科微学术

微生物学通报

cGAS-STING信号通路在畜禽疾病中的研究进展
作者:
基金项目:

国家重点研发计划项目(2021YFD1800100);国家自然科学基金项目(32272970,32072839);江苏高校‘青蓝工程’资助项目;江苏省优势学科项目;高等学校学科创新引智计划(111)


Role of cGAS-STING signaling pathway in livestock and poultry diseases: a review
Author:
  • HE Huifen

    HE Huifen

    Key Laboratory for Avian Preventive Medicine, Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China;Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Lu

    ZHANG Lu

    Key Laboratory for Avian Preventive Medicine, Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China;Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QIN Aijian

    QIN Aijian

    Key Laboratory for Avian Preventive Medicine, Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China;Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China;Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QIAN Kun

    QIAN Kun

    Key Laboratory for Avian Preventive Medicine, Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China;Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China;Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    cGAS-STING信号通路是一种细胞内DNA感受器,可以识别自身病变或外部进入细胞质中的双链DNA。其不仅与肿瘤、病毒和细菌感染及自身免疫系统疾病密切相关,而且在非特异性免疫系统中发挥重要作用。截至目前,国内外对于cGAS-STING信号通路的研究主要集中在哺乳动物肿瘤相关性疾病及与先天性免疫系统相关的疾病中,而通路对畜禽疾病调控的影响机制非常重要。本文以cGAS-STING信号通路在宿主受到病原感染中发挥的作用为切入点,对其在不同畜禽病原感染中的调控作用进行综合论述,以期为畜禽疾病的防控提供理论依据和参考。

    Abstract:

    The cGAS-STING signaling pathway is an intracellular DNA sensor that recognizes self-lesioned or externally entered double-stranded DNA in the cytoplasm. It not only is associated with tumors, viral and bacterial infections, and autoimmune diseases but also plays a role in the nonspecific immune system. The available studies of cGAS-STING signaling pathway mainly focus on mammalian tumor-related diseases and the diseases related to the innate immune system. Considering the significant regulatory role of CGAS-STING signaling pathway, we comprehensively expound the role of this pathway in pathogen infection of livestock and poultry, with an view to provide a theoretical basis for the prevention and control of livestock and poultry diseases.

    参考文献
    [1] Dempsey A, Bowie AG. Innate immune recognition of DNA:a recent history[J]. Virology, 2015, 479/480:146-152
    [2] Sun LJ, Wu JX, Du FH, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science, 2013, 339(6121):786-791
    [3] Zhang X, Shi HP, Wu JX, Zhang XW, Sun LJ, Chen C, Chen ZJ. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING[J]. Molecular Cell, 2013, 51(2):226-235
    [4] Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, Hayakawa Y, Hammond MC, Vance RE. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING[J]. Cell Reports, 2013, 3(5):1355-1361
    [5] Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, Hopfner KP, Ludwig J, Hornung V. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING[J]. Nature, 2013, 498(7454):380-384
    [6] Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, Serganov AA, Liu YZ, Jones RA, Hartmann G, et al. Cyclic[G(2', 5')pA(3', 5')p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase[J]. Cell, 2013, 153(5):1094-1107
    [7] Wu JX, Sun LJ, Chen X, Du FH, Shi HP, Chen C, Chen ZJ. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA[J]. Science, 2013, 339(6121):826-830
    [8] Barber GN. Cytoplasmic DNA innate immune pathways[J]. Immunological Reviews, 2011, 243(1):99-108
    [9] Tanaka Y, Chen ZJ. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway[J]. Science Signaling, 2012, 5(214):ra20
    [10] Liu SQ, Cai X, Wu JX, Cong Q, Chen X, Li T, Du FH, Ren JY, Wu YT, Grishin NV, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation[J]. Science, 2015, 347(6227):aaa2630
    [11] Chen Q, Sun LJ, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing[J]. Nature Immunology, 2016, 17(10):1142-1149
    [12] Aravind L, Koonin EV. DNA polymerase β-like nucleotidyltransferase superfamily:identification of three new families, classification and evolutionary history[J]. Nucleic Acids Research, 1999, 27(7):1609-1618
    [13] Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, Hornung V, Hopfner KP. Structural mechanism of cytosolic DNA sensing by cGAS[J]. Nature, 2013, 498(7454):332-337
    [14] Zhang X, Wu JX, Du FH, Xu H, Sun LJ, Chen Z, Brautigam CA, Zhang XW, Chen ZJ. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop[J]. Cell Reports, 2014, 6(3):421-430
    [15] Li X, Shu C, Yi GH, Chaton CT, Shelton CL, Diao JS, Zuo XB, Kao CC, Herr AB, Li PW. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization[J]. Immunity, 2013, 39(6):1019-1031
    [16] Gentili M, Kowal J, Tkach M, Satoh T, Lahaye X, Conrad C, Boyron M, Lombard B, Durand S, Kroemer G, et al. Transmission of innate immune signaling by packaging of cGAMP in viral particles[J]. Science, 2015, 349(6253):1232-1236
    [17] Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling[J]. Nature, 2008, 455(7213):674-678
    [18] Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao FC, Lei CQ, He X, Zhang L, Po TE, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation[J]. Immunity, 2008, 29(4):538-550
    [19] Shang GJ, Zhang CG, Chen ZJ, Bai XC, Zhang XW. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP[J]. Nature, 2019, 567(7748):389-393
    [20] Zhang CG, Shang GJ, Gui X, Zhang XW, Bai XC, Chen ZJ. Structural basis of STING binding with and phosphorylation by TBK1[J]. Nature, 2019, 567(7748):394-398
    [21] Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses[J]. Nature Immunology, 2004, 5(7):730-737
    [22] Andrejeva J, Childs KS, Young DF, Carlos TS, Stock N, Goodbourn S, Randall RE. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter[J]. PNAS, 2004, 101(49):17264-17269
    [23] Wu JX, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids[J]. Annual Review of Immunology, 2014, 32:461-488
    [24] Abe T, Harashima A, Xia TL, Konno H, Konno K, Morales A, Ahn J, Gutman D, Barber GN. STING recognition of cytoplasmic DNA instigates cellular defense[J]. Molecular Cell, 2013, 50(1):5-15
    [25] Watson RO, Manzanillo PS, Cox JS. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway[J]. Cell, 2012, 150(4):803-815
    [26] Liu FP, Liu YD, Zhuang ZQ, Ma JP, Xu XH, Zhang WJ, Peng H, Yang LF, Zhang W, Pei ZH, et al. Beclin1 haploinsufficiency accentuates second-hand smoke exposure-induced myocardial remodeling and contractile dysfunction through a STING-mediated mechanism[J]. Journal of Molecular and Cellular Cardiology, 2020, 148:78-88
    [27] Tojima Y, Fujimoto A, Delhase M, Chen Y, Hatakeyama S, Nakayama KI, Kaneko Y, Nimura Y, Motoyama N, Ikeda K, et al. NAK is an IκB kinase-activating kinase[J]. Nature, 2000, 404(6779):778-782
    [28] Tabtieng T, Degterev A, Gaglia MM. Caspase-dependent suppression of type I interferon signaling promotes Kaposi's sarcoma-associated herpesvirus lytic replication[J]. Journal of Virology, 2018, 92(10):e00078-e00018
    [29] Helgason E, Phung QT, Dueber EC. Recent insights into the complexity of tank-binding kinase 1 signaling networks:the emerging role of cellular localization in the activation and substrate specificity of TBK1[J]. FEBS Letters, 2013, 587(8):1230-1237
    [30] Abe T, Barber GN. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1[J]. Journal of Virology, 2014, 88(10):5328-5341
    [31] De Oliveira Mann CC, Orzalli MH, King DS, Kagan JC, Lee ASY, Kranzusch PJ. Modular architecture of the STING C-terminal tail allows interferon and NF-κB signaling adaptation[J]. Cell Reports, 2019, 27(4):1165-1175.e5
    [32] González-Navajas JM, Lee J, David M, Raz E. Immunomodulatory functions of type I interferons[J]. Nature Reviews Immunology, 2012, 12(2):125-135
    [33] Andrilenas KK, Ramlall V, Kurland J, Leung B, Harbaugh AG, Siggers T. DNA-binding landscape of IRF3, IRF5 and IRF7 dimers:implications for dimer-specific gene regulation[J]. Nucleic Acids Research, 2018, 46(5):2509-2520
    [34] Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM. A diverse range of gene products are effectors of the type I interferon antiviral response[J]. Nature, 2011, 472(7344):481-485
    [35] Chen DS, Tong JS, Yang LH, Wei L, Stolz DB, Yu J, Zhang JK, Zhang L. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors[J]. PNAS, 2018, 115(15):3930-3935
    [36] Cormican P, Lloyd AT, Downing T, Connell SJ, Bradley D, O'Farrelly C. The avian toll-like receptor pathway:subtle differences amidst general conformity[J]. Developmental and Comparative Immunology, 2009, 33(9):967-973
    [37] Huang B, Qi ZT, Xu Z, Nie P. Global characterization of interferon regulatory factor (IRF) genes in vertebrates:glimpse of the diversification in evolution[J]. BMC Immunology, 2010, 11:22
    [38] 金洁. 鸡STING基因的克隆、表达及其抗病毒功能的研究[D]. 雅安:四川农业大学硕士学位论文, 2017. Jin J. Molecular characterization, expression and functional analysis of chicken STING[D]. Yaan:Master's Thesis of Sichuan Agricultural University, 2017(in Chinese)
    [39] Vitak N, Hume DA, Chappell KJ, Sester DP, Stacey KJ. Induction of interferon and cell death in response to cytosolic DNA in chicken macrophages[J]. Developmental & Comparative Immunology, 2016, 59:145-152
    [40] Gao L, Li K, Zhang Y, Liu Y, Liu C, Zhang Y, Gao Y, Qi X, Cui H, Wang Y, et al. Inhibition of DNA-sensing pathway by Marek's disease virus VP23 protein through suppression of interferon regulatory factor 7 activation[J]. J Virol, 2019, 93(4):e01934-e01918
    [41] 刘永振. 鸡马立克氏病病毒调控DNA受体信号通路逃避宿主天然免疫反应的分子机制[D]. 北京:中国农业科学院博士学位论文, 2019. Liu YZ. Avian Marek's disease virus mediates the DNA-sensing pathway to escape host innate immune response[D]. Beijing:Doctoral Dissertation of Chinese Academy of Agricultural Sciences, 2019(in Chinese)
    [42] 高立. 鸡马立克氏病病毒VP23蛋白调控DNA受体信号通路拮抗IFN-β产生的机制研究[D]. 北京:中国农业科学院博士学位论文, 2018. Gao L. Inhibition of IFN-β production by Marek's disease virus VP23 protein through modulation of DNA sensing signaling pathway[D]. Beijing:Doctoral Dissertation of Chinese Academy of Agricultural Sciences, 2018(in Chinese)
    [43] 冯春. cGAS-STING信号通路与马立克氏病病毒复制关系的研究[D]. 扬州:扬州大学硕士学位论文, 2020. Feng C. The study on relationship between cGAS-STING signaling pathway and MDV replication[D]. Yangzhou:Master's Thesis of Yangzhou University, 2020(in Chinese)
    [44] Boroomand Z, Jafari RA, Mayahi M. Molecular characterization and phylogenetic study of the fusion genes of Newcastle disease virus from the recent outbreaks in Ahvaz, Iran[J]. Virus Disease, 2016, 27(1):102-105
    [45] Niu QN, Cheng YQ, Wang HG, Yan YX, Sun JH. Chicken DDX3X activates IFN-β via the chSTING-chIRF7-IFN-β signaling axis[J]. Frontiers in Immunology, 2019, 10:822
    [46] Williams SM, Smith JA, Garcia M, Brinson D, Kiupel M, Hofacre C. Severe histiolymphocytic and heterophilic bronchopneumonia as a reaction to in ovo fowlpox vaccination in broiler chicks[J]. Veterinary Pathology, 2010, 47(1):177-180
    [47] Oliveira M, Rodrigues DR, Guillory V, Kut E, Giotis ES, Skinner MA, Guabiraba R, Bryant CE, Ferguson BJ. Chicken cGAS senses fowlpox virus infection and regulates macrophage effector functions[J]. Frontiers in Immunology, 2021, 11:613079
    [48] 沈逵. ALV-J编码蛋白对cGAS-STING信号通路的影响及其作用机制研究[D]. 扬州:扬州大学硕士学位论文, 2021. Shen K. Effects of ALV-J encoded proteins on the cGAS-STING signaling pathway and the underlying mechanism[D]. Yangzhou:Master's Thesis of Yangzhou University, 2021(in Chinese)
    [49] 张冰晨. cGAS-STING-STAT6通路对猪圆环病毒Ⅱ型免疫调控的初步研究[D]. 福州:福建师范大学硕士学位论文, 2017. Zhang BC. Studies on the immune regulation of cGAS-STING-STAT6 pathway in response to PCV2 invasion[D]. Fuzhou:Master's Thesis of Fujian Normal University, 2017(in Chinese)
    [50] 王西西. 非洲猪瘟病毒蛋白对cGAS-STING信号通路抑制作用研究[D]. 北京:中国农业科学院博士学位论文, 2019. Wang XX. Inhibition mechanisms of African swine fever virus protein on cGAS-STING-mediated signaling pathway[D]. Beijing:Doctoral Dissertation of Chinese Academy of Agricultural Sciences, 2019(in Chinese)
    [51] Wang ZY, Chen J, Wu XC, Ma D, Zhang XH, Li RZ, Han C, Liu HX, Yin XR, Du Q, et al. PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection[J]. PLoS Pathogens, 2021, 17(9):e1009940
    [52] Jia N, Ou YW, Pejsak Z, Zhang YG, Zhang J. Roles of African swine fever virus structural proteins in viral infection[J]. Journal of Veterinary Research, 2017, 61(2):135-143
    [53] Alejo A, Matamoros T, Guerra M, Andrés G. A proteomic atlas of the African swine fever virus particle[J]. Journal of Virology, 2018, 92(23):e01293-e01218
    [54] Kessle C, Forth JH, Keil GM, Mettenleiter TC, Blome S, Karger A. The intracellular proteome of African swine fever virus[J]. Scientific Reports, 2018, 8:14714
    [55] Georgana I, Sumner RP, Towers GJ, Maluquer De Motes C. Virulent poxviruses inhibit DNA sensing by preventing STING activation[J]. Journal of Virology, 2018, 92(10):e02145-e02117
    [56] Wang XX, Wu J, Wu YT, Chen HJ, Zhang SF, Li JX, Xin T, Jia H, Hou SH, Jiang YT, et al. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1[J]. Biochemical and Biophysical Research Communications, 2018, 506(3):437-443
    [57] Luo J, Zhang JJ, Ni JH, Jiang S, Xia NW, Guo YW, Shao Q, Cao Q, Zheng WL, Chen NH, et al. The African swine fever virus protease pS273R inhibits DNA sensing cGAS-STING pathway by targeting IKKε[J]. Virulence, 2022, 13(1):740-756
    [58] Li D, Yang WP, Li LL, Li P, Ma Z, Zhang J, Qi XL, Ren JJ, Ru Y, Niu QL, et al. African swine fever virus MGF-505-7R negatively regulates cGAS-STING-mediated signaling pathway[J]. Journal of Immunology:Baltimore, Md:1950, 2021, 206(8):1844-1857
    [59] Zheng WL, Xia NW, Zhang JJ, Cao Q, Jiang S, Luo J, Wang H, Chen NH, Zhang Q, Meurens F, et al. African swine fever virus structural protein p17 inhibits cGAS-STING signaling pathway through interacting with STING[J]. Frontiers in Immunology, 2022, 13(1):941579
    [60] Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, S Jacob L, Patwa R, Shah H, Xu K, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer[J]. Nature, 2016, 533(7604):493-498
    [61] Liu XL, Zhang ML, Ye C, Ruan KY, Xu AY, Gao F, Tong GZ, Zheng H. Inhibition of the DNA-Sensing pathway by pseudorabies virus UL24 protein via degradation of interferon regulatory factor 7[J]. Veterinary Microbiology, 2021, 255:109023
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何慧芬,张璐,秦爱建,钱琨. cGAS-STING信号通路在畜禽疾病中的研究进展[J]. 微生物学通报, 2022, 49(12): 5331-5341

复制
分享
文章指标
  • 点击次数:271
  • 下载次数: 1204
  • HTML阅读次数: 1588
  • 引用次数: 0
历史
  • 收稿日期:2022-09-06
  • 最后修改日期:2022-11-01
  • 在线发布日期: 2022-12-06
文章二维码