科微学术

微生物学通报

基于植物-土壤反馈的不同绿肥驯化微生物对玉米生长的影响
作者:
基金项目:

国家重点研发计划(2017YFD0200203-4)


Microorganisms domesticated with different green manures regulate maize growth via plant-soil feedback
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】在农田生态系统中,土壤微生物与植物互作的机制仍不清楚。【目的】进一步加强对植物-微生物互作的认识,筛选出引起不同反馈作用的关键微生物或微生物类群。【方法】采集豆科绿肥救荒野豌豆(Vicia sativa, V)、十字花科绿肥油菜(Brassica napus, N)和荒坡土壤(remnant prairie, R)驯化的田块土壤0-20 cm作为菌剂在温室进行植物-土壤反馈(plant-soil feedback, PSF)试验。土壤菌剂的接种量为10%,即有90%理化性质一致的灭菌土壤作为背景土,同时设置灭菌土壤菌剂作为对照(CK),种植玉米。每组土壤菌剂处理均分为50 mg/kg高磷(high phosphorus, HP)和5 mg/kg低磷(low phosphorus, LP)两个磷浓度处理。玉米收获后,测定产量和植株地上部磷含量,并取土壤样品进行高通量测序,解析不同养分供给情况下微生物对作物生长的反馈效应。【结果】高磷和土壤反馈效应均促进了玉米的生长。在低磷水平下,V、N和R处理的玉米地上部生物量均高于CK处理,但N处理的玉米地上部生物量增加最多(38%),且增幅显著高于V处理(28%)和R处理(16%);在高磷条件下,V、N和R处理的玉米生物量与CK之间无明显区别。低磷条件下,3种土壤菌剂处理的玉米地上部磷含量显著高于对照处理;高磷条件下,各处理的玉米地上部磷含量并无显著差异。各处理门水平主要物种组成存在差异,N处理富集更多的变形菌门(Proteobacteria)和拟杆菌门(Bacteroidota)。KEGG代谢通路分析表明,N处理中磷养分活化相关的功能基因phoBphoAphoRphnAglpR含量显著上升。【结论】土壤反馈实验表明,十字花科绿肥驯化的土壤微生物能够提高玉米的吸磷能力,促进其生长;十字花科绿肥富集更多和解磷相关的微生物和功能基因。

    Abstract:

    [Background] In agricultural ecosystems, the mechanisms of interactions between soil microorganisms and plants remain unclear. [Objective] To strengthen the understanding of plant-microorganism interactions and screen out the key microorganisms or microbial groups that cause different feedback effects. [Methods] The soil in the 0-20 cm layer of the fields domesticated with leguminous green manure Vicia sativa (V) or cruciferous green manure Brassica napus (N) and the remnant prairie (R) were collected as inoculants in the greenhouse for plant-soil feedback (PSF) test. Maize was planted in the substrate containing 10% inoculant and 90% sterilized soil with the same physical and chemical properties. The sterilized soil inoculum was set as the control (CK). For each inoculation treatment, two phosphorus levels, 50 mg/kg (high phosphorus, HP) and 5 mg/kg (low phosphorus, LP), were designed. After maize was harvested, we measured the yield and phosphorus content in the shoots and sequenced the soil samples to analyze feedback effects of microorganisms on crop growth under different nutrient supply conditions. [Results] High phosphorus and soil feedback both promoted the growth of maize. In the case of LP, the aboveground biomass of maize in the V, N, and R treatments all increased compared with that in the CK. Moreover, the increase in the N treatment (38%) was significantly higher than that in the V treatment (28%) and R treatment (16%). The V, N, and R treatments showed no significant difference in maize aboveground biomass compared with CK under the HP condition. The phosphorus content in the shoots of maize treated with the three soil inoculants was significantly higher than that of CK in the case of LP, while it showed no significant difference between treatments in the case of HP. There are differences in the composition of main species at each treatment phylum level, N treatment enriched more Proteobacteria and Bacteroidetes. KEGG pathway enrichment analysis showed that the abundance of functional genes phoB, phoA, phoR, phnA and glpR involved in phosphorus activation significantly increased in N treatment. [Conclusion] The soil microorganisms domesticated with cruciferous green manure could improve the phosphorus absorption ability and promote the growth of maize cruciferous green manure enriched more microorganisms and functional genes associated with phosphorus dissolution.

    参考文献
    [1] MACDONALD GK, BENNETT EM, POTTER PA, RAMANKUTTY N. Agronomic phosphorus imbalances across the world's croplands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7):3086-3091.
    [2] CLARHOLM M. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen[J]. Soil Biology and Biochemistry, 1985, 17(2):181-187.
    [3] 沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20):6584-6591. SHEN RF, ZHAO XQ. Role of soil microbes in the acquisition of nutrients by plants[J]. Acta Ecologica Sinica, 2015, 35(20):6584-6591(in Chinese).
    [4] van der HEIJDEN MGA, STREITWOLF-ENGEL R, RIEDL R, SIEGRIST S, NEUDECKER A, INEICHEN K, BOLLER T, WIEMKEN A, SANDERS IR. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland[J]. The New Phytologist, 2006, 172(4):739-752.
    [5] RICHARDSON AE, BAREA JM, MCNEILL AM, PRIGENT-COMBARET C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant and Soil, 2009, 321(1):305-339.
    [6] van der HEIJDEN MGA, BARDGETT RD, van STRAALEN NM. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 2008, 11(3):296-310.
    [7] 陈文新, 李阜棣, 闫章才. 我国土壤微生物学和生物固氮研究的回顾与展望[J]. 世界科技研究与发展, 2002, 24(4):6-12. CHEN WX, LI FD, YAN ZC. Retrospect and prospect of soil microbiology and biological nitrogen fixation researches in China[J]. World Sci-Tech R&D, 2002, 24(4):6-12(in Chinese).
    [8] KUZYAKOV Y, FRIEDEL JK, STAHR K. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry, 2000, 32(11/12):1485-1498.
    [9] SAMIS KAREN E. Perspectives in plant ecology, evolution & systematics[J]. Island Studies Journal, 2011, 6(2):284-285.
    [10] 王光州, 贾吉玉, 张俊伶. 植物-土壤反馈理论及其在自然和农田生态系统中的应用研究进展[J]. 生态学报, 2021, 41(23):9130-9143. WANG GZ, JIA JY, ZHANG JL. Plant soil feedback theory and its applications and prospects in natural and agricultural ecosystems[J]. Acta Ecologica Sinica, 2021, 41(23):9130-9143(in Chinese).
    [11] EHRENFELD JG, RAVIT B, ELGERSMA K. Feedback in the plant-soil system[J]. Annual Review of Environment and Resources, 2005, 30(0):75-115.
    [12] ZHALNINA K, LOUIE KB, HAO Z, MANSOORI N, DA ROCHA UN, SHI SJ, CHO H, KARAOZ U, LOQUÉ D, BOWEN BP, FIRESTONE MK, NORTHEN TR, BRODIE EL. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4):470-480.
    [13] WANG GZ, BEI SK, LI JP, BAO X, ZHANG JD, SCHULTZ P, LI HG, LI L, ZHANG FS, BEVER J, ZHANG JL. Soil microbial legacy drives crop diversity advantage:linking ecological plant-soil feedback with agricultural intercropping[J]. Journal of Applied Ecology, 2021, 58(3):496-506.
    [14] JO J, OH J, PARK C. Microbial community analysis using high-throughput sequencing technology:a beginner's guide for microbiologists[J]. Journal of Microbiology, 2020, 58(3):176-192.
    [15] BAKKER PAHM, PIETERSE CMJ, de JONGE R, BERENDSEN RL. The soil-borne legacy[J]. Cell, 2018, 172(6):1178-1180.
    [16] ADESEMOYE AO, KLOEPPER JW. Plant-microbes interactions in enhanced fertilizer-use efficiency[J]. Applied Microbiology and Biotechnology, 2009, 85(1):1-12.
    [17] RICHARDSON AE, SIMPSON RJ. Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant Physiology, 2011, 156(3):989-996.
    [18] CAVAGNARO TR, BENDER SF, ASGHARI HR, HEIJDEN MGAVD. The role of arbuscular mycorrhizas in reducing soil nutrient loss[J]. Trends in Plant Science, 2015, 20(5):283-290.
    [19] CHAUDHRY V, REHMAN A, MISHRA A, CHAUHAN PS, NAUTIYAL CS. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments[J]. Microbial Ecology, 2012, 64(2):450-460.
    [20] LESAULNIER C, PAPAMICHAIL D, MCCORKLE S, OLLIVIER B, SKIENA S, TAGHAVI S, ZAK D, van der LELIE D. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen[J]. Environmental Microbiology, 2008, 10(4):926-941.
    [21] CLOUTIER MLC, CHATTERJEE D, ELANGO D, CUI J, BRUNS M, CHOPRA S. Sorghum root flavonoid chemistry, cultivar, and frost stress effects on rhizosphere bacteria and fungi[J]. Phytobiomes Journal, 2021, 5(1):39-50.
    [22] BERGKEMPER F, SCHÖLER A, ENGEL M, LANG F, KRÜGER J, SCHLOTER M, SCHULZ S. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems[J]. Environmental Microbiology, 2016, 18(8):2767.
    [23] DAI ZM, LIU GF, CHEN HH, CHEN CR, WANG JK, AI SY, WEI D, LI DM, MA B, TANG CX, BROOKES PC, XU JM. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems[J]. The ISME Journal, 2020, 14(3):757-770.
    [24] IKOYI I, FOWLER A, SCHMALENBERGER A. One-time phosphate fertilizer application to grassland columns modifies the soil microbiota and limits its role in ecosystem services[J]. Science of the Total Environment, 2018, 630:849-858.
    [25] SPOHN M, ZAVIŠIĆ A, NASSAL P, BERGKEMPER F, SCHULZ S, MARHAN S, SCHLOTER M, KANDELER E, POLLE A. Temporal variations of phosphorus uptake by soil microbial biomass and young beech trees in two forest soils with contrasting phosphorus stocks[J]. Soil Biology and Biochemistry, 2018, 117:191-202.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孟鹏飞,郭涛,刘文. 基于植物-土壤反馈的不同绿肥驯化微生物对玉米生长的影响[J]. 微生物学通报, 2023, 50(3): 1111-1122

复制
分享
文章指标
  • 点击次数:267
  • 下载次数: 1001
  • HTML阅读次数: 919
  • 引用次数: 0
历史
  • 收稿日期:2022-06-23
  • 录用日期:2022-09-28
  • 在线发布日期: 2023-03-07
  • 出版日期: 2023-03-20
文章二维码