科微学术

微生物学通报

梨果黑斑病菌互隔交链孢(Alternaria alternata) hnr基因的克隆及其对侵染结构分化的调控
作者:
基金项目:

国家自然科学基金地区科学基金项目(31860456,32060567)


Cloning of hnr and characterization of its regulatory role in the infection structure differentiation of Alternaria alternata
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】羟基萘还原酶(hydroxynaphthalene reductase,HNR)是1,8-间苯二酚(1,8-dihydroxynaphthalene,DHN)黑色素合成途径中起关键作用的酶,研究表明HNR不仅参与真菌黑色素合成,而且对其生长发育及致病性也具有一定的调控作用,但HNR对真菌病原物侵染结构分化的调控研究鲜见报道。【目的】在对梨果黑斑病菌互隔交链孢(Alternaria alternata) HNR的基因进行克隆与生物信息学分析的基础上,通过药理学方法初步探讨HNR对A.alternata生长及侵染结构分化的调控作用,为进一步揭示HNR在A.alternata侵染结构分化形成过程中的分子机制提供理论依据。【方法】对梨果黑斑病菌A.alternata的2个hnr基因进行了克隆;通过gene structure display server、open reading frame (ORF) Finder及conserved domain search等数据库及相关软件,对hnr基因及蛋白进行生物信息学分析,并利用HNR特异性抑制剂三环唑处理分析其对A.alternata生长发育、黑色素合成和侵染结构形成的影响,同时采用实时荧光定量PCR (RT-qPCR)技术分析了hnr基因在A.alternata不同侵染结构分化时期的表达特性。【结果】从梨果黑斑病菌A.alternata克隆得到2个羟基萘还原酶基因hnr的编码区全长,分别命名为Aa4hnrAa3hnr,其中Aa4hnr基因全长为1 266 bp,编码了268个氨基酸,无内含子,有9个ORF;Aa3hnr基因全长为1 356 bp,编码了267个氨基酸,含有2个大小分别为51 bp和49 bp的内含子,有17个ORF;进化分析表明,Aa4hnrAa3hnrOphiobolus disseminansAlternaria arborescens分别具有较高的一致性,同时Aa4hnrAa3hnr编码的蛋白均含有NAD (P)结合域,属于短链脱氢酶/还原酶(short-chain dehydrogenase/reductase,SDR)家族。药理学结果表明,三环唑处理显著降低了A.alternata DHN黑色素的生物合成,抑制了疏水性诱导的A.alternata侵染结构的形成;进一步分析Aa4hnrAa3hnr在疏水表面诱导的A.alternata孢子萌发阶段(2 h)、附着胞形成阶段(6 h)、侵染菌丝形成阶段(8 h)的基因表达量,Aa4hnr的基因表达量在A.alternata侵染结构分化的各个时期均发生下调,Aa3hnr在附着胞形成阶段(6 h)表达量下调,然而在侵染菌丝形成阶段(8 h)显著上调表达。【结论】Aa4hnrAa3hnr对梨果黑斑病菌侵染具有一定的调控作用。

    Abstract:

    [Background] Hydroxynaphthalene reductase (HNR), a key enzyme in the biosynthesis of 1,8-dihydroxynaphthalene (DHN) melanin, is involved in fungal melanin synthesis and has regulatory effect on the fungal growth and pathogenicity. However, the regulatory role of HNR in the infection structure differentiation of fungal pathogens remains unknown. [Objective] On the basis of the cloning and bioinformatics analysis of the hnr genes of Alternaria alternata, we preliminarily evaluated the regulatory role of HNR in the growth and infection structure differentiation of A. alternata through pharmacological methods, aiming to provide a theoretical basis for revealing the molecular mechanism of HNR regulating the infection structure differentiation of A. alternata. [Methods] The hnr genes were cloned by homologous cloning method, and the nucleotide and amino acid sequences were analyzed via bioinformatics tools including gene structure display server, open reading frame Finder, conserved domain search. The HNR-specific inhibitor tricyclazole was used for the study about the regulatory role of hnr in the growth and development, melanin synthesis, and infection structure formation of A. alternata. Real-time quantitative PCR (RT-qPCR) was employed to determine the expression levels of hnr genes at the spore germination (2 h), appressorium formation (6 h), and hypha formation (8 h) stages throughout the infection structure differentiation of A. alternata. [Results] The full-length coding sequences (CDSs) of two hnr genes were cloned from A. alternata and designated as Aa4hnr and Aa3hnr. Aa4hnr had a length of 1 266 bp, encoded 268 amino acid residues, and contained 9 ORFs and no intron. Aa3hnr, with a length of 1 356 bp, encoded 267 residues and contained 2 introns (51 bp and 49 bp) and 17 ORFs. The phylogenetic analysis showed that Aa4hnr and Aa3hnr shared high homology with the hnrs from Ophiobolus disseminans and Alternaria arborescens, respectively. The presence of NAD(P) binding domain indicated that Aa4hnr and Aa3hnr belonged to the short-chain dehydrogenase/reductase (SDR) family. Tricyclazole treatment significantly reduced the DHN melanin synthesis in A. alternata and inhibited the infection structure formation of A. alternata on hydrophobic surface. The expression of Aa4hnr was down-regulated at all the stages of infection structure differentiation, and that of Aa3hnr was down-regulated at the appressorium formation stage (6 h) while significantly up-regulated at the hypha formation stage (8 h). [Conclusion] Aa4hnr and Aa3hnr have some regulatory effects on infection of A. alternata.

    参考文献
    [1] 李永才, 毕阳. 苹果梨黑斑病菌潜伏侵染的组织学研究[J]. 甘肃农业大学学报, 2005, 40(4): 516-520 Li YC, Bi Y. Histopathological study on latent infection of Alternaria alternata in Pyrus bretchneideri[J]. Journal of Gansu Agricultural University, 2005, 40(4): 516-520(in Chinese)
    [2] Kustrzeba-Wójcicka I, Siwak E, Terlecki G, Wolańczyk-Mędrala A, Mędrala W. Alternaria alternata and its allergens: a comprehensive review[J]. Clinical Reviews in Allergy & Immunology, 2014, 47(3): 354-365
    [3] Thomma BPHJ. Alternaria spp.: from general saprophyte to specific parasite[J]. Molecular Plant Pathology, 2003, 4(4): 225-236
    [4] Peng QQ, Li YQ, Deng LD, Fang JS, Yu X. High hydrostatic pressure shapes the development and production of secondary metabolites of Mariana Trench sediment fungi[J]. Scientific Reports, 2021, 11: 11436
    [5] Bell AA, Wheeler MH. Biosynthesis and functions of fungal melanins[J]. Annual Review of Phytopathology, 1986, 24: 411-451
    [6] Henson JM, Butler MJ, Day AW. The dark side of the mycelium: melanins of phytopathogenic fungi[J]. Annual Review of Phytopathology, 1999, 37: 447-471
    [7] Loppnau P, Tanguay P, Breuil C. Isolation and disruption of the melanin pathway polyketide synthase gene of the softwood deep stain fungus Ceratocystis resinifera[J]. Fungal Genetics and Biology, 2004, 41(1): 33-41
    [8] Thompson JE, Fahnestock S, Farrall L, Liao DI, Valent B, Jordan DB. The second naphthol reductase of fungal melanin biosynthesis in magnaporthe grisea: tetrahydroxynaphthalene reductase[J]. Journal of Biological Chemistry, 2000, 275(45): 34867-34872
    [9] Funa N, Funabashi M, Ohnishi Y, Horinouchi S. Biosynthesis of hexahydroxyperylenequinone melanin via oxidative aryl coupling by cytochrome P-450 in Streptomyces griseus[J]. Journal of Bacteriology, 2005, 187(23): 8149-8155
    [10] Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA. Biosynthesis of fungal melanins and their importance for human pathogenic fungi[J]. Fungal Genetics and Biology, 2003, 38(2): 143-158
    [11] 苏玉春, 陈光, 汪树生, 马骁. 黑豆色素的稳定性研究[J]. 吉林农业科学, 2008, 33(6): 94-96 Su YC, Chen G, Wang SS, Ma X. Studies on stability of black-soybean pigment[J]. Journal of Jilin Agricultural Sciences, 2008, 33(6): 94-96(in Chinese)
    [12] 吴斌, 韦建福. 病原真菌黑色素和毒力之间的关系[A]// 中国植病、菌物学会杭州联合年会论文集[C]. 杭州: 中国植病、菌物学会杭州联合年会, 2008 Wu B, Wei JF. Relationships between melanin and virulence of pathogenic fungi[A]. Proceedings of Annual Meeting of Chinese Society of Phytopathology and Fungi[C]. Hangzhou: Annual Meeting of Chinese Society of Phytopathology and Fungi, 2008(in Chinese)
    [13] 康鑫, 吕志远, 黄艳, 向仲怀, 何宁佳. 桑椹菌核病菌(Scleromitrula shiraiana)黑色素生物合成相关基因的克隆与功能分析[J]. 植物病理学报, 2017, 47(4): 495-504 Kang X, Lü ZY, Huang Y, Xiang ZH, He NJ. Cloning and functional analysis of the melanin biosynthesis gene in Scleromitrula shiraiana[J]. Acta Phytopathologica Sinica, 2017, 47(4): 495-504(in Chinese)
    [14] Tsuji G, Sugahara T, Fujii I, Mori Y, Ebizuka Y, Shiraishi T, Kubo Y. Evidence for involvement of two naphthol reductases in the first reduction step of melanin biosynthesis pathway of Colletotrichum lagenarium[J]. Mycological Research, 2003, 107(7): 854-860
    [15] Youngchim S, Morris-Jones R, Hay RJ, Hamilton AJ. Production of melanin by Aspergillus fumigatus[J]. Journal of Medical Microbiology, 2004, 53(Pt 3): 175-181
    [16] Tanaka N, Haruki Y, Ueno M, Arase S, Kihara J. Expression of T4HR1, a 1,3,6,8-tetrahydroxynaphthalene reductase gene involved in melanin biosynthesis, is enhanced by near-ultraviolet irradiation in Bipolaris oryzae[J]. Advances in Microbiology, 2015, 5(3): 166-176
    [17] 周映君, 张静, 杨龙, 吴明德, 李国庆. 灰葡萄孢1,3,6,8-四羟基萘还原酶基因(bcbrn2)功能验证[A]//中国植物病理学会2015年学术年会论文集[C]. 海口: 中国植物病理学会2015年学术年会, 2015 Zhou YJ, Zhang J, Yang L, Wu MD, Li GQ. Functional verification of 1,3,6,8-tetrahydroxynaphthalene reductase gene (bcbrn2) in Botrytis cinerea[A]// Proceedings of the Annual Meeting of Chinese Society for Plant Pathology[C], Haikou: Annual Meeting of Chinese Society for Plant Pathology, 2015(in Chinese)
    [18] Kheder AA, Akagi Y, Akamatsu H, Yanaga K, Maekawa N, Otani H, Tsuge T, Kodama M. Functional analysis of the melanin biosynthesis genes ALM1 and BRM2-1 in the tomato pathotype of Alternaria alternata[J]. Journal of General Plant Pathology, 2012, 78(1): 30-38
    [19] Perpetua NS, Kubo Y, Yasuda N, Takano Y, Furusawa I. Cloning and characterization of a melanin biosynthetic THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium[J]. Molecular Plant-Microbe Interactions, 1996, 9(5): 323-329
    [20] 王调兰. Hog1、Slt2-MAP激酶对梨果蜡质及疏水性诱导Alternaria alternata侵染结构分化的调控作用[D]. 兰州: 甘肃农业大学硕士学位论文, 2020 Wang TL. Regulation role of Hog1 and Slt2 MAP kinases on infection structural differentiation of Alternaria alternata induced by pear cuticular wax and hydrophobicity[D]. Lanzhou: Master’s Thesis of Gansu Agricultural University, 2020(in Chinese)
    [21] 张苗. cAMP-PKA信号途径调控梨果皮蜡质物化信号诱导Alternaria alternata侵染结构分化的分子机制[D]. 兰州: 甘肃农业大学硕士学位论文, 2020 Zhang M. Molecular regulatory mechanism of cAMP-PKA signaling pathway on infection structure differentiation of Alternaria alternata induced by physichemical signals from pear fruit cuticular wax[D]. Lanzhou: Master’s Thesis of Gansu Agricultural University, 2020(in Chinese)
    [22] 黄怡. 梨果黑斑病菌磷脂酶C生物学功能及其调控果皮物化信号诱导附着胞形成的分子机制[D]. 兰州: 甘肃农业大学硕士学位论文, 2021 Huang Y. Biological function analysis of phospholipase C in Alternaria alternata and its molecular regulatory mechanism on appressorium formation induced by peel physicochemical signals[D]. Lanzhou: Master’s Thesis of Gansu Agricultural University, 2021(in Chinese)
    [23] 高春丽, 李永才, 毕阳, 刘筱, 杨兰, 乔文景, 王迪, 唐瑛. 采后亚硒酸钠处理对杏果黑斑病的控制及贮藏品质的影响[J]. 食品科学, 2016, 37(14): 258-263 Gao CL, Li YC, Bi Y, Liu X, Yang L, Qiao WJ, Wang D, Tang Y. Effects of sodium selenite treatment on black spot disease and storage quality of postharvest apricot fruit[J]. Food Science, 2016, 37(14): 258-263(in Chinese)
    [24] 刁春英, 毕阳, 李永才. 壳聚糖对互隔交链孢菌(Alternaria alternata)的离体抑制作用[J]. 中国农学通报, 2010, 26(10): 91-94 Diao CY, Bi Y, Li YC. The inhibition of chitosan on Alternaria alternata in vitro[J]. Chinese Agricultural Science Bulletin, 2010, 26(10): 91-94(in Chinese)
    [25] 何玉莲. 玉米大斑病菌St3HNR与St4HNR间功能互补关系研究[D]. 保定: 河北农业大学硕士学位论文, 2014 He YL. The functional complement relationship between St4HNR and St3HNR in Setosphaeria turcica[D]. Baoding: Master’s Thesis of Hebei Agricultural University, 2014(in Chinese)
    [26] 曹志艳. 玉米大斑病菌黑色素合成途径相关基因的克隆及功能分析[D]. 保定: 河北农业大学博士学位论文, 2009 Cao ZY. Characterization and function analysis of the genes involved in melanin biosynthesis pathway in the phytopathogenic fungus Setosphaeria turcica[D]. Baoding: Doctoral Dissertation of Hebei Agricultural University, 2009(in Chinese)
    [27] 郭欣欣. 玉米大斑病菌St4HNRSt3HNR基因在黑色素合成中的作用研究[D]. 保定: 河北农业大学硕士学位论文, 2012 Guo XX. Functional analysis of the melanin biosynthesis genes St4HNR and St3HNR in Setosphaeria turcica[D]. Baoding: Master’s Thesis of Hebei Agricultural University, 2012(in Chinese)
    [28] Berthelot C, Zegeye A, Gaber DA, Chalot M, Franken P, Kovács GM, Leyval C, Blaudez D. Unravelling the role of melanin in Cd and Zn tolerance and accumulation of three dark septate endophytic species[J]. Microorganisms, 2020, 8(4): 537
    [29] Li JJ, Zhou L, Yin CM, Zhang DD, Klosterman SJ, Wang BL, Song J, Wang D, Hu XP, Subbarao KV, et al. The Verticillium dahliae Sho1-MAPK pathway regulates melanin biosynthesis and is required for cotton infection[J]. Environmental Microbiology, 2019, 21(12): 4852-4874
    [30] 黄星, 周明国, 张传清, 傅峰, 张永慧. 三环唑防治稻瘟病的应用技术及防效影响因素研究[J]. 农药学学报, 2005, 7(2): 131-134 Huang X, Zhou MG, Zhang CQ, Fu F, Zhang YH. Study on application techniques of tricyclazole and the influnce factors on its control effect against rice blast[J]. Chinese Journal of Pesticide Science, 2005, 7(2): 131-134(in Chinese)
    [31] Hu Y, Hao XR, Lou J, Zhang P, Pan J, Zhu XD. A PKS gene, pks-1, is involved in chaetoglobosin biosynthesis, pigmentation and sporulation in Chaetomium globosum[J]. Science China Life Sciences, 2012, 55(12): 1100-1108
    [32] 何玉莲, 李秀辉, 孟庆江, 陶晡, 王绍新, 贾慧, 曹志艳. 三环唑影响玉米大斑病菌致病力的机制[J]. 玉米科学, 2015, 23(3): 149-153 He YL, Li XH, Meng QJ, Tao B, Wang SX, Jia H, Cao ZY. Mechanism of tricyclazole effect on Setosphaeria turcica pathogenicity[J]. Journal of Maize Sciences, 2015, 23(3): 149-153(in Chinese)
    [33] Kong Q, Yu X, Song D, Ren XY. Effect of tricyclazole on morphology, virulence and gene expression of Aspergillus aculeatus for management of soft rot disease in peach[J]. Journal of Applied Microbiology, 2018: 2018 Aug 21
    [34] Zhang L, Li H, Xiao SQ, Lu YY, Li GF, Xue CS, Chen J. Efficient Agrobacterium tumefaciens-mediated target gene disruption in the maize pathogen Curvularia lunata[J]. European Journal of Plant Pathology, 2016, 145(1): 155-165
    [35] Liang Y, Xiong W, Steinkellner S, Feng J. Deficiency of the melanin biosynthesis genes SCD1 and THR1 affects sclerotial development and vegetative growth, but not pathogenicity, in Sclerotinia sclerotiorum[J]. Molecular Plant Pathology, 2018, 19(6): 1444-1453
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李荣,徐文怡,李永才,毕阳,张苗,蒋倩倩,刘勇翔. 梨果黑斑病菌互隔交链孢(Alternaria alternata) hnr基因的克隆及其对侵染结构分化的调控[J]. 微生物学通报, 2022, 49(7): 2550-2562

复制
分享
文章指标
  • 点击次数:367
  • 下载次数: 1162
  • HTML阅读次数: 1549
  • 引用次数: 0
历史
  • 收稿日期:2021-11-09
  • 录用日期:2021-12-06
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-20
文章二维码