, 刘吉. 锑矿废水影响下水库沉积物中细菌群落结构特征研究[J]. 微生物学通报, 2021, 48(9): 2956-2971 Li B, Yang AJ, Hu X, Xu K, Liu J. Bacterial community structure in reservoir sediments under the influence of antimony ore waste water[J]. Microbiology China, 2021, 48(9): 2956-2971(in Chinese)
    [49] 向兴, 王红梅, 龚林锋, 刘乔. 细菌群落在神农架大九湖泥炭藓与表层沉积物的垂向变化及其生态意义[J]. 中国科学(地球科学), 2014, 44(6): 1244-1252 Xiang X, Wang HM, Gong LF, Liu Q. Vertical variations and associated ecological function of bacterial communities from sphagnum to underlying sediments in Dajiuhu Peatland[J]. Scientia Sinica: Terrae, 2014, 44(6): 1244-1252(in Chinese)
    [50] Wang JW, Liu T, Sun WL, Chen Q. Bioavailable metal(loid)s and physicochemical features co-mediating microbial communities at combined metal(loid) pollution sites[J]. Chemosphere, 2020, 260: 127619
    [51] 谢学辉, 范凤霞, 袁学武, 朱文祥, 刘娜, 平婧, 柳建设. 德兴铜矿尾矿重金属污染对土壤中微生物多样性的影响[J]. 微生物学通报, 2012, 39(5): 624-637 Xie XH, Fan FX, Yuan XW, Zhu WX, Liu N, Ping J, Liu JS. Impact on microbial diversity of heavy metal pollution in soils near Dexing copper mine tailings[J]. Microbiology China, 2012, 39(5): 624-637(in Chinese)
    [52] Du HX, Harata N, Li FS. Responses of riverbed sediment bacteria to heavy metals: integrated evaluation based on bacterial density, activity and community structure under well-controlled sequencing batch incubation conditions[J]. Water Research, 2018, 130: 115-126
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚胜勋,蒙江泉,陆素芬,黄常小. 龙江河近岸沉积物细菌群落结构特征及其影响因素[J]. 微生物学通报, 2022, 49(7): 2470-2485

复制
分享
文章指标
  • 点击次数:383
  • 下载次数: 963
  • HTML阅读次数: 1186
  • 引用次数: 0
历史
  • 收稿日期:2021-10-24
  • 录用日期:2022-01-01
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-20
文章二维码