科微学术

微生物学通报

聚丙烯酰胺和生物炭共施对土壤细菌群落、理化因子和玉米产量的影响
作者:
基金项目:

内蒙古自治区科技成果转化项目(2019CG008);内蒙古自治区技术攻关项目(2019GG022);内蒙古自治区科技计划(2021GG0056)


Effects of polyacrylamide and biochar co-application on soil bacterial community, physical and chemical factors, and maize yield
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】细菌群落在土壤养分循环中扮演着重要角色,并且土壤理化性质及作物产量会对其产生一定的影响。【目的】明确河套灌区滴灌条件下聚丙烯酰胺和生物炭共施对土壤细菌群落多样性及结构组成、理化因子和玉米产量的影响。【方法】设置对照(CK)、聚丙烯酰胺22.5 kg/hm2+生物炭9 000 kg/hm2 (PB1)、聚丙烯酰胺22.5 kg/hm2+生物炭13 500 kg/hm2 (PB2)和聚丙烯酰胺 22.5 kg/hm2+生物炭18 000 kg/hm2 (PB3)这4个不同处理,利用高通量测序技术研究土壤细菌群落与环境因子和玉米产量的相互关系。【结果】与CK相比,PB1和PB2处理均提高了土壤细菌群落的α多样性指数(chao1指数和shannon指数)。聚丙烯酰胺和生物炭共施可改变土壤细菌群落结构组成,不同处理的土壤细菌优势类群为变形菌门(Proteobacteria)和Subgroup_6。PB1处理的土壤水解氮和PB2处理的有效钾含量增加较为明显,且PB2处理的综合土壤肥力排名位于首位。冗余分析表明pH是影响细菌群落结构(门、属水平)的主要环境因子。PB2处理玉米的穗长、秃尖长、行粒数和百粒重均为最高。放线菌门(Actinobacteria)、Subgroup_6和RB41对玉米行粒数的增加起正向促进作用,Skermanella对玉米穗长的增加起正向促进作用。【结论】滴灌条件下聚丙烯酰胺和生物炭共施可通过改变土壤理化性质直接或间接增加细菌群落的多样性并改变细菌群落结构,从而提高玉米产量,且PB2处理效果最为明显。

    Abstract:

    [Background] Bacterial community plays an important role in soil nutrient cycling and meanwhile is affected by soil physical and chemical properties and crop yield. [Objective] To study the effects of co-application of polyacrylamide (PAM) and biochar on soil bacterial diversity and community structure, soil physical and chemical factors, and maize yield in Hetao irrigation area under drip irrigation. [Methods] We designed four treatments: control (CK, no polyacrylamide or biochar), 22.5 kg/hm2 polyacrylamide+9 000 kg/hm2 biochar (PB1), 22.5 kg/hm2 polyacrylamide+ 13 500 kg/hm2 biochar (PB2), and 22.5 kg/hm2 polyacrylamide+18 000 kg/hm2 biochar (PB3), to investigate the relationship among soil bacterial community, environmental factors, and maize yield by high-throughput sequencing technology. [Results] Compared with CK, PB1 and PB2 improved the alpha diversity indexes (Chao 1 and Shannon index) of soil bacteria. The co-application of polyacrylamide and biochar changed the structure of soil bacterial community, and the dominant groups of soil bacteria in different treatments were Proteobacteria and Subgroup_6. PB1 and PB2 significantly increased the content of available nitrogen and available potassium, respectively, and the comprehensive soil fertility was the highest in PB2 treatment. Redundancy analysis showed that pH was the main environmental factor affecting the bacterial community structure at the phylum and genus levels. The ear length, bald tip length, kernel number per row, and 100-kernel weight of maize in PB2 treatment were the highest. Actinobacteria, Subgroup_6, and RB41 played a positive role in increasing the kernel number per row, and Skermanella in increasing the ear length. [Conclusion] Under drip irrigation, co-application of polyacrylamide and biochar can directly or indirectly increase bacterial diversity and alter bacterial community structure by changing soil physical and chemical properties to improve maize yield, and PB2 treatment demonstrates the best performance.

    参考文献
    [1] BURNS KN, KLUEPFEL DA, STRAUSS SL, BOKULICH NA, CANTU D, STEENWERTH KL. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes:differentiation by geographic features[J]. Soil Biology and Biochemistry, 2015, 91:232-247.
    [2] TURNER S, MIKUTTA R, MEYER-STÜVE S, GUGGENBERGER G, SCHAARSCHMIDT F, LAZAR CS, DOHRMANN R, SCHIPPERS A. Microbial community dynamics in soil depth profiles over 120000 years of ecosystem development[J]. Frontiers in Microbiology, 2017, 8:874.
    [3] ZHANG QP, MIAO FH, WANG ZN, SHEN YY, WANG GL. Effects of long-term fertilization management practices on soil microbial biomass in China's cropland:a meta-analysis[J]. Agronomy Journal, 2017, 109:1183-1195.
    [4] 徐敏, 伍钧, 张小洪, 杨刚. 生物炭施用的固碳减排潜力及农田效应[J]. 生态学报, 2018, 38(2):393-404. XU M, WU J, ZHANG XH, YANG G. Impact of biochar application on carbon sequestration, soil fertility and crop productivity[J]. Acta Ecologica Sinica, 2018, 38(2):393-404(in Chinese).
    [5] 史吉刚. 保水剂、PAM施用对土壤特性及对胡萝卜生长的影响[D]. 呼和浩特:内蒙古农业大学硕士学位论文, 2008. SHI JG. Effects of super absorbent polymer and soil conditioner (PAM) on soil properties and carrot growth[D]. Hohhot:Master's Thesis of Inner Mongolia Agricultural University, 2008(in Chinese).
    [6] 佘跃惠, 张凡, 舒福昌, 张学礼, 王正良, 周玲革, 赵勇, 赵立平. 油田污水污泥中以液蜡和聚丙烯酰胺(PAM)为营养源的微生物群落及功能分析[A]//首届全国微生物基因组学学术研讨会会程与论文摘要集[C]. 武汉, 2006:36. SHE YH, ZHANG F, SHU FC, ZHANG XL, WANG ZL, ZHOU LG, ZHAO Y, ZHAO LP. Microbial community and functional analysis of oil field sewage sludge with liquid wax and polyacrylamide (PAM) as nutrient Sources[A]//Proceedings and Abstracts of the First National Symposium on Microbial Genomics[C]. Wuhan, 2006:36(in Chinese).
    [7] 郭瑞杰. 临河区农业节水灌溉发展下小麦种植成本-收益研究:以双河镇为例[D]. 呼和浩特:内蒙古农业大学硕士学位论文, 2019. GUO RJ. Study on the cost-benefit of wheat planting under the development of water-saving irrigation in Linhe:a case study of Shuanghe town as an example[D]. Hohhot:Master's Thesis of Inner Mongolia Agricultural University, 2019(in Chinese).
    [8] 谷强远, 刘义国, 冯木彩, 李军, 李玲燕, 万雪洁, 刘树堂, 师长海. 滴灌水氮耦合对不同类型土壤冬小麦产量构成及水肥利用的影响[J]. 山东农业科学, 2021, 53(10):47-55. GU QY, LIU YG, FENG MC, LI J, LI LY, WAN XJ, LIU ST, SHI CH. Water and nitrogen coupling effects under drip irrigation on yield components and water and fertilizer utilization of winter wheat in different soil types[J]. Shandong Agricultural Sciences, 2021, 53(10):47-55(in Chinese).
    [9] 王芳, 沈舒雨, 杨柳, 林妍敏, 南雄雄, 张俊华. 旱区滴灌条件下不同养分组合对叶用枸杞土壤活性碳库及细菌群落的调控效应[J]. 节水灌溉, 2021(12):21-29. WANG F, SHEN SY, YANG L, LIN YM, NAN XX, ZHANG JH. Effects of different nutrient combinations on soil fertility and bacterial community of Lycium chinense mill under drip irrigation in arid area[J]. Water Saving Irrigation, 2021(12):21-29(in Chinese).
    [10] 郭慧楠. 生物炭对咸水滴灌棉田土壤的改良效应研究[D]. 石河子:石河子大学硕士学位论文, 2021. GUO HN. Effect of biochar on soil improvement in saline water drip irrigation cotton field[D]. Shihezi:Master's Thesis of Shihezi University, 2021(in Chinese).
    [11] CLAESSON MJ, O'SULLIVAN O, WANG Q, NIKKILÄ J, MARCHESI JR, SMIDT H, DEVOS WM, ROSS RP, O'TOOLE PW. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine[J]. PLoS ONE, 2009, 4(8):e6669.
    [12] 鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000. BAO SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2000(in Chinese).
    [13] YAO Q, LIU JJ, YU ZH, LI YS, JIN J, LIU XB, WANG GH. Changes of bacterial community compositions after three years of biochar application in a black soil of northeast China[J]. Applied Soil Ecology, 2017, 113:11-21.
    [14] ZHENG JF, CHEN JH, PAN GX, LIU XY, ZHANG XH, LI LQ, BIAN RJ, CHENG K, ZHENG JW. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. Science of the Total Environment, 2016, 571:206-217.
    [15] YANG J, MA LA, JIANG HC, WU G, DONG HL. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes[J]. Scientific Reports, 2016, 6:25078.
    [16] SINGH D, SHI LL, ADAMS JM. Bacterial diversity in the mountains of South-West China:climate dominates over soil parameters[J]. Journal of Microbiology, 2013, 51(4):439-447.
    [17] 王鹏, 陈波, 张华. 基于高通量测序的鄱阳湖典型湿地土壤细菌群落特征分析[J]. 生态学报, 2017, 37(5):1650-1658. WANG P, CHEN B, ZHANG H. High throughput sequencing analysis of bacterial communities in soils of a typical Poyang Lake wetland[J]. Acta Ecologica Sinica, 2017, 37(5):1650-1658(in Chinese).
    [18] 陈静, 胡云, 崔文芳. 秸秆还田对温室黄瓜根际土壤代谢和菌群的影响[J]. 中国瓜菜, 2020, 33(7):14-18. CHEN J, HU Y, CUI WF. Effects of different modes of straw returned soil on metabolism and flora of rhizosphere soil of greenhouse cucumber[J]. China Cucurbits and Vegetables, 2020, 33(7):14-18(in Chinese).
    [19] BARNS SM, CAIN EC, SOMMERVILLE L, KUSKE CR. Acidobacteria phylum sequences in uranium- contaminated subsurface sediments greatly expand the known diversity within the Phylum[J]. Applied and Environmental Microbiology, 2007, 73(9):3113-3116.
    [20] 王军锋. 控制降水对黄土高原西部荒漠草原土壤细菌群落的影响研究[D]. 兰州:西北师范大学硕士学位论文, 2021. WANG JF. Effect of controlled precipitation on soil bacterial community in desert steppe of western loess plateau[D]. Lanzhou:Master's Thesis of Northwest Normal University, 2021(in Chinese).
    [21] 唐凯, 高晓丹, 贾丽娟, 徐慧欣, 李蘅, 孟建宇, 陶羽, 冯福应. 浑善达克沙地生物土壤结皮及其下层土壤中固氮细菌群落结构和多样性[J]. 微生物学通报, 2018, 45(2):293-301. TANG K, GAO XD, JIA LJ, XU HX, LI H, MENG JY, TAO Y, FENG FY. Community structure and diversity of diazotrophs in biological soil crusts and soil underneath crust of Hunshandake Deserts[J]. Microbiology China, 2018, 45(2):293-301(in Chinese).
    [22] ROUSK J, BÅÅTH E, BROOKES PC, LAUBER CL, LOZUPONE C, CAPORASO JG, KNIGHT R, FIERER N. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The International Society for Microbial Ecology Journal, 2010, 4(10):1340-1351.
    [23] LAUBER CL, STRICKLAND MS, BRADFORD MA, FIERER N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biology and Biochemistry, 2008, 40(9):2407-2415.
    [24] LAUBER CL, HAMADY M, KNIGHT R, FIERER N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 2009, 75(15):5111-5120.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵卉鑫,马鑫,张瑞喜,张永虎,唐海涛. 聚丙烯酰胺和生物炭共施对土壤细菌群落、理化因子和玉米产量的影响[J]. 微生物学通报, 2023, 50(3): 1136-1148

复制
分享
文章指标
  • 点击次数:297
  • 下载次数: 952
  • HTML阅读次数: 1058
  • 引用次数: 0
历史
  • 收稿日期:2022-04-07
  • 录用日期:2022-09-20
  • 在线发布日期: 2023-03-07
  • 出版日期: 2023-03-20
文章二维码