科微学术

微生物学通报

布鲁氏菌粗糙型RA343株与光滑型A19株免疫小鼠后特异性T细胞和抗体动态变化分析
作者:
基金项目:

国家重点研发计划(2016YFD0500903)


Dynamic changes of specific T cells and antibodies in mice immunized with rough-type RA343 and smooth-type A19 of Brucella
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】布鲁氏菌病(简称布病)严重威胁着人类健康和畜牧业的发展,使用毒力弱、免疫原性好、不干扰血清学诊断的疫苗是防控布病的有效措施。【目的】比较布鲁氏菌粗糙型RA343株与光滑型A19株免疫小鼠后机体特异性T细胞和抗体的动态变化,评价粗糙型RA343株的免疫效果。【方法】采用6周龄雌性BALB/c小鼠,共分为3组,RA343株免疫组和A19株免疫组各15只小鼠,空白对照组5只小鼠。免疫组的每只小鼠经腹股沟皮下注射0.1 mL (含菌量为1×108 CFU)菌液。免疫后1、2和3周各免疫组及空白对照组分别剖杀5只小鼠,无菌取脾脏,一部分脾脏研磨分离淋巴细胞,用流式细胞术检测小鼠布鲁氏菌特异性CD4+T细胞与CD8+T细胞所占比例的变化趋势;另一部分脾脏称重后分离布鲁氏菌RA343株和A19株,评估RA343株和A19株在小鼠脾脏中的定殖情况。在剖杀小鼠的同时取外周血分离血清,用ELISA方法检测免疫后小鼠血清中IgM和IgG抗体的消长规律。采用GraphPad Prism 8.0软件作图并进行统计学分析。【结果】与A19免疫组相比,免疫后1周,RA343免疫组小鼠脾脏布鲁氏菌特异性CD4+IFN-γ所占比例极显著增加(P<0.01),CD4+IL-2、CD8+IL-2和CD8+TNF-α所占比例显著增加(P<0.05);免疫后2周,RA343免疫组特异性CD4+TNF-α所占比例极显著增加(P<0.01),CD8+TNF-α所占比例显著增加(P<0.05);免疫后3周,CD4+TNF-α所占比例显著增加(P<0.05),CD8+IFN-γ所占比例极显著增加(P<0.01)。免疫后1–3周,RA343免疫组小鼠脾脏含菌量显著低于A19免疫组(P<0.05),而且RA343免疫组脾脏重量低于A19免疫组。光滑型A19株免疫小鼠的IgM和IgG抗体水平在免疫后2周均显著升高;粗糙型RA343株免疫小鼠的IgM和IgG抗体采用光滑型抗原进行ELISA检测结果均为阴性。【结论】与光滑型A19株相比,布鲁氏菌粗糙型RA343株诱导的细胞免疫应答较强,而且RA343组小鼠脾脏含菌量显著低于A19组,产生抗体与光滑型布鲁氏菌抗原无交叉血清学反应,综合表明布鲁氏菌粗糙型RA343株毒力弱,免疫小鼠后可产生良好的细胞免疫反应和体液免疫反应且不干扰血清学诊断,是理想的布鲁氏菌疫苗候选株。

    Abstract:

    [Background] Brucellosis threatens human health and the development of animal husbandry and vaccines with low virulence, good immunogenicity, and no interference of serological diagnosis turn to be a solution. [Objective] To compare the dynamic changes of specific T cells and antibodies in mice immunized with rough-type RA343 and smooth-type A19 of Brucella, and to evaluate the immune effect of rough-type RA343. [Methods] The 6-week-old female BALB/c mice were classified into three groups, 15 in RA343 group, 15 in A19 group, and 5 in blank control group. For RA343 group and A19 group, each mouse was injected (sc) with 0.1 mL (1×108 CFU) bacterial solution through into groin. A total of 5 mice in each of the three groups were killed 1, 2, and 3 weeks after immunization, respectively, and their spleens were separated. A part of the spleen was ground, and lymphocytes were separated to detect the proportions of CD4+T cells and CD8+T cells in mice (flow cytometry). The other part was weighed and then RA343 and A19 of Brucella were isolated, to evaluate the colonization of RA343 and A19 in mouse spleen. At the same time, the peripheral blood was collected and the serum was separated. For the determination of IgM and IgG in the serum of immunized mice (ELISA). GraphPad Prism 8.0 was employed for plotting and statistical analysis. [Results] The proportion of Brucella-specific CD4+IFN-γ in spleens (P<0.01), and the proportions of CD4+IL-2, CD8+IL-2, and CD8+TNF-α (P<0.05) increased in RA343 group compared with those in A19 group 1 week after immunization. Two weeks after immunization, the proportion of specific CD4+TNF-α (P<0.01) and the proportion of CD8+TNF-α (P<0.05) in RA343 group rose compared with those in A19 group. Three weeks after immunization, RA343 group registered increase of the proportion of CD4+TNF-α (P<0.05) and the proportion of CD8+IFN-γ (P<0.01) compared with A19 group. The bacterial content in spleens of RA343 group was lower than that of A19 group (P<0.05), and the spleen weight was also lower than that of A19 group 1–3 weeks after immunization. IgM and IgG levels of mice in A19 group increased significantly 2 weeks after immunization and no IgM or IgG was detected in the RA343 group. [Conclusion] Compared with A19, RA343 induced strong cellular immune response. The bacterial content in spleen of mice in RA343 group was significantly lower than that in A19 group and no serological cross-reaction occurred between antibody and A19 antigen. In summary, RA343 has low virulence, and can induce strong cellular immune response and humoral immune response in mice, with no interfere of serological diagnosis. Thus, it can be used as a candidate strain for the development of vaccine against brucellosis.

    参考文献
    [1] Wattam AR, Inzana TJ, Williams KP, Mane SP, Shukla M, Almeida NF, Dickerman AW, Mason S, Moriyón I, O’Callaghan D, et al. Comparative genomics of early-diverging Brucella strains reveals a novel lipopolysaccharide biosynthesis pathway[J]. mBio, 2012, 3(5): e00246-e00212
    [2] Mesureur J, Arend S, Cellière B, Courault P, Cotte-Pattat PJ, Totty H, Deol P, Mick V, Girard V, Touchberry J, et al. A MALDI-TOF MS database with broad genus coverage for species-level identification of Brucella[J]. PLoS Neglected Tropical Diseases, 2018, 12(10): e0006874
    [3] Norman SA, Delaney MA, Haman KH, Thomas AC, Godfroid J, Larsen AK, Nymo IH, Robbe-Austerman S, Quance C, Rhyan JC, et al. Application of real-time quantitative PCR assays for detecting marine Brucella spp. in fish[J]. Journal of Veterinary Diagnostic Investigation, 2018, 30(1): 150-154
    [4] Paul S, Peddayelachagiri BV, Gogoi M, Nagaraj S, RamLal S, Konduru B, Batra HV. Genome-wide unique insertion sequences among five Brucella species and demonstration of differential identification of Brucella by multiplex PCR assay[J]. Scientific Reports, 2020, 10: 6368
    [5] Jacob J, Finke A, Mielke M. Survival of Brucella abortus S19 and other Brucella spp. in the presence of oxidative stress and within macrophages[J]. Folia Microbiologica, 2020, 65(5): 879-894
    [6] 马帅, 李金积, 赵明, 王媛, 刘枢清, 李超. 布鲁氏菌病研究进展[J]. 中国动物检疫, 2020, 37(7): 73-79 Ma S, Li JJ, Zhao M, Wang Y, Liu SQ, Li C. Research progress on brucellosis[J]. China Animal Health Inspection, 2020, 37(7): 73-79(in Chinese)
    [7] 秦玉明, 冯宇, 蒋卉, 彭小薇, 许冠龙, 朱良全, 范学政, 丁家波. 动物布鲁氏菌病活疫苗生产环节生物安全风险分析与对策[J]. 中国兽药杂志, 2021, 55(6): 67-72 Qin YM, Feng Y, Jiang H, Peng XW, Xu GL, Zhu LQ, Fan XZ, Ding JB. Prevention and control of biosafety risk in the production of animal brucellosis live vaccine[J]. Chinese Journal of Veterinary Drug, 2021, 55(6): 67-72(in Chinese)
    [8] 冯学明, 冉多良. 布鲁氏菌病的流行特征及动物疫苗的研究进展[J]. 中兽医学杂志, 2019(05): 90-91 Feng XM, Ran DL. Brucellosis epidemic characteristics and research progress of animal vaccine[J]. Chinese Journal of Traditional Veterinary Science, 2019(5): 90-91(in Chinese)
    [9] De Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions[J]. The American Journal of Pathology, 2015, 185(6): 1505-1517
    [10] Zheng RJ, Xie SS, Lu XB, Sun LH, Zhou Y, Zhang YX, Wang K. A systematic review and meta-analysis of epidemiology and clinical manifestations of human brucellosis in China[J]. BioMed Research International, 2018, 2018: 5712920
    [11] 孙天浩, 马忠臣, 张欢, 程科建, 陈创夫, 王震, 张倩. 家畜布鲁氏菌病相关疫苗的研究进展[J]. 现代畜牧兽医, 2021(7): 80-86 Sun TH, Ma ZC, Zhang H, Cheng KJ, Chen CF, Wang Z, Zhang Q. Progress of research on brucellosis vaccine for livestock[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2021(7): 80-86(in Chinese)
    [12] 程君生, 吴梅花, 赵丽霞, 彭小兵, 丁家波, 王楠, 夏业才, 毛开荣. 三种布鲁氏菌病疫苗株的毒力比较[J]. 中国兽药杂志, 2012, 46(9): 1-3 Cheng JS, Wu MH, Zhao LX, Peng XB, Ding JB, Wang N, Xia YC, Mao KR. Virulence comparision between three different vaccine strains of brucellosis in mice and Guinea pigs[J]. Chinese Journal of Veterinary Drug, 2012, 46(9): 1-3(in Chinese)
    [13] Lalsiamthara J, Lee JH. Development and trial of vaccines against Brucella[J]. Journal of Veterinary Science, 2017, 18(s1): 281-290
    [14] Yu DH, Hu XD, Cai H, Li M. A combined DNA vaccine encoding BCSP31, SOD, and L7/L12 confers high protection against Brucella abortus 2308 by inducing specific CTL responses[J]. DNA and Cell Biology, 2007, 26(6): 435-443
    [15] 孙晶晶, 吴锦艳, 曹小安, 陈妍, 尹双辉, 周建华, 兰喜, 李学瑞, 刘永生, 尚佑军. 布鲁氏菌S2、M5及A19疫苗免疫羊抗体消长规律研究[J]. 中国预防兽医学报, 2020, 42(3): 287-292 Sun JJ, Wu JY, Cao XA, Chen Y, Yin SH, Zhou JH, Lan X, Li XR, Liu YS, Shang YJ. Study on the growth and decline of antibody against Brucella S2, M5 and A19 vaccine in immunized sheep[J]. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(3): 287-292(in Chinese)
    [16] Minas A, Stournara A, Christodoulopoulos G, Katsoulos PD. Validation of a competitive ELISA for diagnosis of Brucella melitensis infection in sheep and goats[J]. The Veterinary Journal, 2008, 177(3): 411-417
    [17] Jindan RA, Saleem N, Shafi A, Amjad SM. Clinical interpretation of detection of IgM anti- Brucella antibody in the absence of IgG and vice versa; a diagnostic challenge for clinicians[J]. Polish Journal of Microbiology, 2019, 68(1): 51-57
    [18] 蒋卉, 冯宇, 沈青春, 彭小薇, 朱良全, 丁家波. 牛种布鲁氏菌2308不同途径小鼠感染模型的建立与评估[J]. 微生物学通报, 2021, 48(11): 4190-4197 Jiang H, Feng Y, Shen QC, Peng XW, Zhu LQ, Ding JB. Establishment and evaluation of mice model infected Brucella abortus strain 2308 by different routes[J]. Microbiology China, 2021, 48(11): 4190-4197(in Chinese)
    [19] Skendros P, Pappas G, Boura P. Cell-mediated immunity in human brucellosis[J]. Microbes and Infection, 2011, 13(2): 134-142
    [20] López-Santiago R, Sánchez-Argáez AB, De Alba- Núñez LG, Baltierra-Uribe SL, Moreno-Lafont MC. Immune response to mucosal Brucella infection[J]. Frontiers in Immunology, 2019, 10: 1759
    [21] Gao N, Jennings P, Guo YH, Yuan D. Regulatory role of natural killer (NK) cells on antibody responses to Brucella abortus[J]. Innate Immunity, 2011, 17(2): 152-163
    [22] Clapp B, Yang XH, Thornburg T, Walters N, Pascual DW. Nasal vaccination stimulates CD8+T cells for potent protection against mucosal Brucella melitensis challenge[J]. Immunology and Cell Biology, 2016, 94(5): 496-508
    [23] Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen[J]. Immunological Reviews, 2011, 240(1): 211-234
    [24] 孙晶晶, 吴锦艳, 陈妍, 曹小安, 尹双辉, 周建华, 兰喜, 李学瑞, 刘永生, 尚佑军. 布鲁氏菌S2、M5及A19疫苗不同免疫程序对细胞因子的影响[J]. 免疫学杂志, 2020, 36(11): 984-993 Sun JJ, Wu JY, Chen Y, Cao XA, Yin SH, Zhou JH, Lan X, Li XR, Liu YS, Shang YJ. The dynamic effect on cytokines by different immune procedures for Brucella S2, M5 and A19 vaccines[J]. Immunological Journal, 2020, 36(11): 984-993(in Chinese)
    [25] Zhu LQ, Feng Y, Zhang G, Jiang H, Zhang Z, Wang N, Ding JB, Suo X. Brucella suis strain 2 vaccine is safe and protective against heterologous Brucella spp. infections[J]. Vaccine, 2016, 34(3): 395-400
    [26] 靳红娟, 叶锋, 刘丽娅, 陈雅璐, 张悦, 陈泽辉, 李欣宇, 谷文喜, 钟旗, 姚刚, 等. 布鲁氏菌活疫苗(M5)免疫试验: 多浪羊抗体消长规律研究[J]. 中国动物检疫, 2019, 36(3): 84-86 Jin HJ, Ye F, Liu LY, Chen YL, Zhang Y, Chen ZH, Li XY, Gu WX, Zhong Q, Yao G, et al. Antibody dynamic change in dolang sheep after immunizing with Brucella live vaccine (M5)[J]. China Animal Health Inspection, 2019, 36(3): 84-86(in Chinese)
    [27] 孙浩杰, 任小侠, 秦玉明, 朱良全, 蒋卉, 孙石静, 丁家波, 辛凌翔, 王楠, 李晓宁, 等. 一株粗糙型牛种布鲁氏菌诱导株的构建及鉴定[J]. 中国畜牧兽医, 2020, 47(11): 3445-3453 Sun HJ, Ren XX, Qin YM, Zhu LQ, Jiang H, Sun SJ, Ding JB, Xin LX, Wang N, Li XN, et al. Construction and identification of an induced strain of rough Brucella abortus[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(11): 3445-3453(in Chinese)
    [28] 孙浩杰, 孙佳丽, 张楠, 张百慧, 刘洋, 李简, 张园园, 韩莹, 李晓宁, 王楠, 等. 粗糙型布鲁菌及其疫苗研究进展[J]. 动物医学进展, 2020, 41(11): 96-99 Sun HJ, Sun JL, Zhang N, Zhang BH, Liu Y, Li J, Zhang YY, Han Y, Li XN, Wang N, et al. Progress on rough Brucella and vaccine[J]. Progress in Veterinary Medicine, 2020, 41(11): 96-99(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨晓彤,张莹辉,李巧玲,蒋卉,丁家波,沈青春,范学政,秦建华. 布鲁氏菌粗糙型RA343株与光滑型A19株免疫小鼠后特异性T细胞和抗体动态变化分析[J]. 微生物学通报, 2022, 49(7): 2700-2714

复制
分享
文章指标
  • 点击次数:485
  • 下载次数: 1024
  • HTML阅读次数: 859
  • 引用次数: 0
历史
  • 收稿日期:2021-10-22
  • 录用日期:2021-11-29
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-20
文章二维码