科微学术

微生物学通报

植物毒素thaxtomins生物合成及其分子调控研究进展
作者:
基金项目:

国家自然科学基金(31800057)


Biosynthesis and molecular regulation of phytotoxin thaxtomins: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    马铃薯疮痂病(potato scab)是世界范围内广泛存在的土传细菌性病害,难以防治。植物毒素thaxtomins由疮痂病链霉菌(Streptomyces scabies)次级代谢产生,是马铃薯疮痂病的主要致病原因,对马铃薯等作物产业造成严重危害。鉴于疮痂病链霉菌在农业上的重要作用,其中thaxtomins生物合成过程和分子调控得到越来越多的关注,并取得了较好的进展。本文综述了thaxtomins的结构特征、生物合成与异源表达,并重点介绍了疮痂病链霉菌中thaxtomins生物合成的分子调控机制等方面的研究进展,有利于深入认知疮痂病链霉菌次级代谢调控网络,为未来开发新型马铃薯疮痂病的防治策略提供理论指导。

    Abstract:

    Potato scab, a soil-borne bacterial disease that exists worldwide, is difficult to control. The phytotoxin thaxtomins, produced by the secondary metabolism of Streptomyces scabies, are the main cause of potato scab, and result in serious damage to potato and other crop industries. Due to the serious impact of S. scabies on agriculture, the biosynthesis and molecular regulation of thaxtomins have attracted many attentions and made great progress. This article reviewed the structural characteristics, biosynthesis, and heterologous expression of thaxtomins, focusing on the molecular regulatory mechanism of thaxtomins biosynthesis in S. scabies. This review helps deeply understand the regulatory network of the secondary metabolism of S. scabies, and provides theoretical guidance for the development of new control strategies for potato scab in the future.

    参考文献
    [1] LERAT S, SIMAO-BEAUNOIR AM, BEAULIEU C. Genetic and physiological determinants of Streptomyces scabies pathogenicity[J]. Molecular Plant Pathology, 2009, 10(5):579-585.
    [2] WELLER DM, RAAIJMAKERS JM, GARDENER BB, THOMASHOW LS. Microbial populations responsible for specific soil suppressiveness to plant pathogens[J]. Annual Review of Phytopathology, 2002, 40:309-348.
    [3] LORIA R, KERS J, JOSHI M. Evolution of plant pathogenicity in Streptomyces[J]. Annual Review of Phytopathology, 2006, 44:469-487.
    [4] LORIA R, BIGNELL DRD, MOLL S, HUGUET-TAPIA JC, JOSHI MV, JOHNSON EG, SEIPKE RF, GIBSON DM. Thaxtomin biosynthesis:the path to plant pathogenicity in the genus Streptomyces[J]. Antonie Van Leeuwenhoek, 2008, 94(1):3-10.
    [5] HILTUNEN LH, KELLONIEMI J, VALKONEN JPT. Repeated applications of a nonpathogenic Streptomyces strain enhance development of suppressiveness to potato common scab[J]. Plant Disease, 2017, 101(1):224-232.
    [6] SANTOS-CERVANTES ME, FELIX-GASTELUM R, HERRERA-RODRÍGUEZ G, ESPINOZA-MANCILLAS MG, MORA-ROMERO AG, LEYVA-LÓPEZ NE. Characterization, pathogenicity and chemical control of Streptomyces acidiscabies associated to potato common scab[J]. American Journal of Potato Research, 2017, 94(1):14-25.
    [7] KING RR, CALHOUN LA. The thaxtomin phytotoxins:sources, synthesis, biosynthesis, biotransformation and biological activity[J]. Phytochemistry, 2009, 70(7):833-841.
    [8] BIGNELL DRD, FYANS JK, CHENG Z. Phytotoxins produced by plant pathogenic Streptomyces species[J]. Journal of Applied Microbiology, 2014, 116(2):223-235.
    [9] LI YT, LIU JY, DÍAZ-CRUZ G, CHENG ZL, BIGNELL DRD. Virulence mechanisms of plant-pathogenic Streptomyces species:an updated review[J]. Microbiology:Reading, England, 2019, 165(10):1025-1040.
    [10] WANG LQ, WANG MY, FU YD, HUANG PJ, KONG DK, NIU GQ. Engineered biosynthesis of thaxtomin phytotoxins[J]. Critical Reviews in Biotechnology, 2020, 40(8):1163-1171.
    [11] KING RR, LAWRENCE CH, CLARK MC, CALHOUN LA. Isolation and characterization of phytotoxins associated with Streptomyces scabies[J]. Journal of the Chemical Society, Chemical Communications, 1989(13):849.
    [12] LI ZL, HUANG PJ, WANG MY, WANG X, WANG LQ, KONG DK, NIU GQ. Stepwise increase of thaxtomins production in Streptomyces albidoflavus J1074 through combinatorial metabolic engineering[J]. Metabolic Engineering, 2021, 68:187-198.
    [13] BISCHOFF V, COOKSON SJ, WU S, SCHEIBLE WR. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings[J]. Journal of Experimental Botany, 2009, 60(3):955-965.
    [14] KING RR, LAWRENCE CH, GRAY JA. Herbicidal properties of the thaxtomin group of phytotoxins[J]. Journal of Agricultural and Food Chemistry, 2001, 49(5):2298-2301.
    [15] SCHEIBLE WR, FRY B, KOCHEVENKO A, SCHINDELASCH D, ZIMMERLI L, SOMERVILLE S, LORIA R, SOMERVILLE CR. An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species[J]. The Plant Cell, 2003, 15(8):1781-1794.
    [16] STRANGE RN. Phytotoxins produced by microbial plant pathogens[J]. Natural Product Reports, 2007, 24(1):127-144.
    [17] ZHANG HB, WANG QP, NING X, HANG H, MA J, YANG XD, LU XL, ZHANG JB, LI YH, NIU CW, SONG HR, WANG X, WANG PG. Synthesis and biological evaluations of a series of thaxtomin analogues[J]. Journal of Agricultural and Food Chemistry, 2015, 63(14):3734-3741.
    [18] WOLFE JC, NEAL JC, HARLOW CD. Selective broadleaf weed control in turfgrass with the bioherbicides Phoma macrostoma and thaxtomin A[J]. Weed Technology, 2016, 30(3):688-700.
    [19] HUGUET-TAPIA JC, LEFEBURE T, BADGER JH, GUAN DL, PETTIS GS, STANHOPE MJ, LORIA R. Genome content and phylogenomics reveal both ancestral and lateral evolutionary pathways in plant-pathogenic Streptomyces species[J]. Applied and Environmental Microbiology, 2016, 82(7):2146-2155.
    [20] JOSHI MV, BIGNELL DRD, JOHNSON EG, SPARKS JP, GIBSON DM, LORIA R. The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies[J]. Molecular Microbiology, 2007, 66(3):633-642.
    [21] HEALY FG, WACH M, KRASNOFF SB, GIBSON DM, LORIA R. The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity[J]. Molecular Microbiology, 2000, 38(4):794-804.
    [22] ALKHALAF LM, BARRY SM, REA DA, GALLO A, GRIFFITHS D, LEWANDOWSKI JR, FULOP V, CHALLIS GL. Binding of distinct substrate conformations enables hydroxylation of remote sites in thaxtomin D by cytochrome P450 TxtC[J]. Journal of the American Chemical Society, 2019, 141(1):216-222.
    [23] KERS JA, WACH MJ, KRASNOFF SB, WIDOM J, CAMERON KD, BUKHALID RA, GIBSON DM, CRANE BR, LORIA R. Nitration of a peptide phytotoxin by bacterial nitric oxide synthase[J]. Nature, 2004, 429(6987):79-82.
    [24] BARRY SM, KERS JA, JOHNSON EG, SONG LJ, ASTON PR, PATEL B, KRASNOFF SB, CRANE BR, GIBSON DM, LORIA R, CHALLIS G. Cytochrome P450–catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis[J]. Nature Chemical Biology, 2012, 8(10):814-816.
    [25] TOMITA H, KATSUYAMA Y, MINAMI H, OHNISHI Y. Identification and characterization of a bacterial cytochrome P450 monooxygenase catalyzing the 3-nitration of tyrosine in rufomycin biosynthesis[J]. The Journal of Biological Chemistry, 2017, 292(38):15859-15869.
    [26] LI YT, LIU JY, ADEKUNLE D, BOWN L, TAHLAN K, BIGNELL DRD. TxtH is a key component of the thaxtomin biosynthetic machinery in the potato common scab pathogen Streptomyces scabies[J]. Molecular Plant Pathology, 2019, 20(10):1379-1393.
    [27] JOHNSON EG, KRASNOFF SB, BIGNELL DRD, CHUNG WC, TAO T, PARRY RJ, LORIA R, GIBSON DM. 4-nitrotryptophan is a substrate for the non-ribosomal peptide synthetase TxtB in the thaxtomin A biosynthetic pathway[J]. Molecular Microbiology, 2009, 73(3):409-418.
    [28] JIANG GD, ZHANG Y, POWELL MM, HYLTON SM, HILLER NW, LORIA R, DING YS. A promiscuous cytochrome P450 hydroxylates aliphatic and aromatic C-H bonds of aromatic 2,5-diketopiperazines[J]. Chembiochem:a European Journal of Chemical Biology, 2019, 20(8):1068-1077.
    [29] JIANG GD, ZUO R, ZHANG Y, POWELL MM, ZHANG PL, HYLTON SM, LORIA R, DING YS. One-pot biocombinatorial synthesis of herbicidal thaxtomins[J]. ACS Catalysis, 2018, 8(11):10761-10768.
    [30] LI YT, TAHLAN K, BIGNELL DRD. Functional cross-talk of MbtH-like proteins during thaxtomin biosynthesis in the potato common scab pathogen Streptomyces scabiei[J]. Frontiers in Microbiology, 2020, 11:585456.
    [31] JIANG GD, ZHANG YC, POWELL MM, ZHANG PL, ZUO R, ZHANG Y, KALLIFIDAS D, TIEU AM, LUESCH H, LORIA R, DING YS. High-yield production of herbicidal thaxtomins and thaxtomin analogs in a nonpathogenic Streptomyces strain[J]. Applied and Environmental Microbiology, 2018, 84(11):e00164-e00118.
    [32] YANG J, TAUSCHEK M, ROBINS-BROWNE RM. Control of bacterial virulence by AraC-like regulators that respond to chemical signals[J]. Trends in Microbiology, 2011, 19(3):128-135.
    [33] MCCORMICK JR, FLÄRDH K. Signals and regulators that govern Streptomyces development[J]. FEMS Microbiology Reviews, 2012, 36(1):206-231.
    [34] CHATER KF, CHANDRA G. The evolution of development in Streptomyces analysed by genome comparisons[J]. FEMS Microbiology Reviews, 2006, 30(5):651-672.
    [35] BIGNELL DRD, FRANCIS IM, FYANS JK, LORIA R. Thaxtomin A production and virulence are controlled by several bld gene global regulators in Streptomyces scabies[J]. Molecular Plant-Microbe Interactions:MPMI, 2014, 27(8):875-885.
    [36] ECCLESTON M, ALI RA, SEYLER R, WESTPHELING J, NODWELL J. Structural and genetic analysis of the BldB protein of Streptomyces coelicolor[J]. Journal of Bacteriology, 2002, 184(15):4270-4276.
    [37] HUNT AC, SERVÍN-GONZÁLEZ L, KELEMEN GH, BUTTNER MJ. The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family[J]. Journal of Bacteriology, 2005, 187(2):716-728.
    [38] den HENGST CD, TRAN NT, BIBB MJ, CHANDRA G, LESKIW BK, BUTTNER MJ. Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth[J]. Molecular Microbiology, 2010, 78(2):361-379.
    [39] SCHUMACHER MA, ZENG WJ, FINDLAY KC, BUTTNER MJ, BRENNAN RG, TSCHOWRI N. The Streptomyces master regulator BldD binds c-di-GMP sequentially to create a functional BldD2-(c-di-GMP)4 complex[J]. Nucleic Acids Research, 2017, 45(11):6923-6933.
    [40] TSCHOWRI N, SCHUMACHER MA, SCHLIMPERT S, CHINNAM NB, FINDLAY KC, BRENNAN RG, BUTTNER MJ. Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development[J]. Cell, 2014, 158(5):1136-1147.
    [41] TAKANO E, TAO M, LONG F, BIBB MJ, WANG L, LI W, BUTTNER MJ, BIBB MJ, DENG ZX, CHATER KF. A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor[J]. Molecular Microbiology, 2003, 50(2):475-486.
    [42] SCHLÖSSER A, ALDEKAMP T, SCHREMPF H. Binding characteristics of CebR, the regulator of the ceb operon required for cellobiose/cellotriose uptake in Streptomyces reticuli[J]. FEMS Microbiology Letters, 2000, 190(1):127-132.
    [43] MARUSHIMA K, OHNISHI Y, HORINOUCHI S. CebR as a master regulator for cellulose/cellooligosaccharide catabolism affects morphological development in Streptomyces griseus[J]. Journal of Bacteriology, 2009, 191(19):5930-5940.
    [44] FRANCIS IM, JOURDAN S, FANARA S, LORIA R, RIGALI S. The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies pathogenicity[J]. mBio, 2015, 6(2):e02018.
    [45] WANG X, FU YD, WANG MY, NIU GQ. Synthetic cellobiose-inducible regulatory systems allow tight and dynamic controls of gene expression in Streptomyces[J]. ACS Synthetic Biology, 2021, 10(8):1956-1965.
    [46] JOURDAN S, FRANCIS IM, KIM MJ, SALAZAR JJC, PLANCKAERT S, FRÈRE JM, MATAGNE A, KERFF F, DEVREESE B, LORIA R, RIGALI S. The CebE/MsiK transporter is a doorway to the cello-oligosaccharide-mediated induction of Streptomyces scabies pathogenicity[J]. Scientific Reports, 2016, 6:27144.
    [47] SCHLÖSSER A, JANTOS J, HACKMANN K, SCHREMPF H. Characterization of the binding protein-dependent cellobiose and cellotriose transport system of the cellulose degrader Streptomyces reticuli[J]. Applied and Environmental Microbiology, 1999, 65(6):2636-2643.
    [48] KOS V, FORD RC. The ATP-binding cassette family:a structural perspective[J]. Cellular and Molecular Life Sciences, 2009, 66(19):3111-3126.
    [49] JOURDAN S, FRANCIS IM, DEFLANDRE B, TENCONI E, RILEY J, PLANCKAERT S, TOCQUIN P, MARTINET L, DEVREESE B, LORIA R, RIGALI S. Contribution of the β-glucosidase BglC to the onset of the pathogenic lifestyle of Streptomyces scabies[J]. Molecular Plant Pathology, 2018, 19(6):1480-1490.
    [50] van KEULEN G, DYSON PJ. Production of specialized metabolites by Streptomyces coelicolor A3(2)[J]. Advances in Applied Microbiology, 2014, 89:217-266.
    [51] PROCÓPIO RE, SILVA IR, MARTINS MK, AZEVEDO JL, ARAÚJO JM. Antibiotics produced by Streptomyces[J]. The Brazilian Journal of Infectious Diseases:an Official Publication of the Brazilian Society of Infectious Diseases, 2012, 16(5):466-471.
    [52] LEE N, HWANG S, LEE Y, CHO S, PALSSON B, CHO BK. Synthetic biology tools for novel secondary metabolite discovery in Streptomyces[J]. Journal of Microbiology and Biotechnology, 2019, 29(5):667-686.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许莹,董胜男,张青阳,何浩洋,张部昌,刘静. 植物毒素thaxtomins生物合成及其分子调控研究进展[J]. 微生物学通报, 2023, 50(3): 1281-1290

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-28
  • 录用日期:2022-07-27
  • 在线发布日期: 2023-03-07
  • 出版日期: 2023-03-20
文章二维码