科微学术

微生物学通报

二氧化碳固定酶固碳效率及其对地衣芽孢杆菌代谢的影响
作者:
基金项目:

国家重点研发计划(2020YFA0907704);国家自然科学基金(32172174)


Carbon fixation efficiency of carbon dioxide fixation enzymes and its effect on the metabolism of Bacillus licheniformis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】随着代谢工程与合成生物学的快速发展,通过对异养微生物进行代谢改造,利用生物法进行二氧化碳固定成为一个新的趋势。生物代谢途径中存在着大量固碳酶,这些酶尚待挖掘与应用,不同的酶固碳效率之间也缺少比较。【目的】在体外和体内对固碳功能和效率进行评价。【方法】选取3种固碳酶,即核酮糖1,5-二磷酸羧化加氧酶(ribose 1,5-diphosphate carboxylation oxygenase, RuBisCo)、磷酸烯醇式丙酮酸羧激酶(phosphoenolpyruvate carboxykinase, PCK)和乙酰辅酶A羧化酶(acetyl coenzyme A carboxylase, ACC)在大肠杆菌中异源表达并纯化。测定纯酶的酶活,并建立无细胞催化实验-液质联用评价酶固碳能力的方法。在厌氧发酵条件下检测代谢指标,比较过表达固碳酶的地衣芽孢杆菌相较于原始菌的代谢差异。【结果】3种酶均实现可溶性表达,纯酶的比酶活分别为66.43、1.16和12.52 U/mg。通过体外无细胞催化实验,ACC在3种酶中表现出最高的固碳效率。分别过表达了PCK、ACC的重组地衣芽孢杆菌,厌氧发酵主产物乳酸的转化率从48.6%分别提升至58.1%和59.7%。【结论】可以通过体外、体内结合的方式对固碳酶的效率进行评价,该研究可为固碳酶在微生物遗传改造中理性、精准地应用提供参考。

    Abstract:

    [Background] With the rapid development of metabolic engineering and synthetic biology, carbon dioxide fixation by biological methods through metabolic modification of heterotrophic microorganisms has become a new trend. There are a large number of carbon fixation enzymes in biological metabolic pathways, which are yet to be explored and applied, and there is a lack of comparison among the carbon fixation efficiencies of different enzymes. [Objective] To evaluate the carbon fixation function and efficiency in vitro and in vivo. [Methods] Three carbon fixation enzymes, namely, ribulose 1,5-diphosphate carboxylation oxygenase (RuBisCo), phosphoenolpyruvate carboxykinase (PCK), and acetyl coenzyme A carboxylase (ACC), were heterologously expressed in Escherichia coli and then purified. The enzymatic activities of the pure enzymes were determined, and a cell-free catalytic assay-liquid mass spectrometry method was established to evaluate the carbon fixation capacity of the enzymes. Metabolic indicators were examined under anaerobic fermentation conditions and the differences between Bacillus licheniformis overexpressing carbon fixation enzymes compared to the original bacteria were compared. [Results] All three enzymes achieved soluble expression with specific enzyme activities of 66.43, 1.16, and 12.52 U/mg for pure enzymes, respectively. RuBisCo and ACC exhibited stronger carbon fixation efficiency in cell-free catalytic assays. The conversion of lactic acid, the main product of anaerobic fermentation, was increased from 48.6% to 58.1% and 59.7%, respectively, in B. licheniformis with the two expressed recombinant enzymes. [Conclusion] The efficiency of carbon fixation enzymes can be evaluated by in vitro and in vivo binding. This study may provide references for rational and precise application of carbon fixation enzymes in microbial genetic modification.

    参考文献
    [1] SHIN J, SONG Y, JEONG Y, CHO BK. Analysis of the core genome and pan-genome of autotrophic acetogenic bacteria[J]. Frontiers in Microbiology, 2016, 7: 1531.
    [2] GLUECK SM, GÜMÜS S, FABIAN WMF, FABER K. Biocatalytic carboxylation[J]. Chemical Society Reviews, 2010, 39(1): 313-328.
    [3] 葛喜珍, 赵有玺, 刘晓宇, 辛鑫, 田平芳. 生物固定CO2代谢途径及关键酶的研究进展[J]. 北京联合大学学报(自然科学版), 2013, 27(1): 63-68. GE XZ, ZHAO YX, LIU XY, XIN X, TIAN PF. Research advances in biological CO2 fixation pathways and key enzymes[J]. Journal of Beijing Union University (Natural Science Edition), 2013, 27(1): 63-68(in Chinese).
    [4] ANTONOVSKY N, GLEIZER S, NOOR E, ZOHAR Y, HERZ E, BARENHOLZ U, ZELCBUCH L, AMRAM S, WIDES A, TEPPER N, DAVIDI D, BAR-ON Y, BAREIA T, WERNICK DG, SHANI I, MALITSKY S, JONA G, BAR-EVEN A, MILO R. Sugar synthesis from CO2 in Escherichia coli[J]. Cell, 2016, 166(1): 115-125.
    [5] ERB TJ. Carboxylases in natural and synthetic microbial pathways[J]. Applied and Environmental Microbiology, 2011, 77(24): 8466-8477.
    [6] GUADALUPE-MEDINA V, WISSELINK HW, LUTTIK MA, de HULSTER E, DARAN JM, PRONK JT, van MARIS AJ. Carbon dioxide fixation by Calvin-cycle enzymes improves ethanol yield in yeast[J]. Biotechnology for Biofuels, 2013, 6(1): 125.
    [7] GONG FY, LIU GX, ZHAI XY, ZHOU J, CAI Z, LI Y. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation[J]. Biotechnology for Biofuels, 2015, 8: 86.
    [8] MATTOZZI MD, ZIESACK M, VOGES MJ, SILVER PA, WAY JC. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: toward horizontal transfer of autotrophic growth[J]. Metabolic Engineering, 2013, 16: 130-139.
    [9] XIAO FX, LI YR, ZHANG YP, WANG HR, ZHANG L, DING ZY, GU ZH, XU S, SHI GY. Construction of a novel sugar alcohol-inducible expression system in Bacillus licheniformis[J]. Applied Microbiology and Biotechnology, 2020, 104(12): 5409-5425.
    [10] ZHANG YP, LI YR, XIAO FX, WANG HR, ZHANG L, DING ZY, XU S, GU ZH, SHI GY. Engineering of a biosensor in response to malate in Bacillus licheniformis[J]. ACS Synthetic Biology, 2021, 10(7): 1775-1784.
    [11] BRADFORD MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72: 248-254.
    [12] 于丽, 姜岷, 马江锋, 岳方方, 刘树文. 过量表达Bacillus subtilis磷酸烯醇式丙酮酸羧化激酶对大肠杆菌产琥珀酸的影响[J]. 微生物学通报, 2010, 37(3): 325-330. YU L, JIANG M, MA JF, YUE FF, LIU SW. Effect of overexpression of Bacillus subtilis phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli[J]. Microbiology China, 2010, 37(3): 325-330(in Chinese).
    [13] ANDREWS TJ, WHITNEY SM. Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants[J]. Archives of Biochemistry and Biophysics, 2003, 414(2): 159-169.
    [14] KOAY TW, WONG HL, LIM BH. Engineering of chimeric eukaryotic/bacterial rubisco large subunits in Escherichia coli[J]. Genes & Genetic Systems, 2016, 91(3): 139-150.
    [15] WHITNEY SM, HOUTZ RL, ALONSO H. Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco[J]. Plant Physiology, 2011, 155(1): 27-35.
    [16] DONG XM, CHAO Q, WANG BC. Research progress in plant phosphoenolpyruvate carboxykinase[J]. Chinese Bulletin of Botany, 2013, 48(3): 320-328.
    [17] 关淑艳, 孙苏, 马义勇, 魏晓禹, 费建博, 刘冀, 王丕武. 植物磷酸烯醇式丙酮酸羧激酶的调控机制及功能研究进展[J]. 吉林农业大学学报, 2017, 39(5): 505-512. GUAN SY, SUN S, MA YY, WEI XY, FEI JB, LIU J, WANG PW. Research progress of regulatory mechanism and function of phosphoenolpyruvate carboxylase in plants[J]. Journal of Jilin Agricultural University, 2017, 39(5): 505-512(in Chinese).
    [18] 李洁琼, 郑世学, 喻子牛, 张吉斌. 乙酰辅酶A羧化酶: 脂肪酸代谢的关键酶及其基因克隆研究进展[J]. 应用与环境生物学报, 2011, 17(5): 753-758. LI JQ, ZHENG SX, YU ZN, ZHANG JB. Research progress of acetyl-CoA carboxylase: the key enzyme of fatty acid metabolism and its gene cloning[J]. Chinese Journal of Applied and Environmental Biology, 2011, 17(5): 753-758(in Chinese).
    [19] 龚莹, 彭少丹, 汪骞, 官春云, 王学军, 杨进成, 瞿观, 刘坚坚, 林良斌. 乙酰辅酶A羧化酶的结构·功能及基因的研究进展[J]. 安徽农业科学, 2010, 38(35): 19893-19896. GONG Y, PENG SD, WANG Q, GUAN CY, WANG XJ, YANG JC, QU G, LIU JJ, LIN LB. Research progress on the structure function of acetyl-CoA carboxylase and its genes[J]. Journal of Anhui Agricultural Sciences, 2010, 38(35): 19893-19896(in Chinese).
    [20] ANTONOVSKY N, GLEIZER S, MILO R. Engineering carbon fixation in E. coli: from heterologous RuBisCO expression to the Calvin-Benson-Bassham cycle[J]. Current Opinion in Biotechnology, 2017, 47: 83-91.
    [21] ANDERSSON I, BACKLUND A. Structure and function of Rubisco[J]. Plant Physiology and Biochemistry: PPB, 2008, 46(3): 275-291.
    [22] MILKE L, MARIENHAGEN J. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis[J]. Applied Microbiology and Biotechnology, 2020, 104(14): 6057-6065.
    [23] BERG IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways[J]. Applied and Environmental Microbiology, 2011, 77(6): 1925-1936.
    [24] 胡贵鹏. CO2封存工程改造微生物生产L-苹果酸[D]. 无锡: 江南大学博士学位论文, 2020. HU GP. Production of L-malic acid by CO2 sequestration engineering and microbial transformation[D]. Wuxi: Doctoral Dissertation of Jiangnan University, 2020(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨明飞,何贺贺,李由然,石贵阳. 二氧化碳固定酶固碳效率及其对地衣芽孢杆菌代谢的影响[J]. 微生物学通报, 2023, 50(6): 2390-2404

复制
分享
文章指标
  • 点击次数:490
  • 下载次数: 1071
  • HTML阅读次数: 1009
  • 引用次数: 0
历史
  • 收稿日期:2022-09-13
  • 录用日期:2022-12-08
  • 在线发布日期: 2023-06-05
  • 出版日期: 2023-06-25
文章二维码