科微学术

微生物学通报

嗜热链球菌MGB80-7所产胞外多糖的表型结构及其抗氧化活性
作者:
基金项目:

国家自然科学基金地区项目(31860448)


Phenotypic structure and antioxidant activity of exopolysaccharide produced by Streptococcus thermophilus MGB80-7
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】胞外多糖(exopolysaccharide,EPS)是乳酸菌生长代谢过程中所产生的一种次级代谢产物,除了可以改善产品质构和品质外,其生理功能也是近年来研究人员追捧的热点。【目的】探究乳酸菌EPS的表征特性和分子结构,揭示其与EPS益生特性之间的联系。【方法】以产EPS的嗜热链球菌(Streptococcus thermophilusS. thermophilus) MGB80-7为研究对象,利用苯酚-硫酸法测定菌株EPS产量。采用离子交换柱层析和凝胶分子筛层析对该菌株所产EPS进行分离纯化,结合凝胶色谱、红外光谱及高效液相色谱对EPS表型结构进行剖析。此外,为确定EPS表型特征对其抗氧化活性的影响,测定了EPS对超氧阴离子、羟自由基及DPPH自由基等的清除能力。【结果】S. thermophilus MGB80-7在M17培养基中EPS产量较高,为(268.25±5.36) mg/mL,分离纯化后共得到2种多糖组分,其中中性多糖(WPS-807)分子量为1.028×105 Da,主要由葡萄糖、半乳糖和甘露糖组成,并含有少量的鼠李糖和阿拉伯糖,酸性多糖(SPS-807)分子量为8.601×104 Da,单糖组分相较于WPS-807更为复杂,主要由甘露糖、半乳糖和阿拉伯糖组成。抗氧化活性的结果表明,EPS-807具有一定的抗氧化活性,尤其对羟自由基的清除能力较好。【结论】S. thermophilus MGB80-7所产EPS的分子量、结构特征对其抗氧化活性具有一定影响,此结果为进一步分析乳酸菌EPS的构效关系和抗氧化机制提供基础。

    Abstract:

    [Background] Exopolysaccharide (EPS) is a secondary metabolite produced during the growth and metabolism of lactic acid bacteria. In addition to improving the texture and quality of products, its physiological function has also attracted the interest of scholars in recent years. [Objective] This study intends to explore the characterization and molecular structure of EPS of lactic acid bacteria, and to reveal the relationship between it and the probiotic properties of EPS. [Methods] The EPS produced by Streptococcus thermophilus MGB80-7 was studied. To be specific, the yield of EPS was determined with the phenol-sulfuric acid method. Then the EPS was separated and purified by ion exchange column chromatography and gel molecular sieve chromatography, and the phenotypic structure of EPS was analyzed based on gel chromatography, infrared spectroscopy, and high performance liquid chromatography. As for the antioxidant activity, the ability to scavenge superoxide anion, hydroxyl radical, and DPPH radical was detected. [Results] The EPS yield of MGB80-7 in M17 medium was high, which was (268.25±5.36) mg/mL. After separation and purification, two components were obtained. Among them, the neutral polysaccharide (WPS-807, 1.028×105 Da) was composed of glucose, galactose, and mannose, and a small amount of rhamnose and arabinose, and the acidic polysaccharide (SPS-807, 8.601×104 Da) was made up of complex monosaccharides, which was dominated by mannose, galactose, and arabinose. EPS-807 can scavenge some free radicals, especially the hydroxyl radicals. [Conclusion] The molecular weight and structure of EPS produced by MGB80-7 influence its antioxidant activity. This result lays a basis for further analysis of the structure-activity relationship and antioxidant mechanism of EPS from lactic acid bacteria.

    参考文献
    [1] 王月娇, 郭帅, 韩之皓, 黄天, 孙浩天, 刘凯龙, 王记成, 孙天松, 张和平. 基于微流变技术研究不同嗜热链球菌对发酵乳凝胶化的影响[J]. 中国食品学报, 2021, 21(4): 203-208 Wang YJ, Guo S, Han ZH, Huang T, Sun HT, Liu KL, Wang JC, Sun TS, Zhang HP. Effect of different Streptococcus thermophilus strains on gelation process during milk fermentation based on rheological technology[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(4): 203-208(in Chinese)
    [2] 田辉, 梁宏彰, 霍贵成, Evivie Smith Etareri. 嗜热链球菌的特性与应用研究进展[J]. 生物技术通报, 2015, 31(9): 38-48 Tian H, Liang HZ, Huo GC, Etareri ES. Research progress on the property and application of Streptococcus thermophilus[J]. Biotechnology Bulletin, 2015, 31(9): 38-48(in Chinese)
    [3] Zhang L, Mi S, Liu RB, Sang YX, Wang XH. Evaluation of volatile compounds in milks fermented using traditional starter cultures and probiotics based on odor activity value and chemometric techniques[J]. Molecules: Basel, Switzerland, 2020, 25(5): 1129
    [4] 白梅, 黄天, 郭帅, 王月娇, 韩之皓, 李敏, 王记成, 孟和毕力格. 益生菌干酪乳杆菌Zhang和乳双歧杆菌V9发酵乳胞外多糖含量对流变学特性、质构和稳定性的影响[J]. 中国食品学报, 2021, 21(4): 193-202 Bai M, Huang T, Guo S, Wang YJ, Han ZH, Li M, Wang JC, Menghebilige. Effects of extracellular polysaccharide in yogurt produced by the probiotic bacteria, Lactobacillus casei Zhang and Bifidobacterium animalis subsp. lactis V9 on rheological properties, texture and stability[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(4): 193-202(in Chinese)
    [5] Madhubasani GBL, Prasanna PHP, Chandrasekara A, Gunasekara DCS, Senadeera P, Chandramali DVP, Vidanarachchi JK. Exopolysaccharide producing starter cultures positively influence on microbiological, physicochemical, and sensory properties of probiotic goats’ milk set-yoghurt[J]. Journal of Food Processing and Preservation, 2020, 44(3): 1-8
    [6] Che HQ, Zhang H, Tian YJ, Lai PFH, Xia YJ, Wang SJ, Ai LZ. Exopolysaccharide from Streptococcus thermophilus as stabilizer in fermented dairy: binding kinetics and interactions with casein of milk[J]. International Journal of Biological Macromolecules, 2019, 140: 1018-1025
    [7] Shingel KI. Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan[J]. Carbohydrate Research, 2004, 339(3): 447-460
    [8] 于建兴, 韦小雯, 顾青. 乳酸菌胞外多糖及其抗氧化活性研究[A]//中国食品科学技术学会. 第十六届益生菌与健康国际研讨会摘要集[C]. 中国食品科学技术学会: 中国食品科学技术学会, 2021: 2 Yu JX, Wei XW, Gu Q. Study on the exopolysaccharide of lactic acid bacteria and its antioxidant activity [A]//Chinese Society of Food Science and Technology. Abstracts of the 16th International Symposium on Probiotics and Health[C]. Chinese Society for Food Science and Technology: Chinese Society for Food Science and Technology, 2021: 2(in Chinese)
    [9] Chen Y, Zhang M, Ren FZ. A role of exopolysaccharide produced by Streptococcus thermophilus in the intestinal inflammation and mucosal barrier in caco-2 monolayer and dextran sulphate sodium-induced experimental murine colitis[J]. Molecules: Basel, Switzerland, 2019, 24(3): 513
    [10] Sun NX, Liu HP, Liu SJ, Zhang XY, Chen P, Li WH, Xu XX, Tian WT. Purification, preliminary structure and antitumor activity of exopolysaccharide produced by Streptococcus thermophilus CH9[J]. Molecules: Basel, Switzerland, 2018, 23(11): 2898
    [11] 张钊瑞, 张晨, 李大鹏. 微生物多糖的结构与应用研究进展[J]. 食品研究与开发, 2021, 42(1): 182-192 Zhang ZR, Zhang C, Li DP. Advances in structure and application of microbial polysaccharides[J]. Food Research and Development, 2021, 42(1): 182-192(in Chinese)
    [12] Ng IS, Xue CF. Enhanced exopolysaccharide production and biological activity of Lactobacillus rhamnosus ZY with calcium and hydrogen peroxide[J]. Process Biochemistry, 2017, 52: 295-304
    [13] You X, Yang L, Zhao XJ, Ma K, Chen XH, Zhang CL, Wang GX, Dong MS, Rui X, Zhang QQ, et al. Isolation, purification, characterization and immunostimulatory activity of an exopolysaccharide produced by Lactobacillus pentosus LZ-R-17 isolated from Tibetan kefir[J]. International Journal of Biological Macromolecules, 2020, 158: 408-419
    [14] 颜准, 吴朝君, 张小兰, 李婉麒, 梁娟, 陈紫颖, 艾连中, 张江. 动物双歧杆菌乳亚种M8胞外多糖的分离纯化和分子特征[J]. 食品与发酵工业, 2022, 48(2): 33-39 Yan Z, Wu CJ, Zhang XL, Li WQ, Liang J, Chen ZY, Ai LZ, Zhang H. Isolation, purification and molecular characteristics of exopolysaccharide of Bifidobacterium animalis subsp. lactis M8[J]. Food and Fermentation Industries, 2022, 48(2): 33-39(in Chinese)
    [15] Zhou Y, Cui YH, Qu XJ. Exopolysaccharides of lactic acid bacteria: structure, bioactivity and associations: a review[J]. Carbohydrate Polymers, 2019, 207: 317-332
    [16] 陈海燕, 李嘉雯, 李婷, 刘洋, 田佳乐, 丹彤. 高产胞外多糖嗜热链球菌的筛选及胞外多糖的结构分析[J]. 中国食品学报, 2021, 21(4): 286-294 Chen HY, Li JW, Li T, Liu Y, Tian JL, Dan T. Selection of Streptococcus thermophilus for high extracellular polysaccharide production and structural analysis of extracellular polysaccharide[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(4): 286-294(in Chinese)
    [17] 张青, 张天民. 苯酚-硫酸比色法测定多糖含量[J]. 山东食品科技, 2004, 6(7): 17-18 Zhang Q, Zhang TM. Phenol-sulfuric acid colorimetric method for determination of polysaccharide content[J]. Food and Drug, 2004, 6(7): 17-18(in Chinese)
    [18] 刘鑫. 粗毛纤孔菌胞外多糖对酒精肝损伤保护作用及其液体发酵条件优化[D]. 福州: 福建农林大学硕士学位论文, 2019 Liu X. Protective effect of exo-polysaccharides from Inonotus hispidus on alcoholic liver injury and its liquid fermentation optimization[D]. Fuzhou: Master’s Thesis of Fujian Agriculture and Forestry University, 2019(in Chinese)
    [19] 刘海韵, 王维民, 谌素华, 吕佳桐, 陈华英, 廖森泰. 马尾藻岩藻聚糖分离纯化及其对小鼠黑尾血栓的效果[J]. 食品科学, 2020, 41(9): 91-97 Liu HY, Wang WM, Chen SH, Lü JT, Chen HY, Liao ST. Isolation and purification of fucoidans from Sargassum and their effect on tail thrombosis in mice[J]. Food Science, 2020, 41(9): 91-97(in Chinese)
    [20] 刘逸凡, 蔡国林, 李晓敏, 陆健. 丁酸梭菌的筛选及其胞外多糖抗氧化性的研究[J]. 食品与发酵工业, 2019, 45(5): 25-30 Liu YF, Cai GL, Li XM, Lu J. Screening and identification of Clostridium butyricum and antioxidant activities of its exopolysaccharides[J]. Food and Fermentation Industries, 2019, 45(5): 25-30(in Chinese)
    [21] 叶明, 李世艳, 张利兵, 蒋艳, 庄文颖. 盘针孢菌发酵及其胞外多糖抗氧化活性[J]. 微生物学报, 2008, 48(10): 1398-1402 Ye M, Li SY, Zhang LB, Jiang Y, Zhuang WY. Fermentation and polysaccharide antioxidative activity of a Libertella strain[J]. Acta Microbiologica Sinica, 2008, 48(10): 1398-1402(in Chinese)
    [22] 王昭润. 基于α-葡萄糖苷酶抑制率的桦褐孔菌胞外多糖培养基优化及结构鉴定[D]. 呼和浩特: 内蒙古大学硕士学位论文, 2018 Wang ZR. Optimization and structure identification of extracellular polysaccharide from Inonotus obliquus based on α-glucosidase inhibitory rate[D]. Hohhot: Master’s Thesis of Inner Mongolia University, 2018(in Chinese)
    [23] Bomfim VB, Pereira Lopes Neto JH, Leite KS, De Andrade Vieira É, Iacomini M, Silva CM, Olbrich Dos Santos KM, Cardarelli HR. Partial characterization and antioxidant activity of exopolysaccharides produced by Lactobacillus plantarum CNPC003[J]. LWT, 2020, 127: 109349
    [24] 卢承蓉, 叶美芝, 上官文丹, 陈松, 钟青萍. 高产胞外多糖乳酸菌的诱变育种及其益生特性[J]. 食品与发酵工业, 2020, 46(12): 14-20 Lu CR, Ye MZ, Shangguan WD, Chen S, Zhong QP. Mutation breeding for high-yield exopolysaccharide lactic acid bacteria and evaluation of its probiotic properties[J]. Food and Fermentation Industries, 2020, 46(12): 14-20(in Chinese)
    [25] Min WH, Fang XB, Wu T, Fang L, Liu CL, Wang J. Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103[J]. Journal of Bioscience and Bioengineering, 2019, 127(6): 758-766
    [26] Wang X, Shao CG, Liu L, Guo X, Xu YM, Lü X. Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041[J]. International Journal of Biological Macromolecules, 2017, 103: 1173-1184
    [27] 倪力军, 王媛媛, 何婉瑛, 张立国. 8种多糖的单糖组成、活性及其相关性分析[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(4): 326-330 Ni LJ, Wang YY, He WY, Zhang LG. Monosaccharide composition, activity and their correlation analysis in eight polysaccharides[J]. Journal of Tianjin University: Science and Technology, 2014, 47(4): 326-330(in Chinese)
    [28] 商佳琦, 邹丹阳, 滕翔宇, 范荣, 付玲, 李雪晴, 刘宁, 邵美丽. 5种食用菌多糖的结构特征及抗氧化活性对比[J]. 食品工业科技, 2020, 41(15): 77-83, 89 Shang JQ, Zou DY, Teng XY, Fan R, Fu L, Li XQ, Liu N, Shao ML. Structural characterization and antioxidant activity of five kinds of edible fungus polysaccharides[J]. Science and Technology of Food Industry, 2020, 41(15): 77-83, 89(in Chinese)
    [29] Meng L, Sun SS, Li R, Shen ZP, Wang P, Jiang XL. Antioxidant activity of polysaccharides produced by Hirsutella sp. and relation with their chemical characteristics[J]. Carbohydrate Polymers, 2015, 117: 452-457
    [30] 李小蓉, 张拴. 海带中岩藻多糖的抗衰老活性及构效关系研究[J]. 食品工业科技, 2015, 36(15): 117-121 Li XR, Zhang S. Study on the effect of anti-aging and structure-function relationship of fucoidan from kelp[J]. Science and Technology of Food Industry, 2015, 36(15): 117-121(in Chinese)
    [31] Guo YX, Pan DD, Sun YY, Xin LY, Li H, Zeng XQ. Antioxidant activity of phosphorylated exopolysaccharide produced by Lactococcus lactis subsp. lactis[J]. Carbohydrate Polymers, 2013, 97(2): 849-854
    [32] 艾于杰. 抗氧化活性茶多糖构效关系研究[D]. 武汉: 华中农业大学博士学位论文, 2019 Ai YJ. Study on the structure-activity relationship of antioxidant tea polysaccharides[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2019(in Chinese)
    [33] 黄承敏, 陈绮, 游善兵, 姚慧, 肖茜, 刘成国, 周辉. 乳酸菌胞外多糖的分类及生物活性研究进展[J]. 中国乳业, 2019(9): 59-62 Huang CM, Chen Q, You SB, Yao H, Xiao Q, Liu CG, Zhou H. Research progress on classification and biological activity of exopolysaccharides of lactic acid bacteria[J]. China Dairy, 2019(9): 59-62(in Chinese)
    [34] 杨晨璐, 马林, 周蕊, 饶晴, 邱朝坤, 凌洁玉. 植物乳杆菌胞外多糖的分离纯化及其抗氧化性研究[J]. 中国乳品工业, 2018, 46(5): 9-13 Yang CL, Ma L, Zhou R, Rao Q, Qiu CK, Ling JY. Purification and antioxidant activity of exopolysaccharide produced by Lactobacillus plantarum[J]. China Dairy Industry, 2018, 46(5): 9-13(in Chinese)
    [35] 商飞飞, 祝儒刚, 张鑫雨, 王宇, 王超. 山楂多糖的分离纯化及抗氧化和抗糖化活性研究[J]. 现代食品科技, 2019, 35(9): 96-101, 303 Shang FF, Zhu RG, Zhang XY, Wang Y, Wang C. Extraction, isolation and purification of haw polysaccharide and its antioxidant and antiglycation activities in vitro[J]. Modern Food Science and Technology, 2019, 35(9): 96-101, 303(in Chinese)
    [36] Zhao CC, Li X, Miao J, Jing SS, Li XJ, Huang LQ, Gao WY. The effect of different extraction techniques on property and bioactivity of polysaccharides from Dioscorea hemsleyi[J]. International Journal of Biological Macromolecules, 2017, 102: 847-856
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

乔少婷,解敏,代安娜尔,胡海敏,何彬彬,丹彤. 嗜热链球菌MGB80-7所产胞外多糖的表型结构及其抗氧化活性[J]. 微生物学通报, 2022, 49(7): 2686-2699

复制
分享
文章指标
  • 点击次数:393
  • 下载次数: 1100
  • HTML阅读次数: 1230
  • 引用次数: 0
历史
  • 收稿日期:2021-11-04
  • 录用日期:2021-12-29
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-20
文章二维码