科微学术

微生物学通报

基于双重芯片式数字PCR快速鉴定KPC型碳青霉烯耐药肺炎克雷伯菌的方法
作者:
基金项目:

国家重点研发计划(2018YFE0102400);上海交通大学决策咨询课题


Simultaneous rapid identification of blaKPC-coding carbapenemase- producing Klebsiella pneumoniae by duplex chip digital PCR
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】由于碳青霉烯类药物的泛用和滥用,致使肺炎克雷伯菌碳青霉烯耐药株与日俱增,产碳青霉烯酶是肺炎克雷伯菌对碳青霉烯类药物耐药的主要原因。目前对肺炎克雷伯菌碳青霉烯耐药株的检测方法存在费时费力、特异性差、灵敏度低等问题。【目的】建立一种能同时检测肺炎克雷伯菌和碳青霉烯酶基因blaKPC的双重芯片式数字PCR方法。【方法】依据肺炎克雷伯菌的特有基因yhaI和碳青霉烯耐药基因blaKPC保守序列设计特异性引物和探针,确定双重芯片式数字PCR同时对yhaIblaKPC两个基因核酸浓度绝对定量的检测范围、检出限和最佳实验体系,并进行方法特异性、灵敏度、重复性分析及临床菌株的检测。【结果】双重芯片式数字PCR检测灵敏度比双重实时荧光定量PCR提高了约1.5个数量级,在两基因同时检出的情况下,最低检出限分别为3.74 copies/μL (yhaI基因)和1.93 copies/μL (blaKPC基因);优化后的双重芯片式数字PCR对参考菌株检测特异性的结果与双重实时荧光定量PCR结果一致;利用优化后的双重芯片式数字PCR方法共检测58株临床菌株,其中肺炎克雷伯菌43株,属肺炎克雷伯菌且含有blaKPC基因的菌株13株,这与质谱及耐药谱检测结果一致。【结论】利用双重芯片式数字PCR技术建立了产KPC型碳青霉烯酶肺炎克雷伯菌的绝对定量检测方法。该方法特异性强、灵敏度高、准确度好,可用于检测具有碳青霉烯酶基因blaKPC的肺炎克雷伯菌的核酸检测和定量分析,也为产其他类型碳青霉烯酶的病原菌检测提供了新的技术参考。

    Abstract:

    [Background] Carbapenem-resistant Klebsiella pneumoniae strains have been on the rise with the extensive use and abuse of carbapenems. The production of carbapenemase is a common mechanism by which these strains resist killing by the carbapenems. The available detection methods for carbapenemase-producing K. pneumoniae are time- and labor-intensive, with poor specificity and sensitivity. [Objective] To develop an assay for the detection of K. pneumoniae with blaKPC gene based on duplex chip digital PCR (duplex-cdPCR). [Methods] The specific primers and probes for the detection of the characteristic gene yhaI of K. pneumoniae and the carbapenem resistance gene blaKPC were designed. The range of absolute quantification of nucleic acids, detection limit and optimal reaction conditions of the duplex-cdPCR for yhaI and blaKPC were determined simultaneously. The specificity, sensitivity, and precision of the method were analyzed and the clinical strains were detected. [Results] Compared with duplex-qPCR, duplex-cdPCR had the sensitivity of about 1.5 orders of magnitude higher and the detection limit was 3.74 copies/μL (yhaI) and 1.93 copies/μL (blaKPC), respectively. The optimized duplex-cdPCR showed the specificity consistent with that of duplex-qPCR. In this report, a total of 58 clinical strains were detected by the optimized duplex-cdPCR, of which 43 strains were detected as K. pneumoniae and 13 were K. pneumoniae harboring blaKPC gene. This demonstrated 100% concordance with the results of mass spectrometry and drug resistance profile.[Conclusion] A duplex-cdPCR assay capable of simultaneously detecting the characteristic gene yhaI of K. pneumoniae and the carbapenem resistance gene blaKPC in the same target was established. This assay appears to be highly specific, sensitive, and accurate. The duplex assay is suitable for nucleic acid detection and quantitative analysis of K. pneumoniae with blaKPC gene. Moreover, it also provides a new technical reference for the detection of carbapenem-resistant pathogenic bacteria carrying other carbapenemase gene types.

    参考文献
    [1] 李富祥, 廖德芳, 姚俊, 熊和丽, 李华春. 肺炎克雷伯菌TaqMan荧光定量PCR检测方法的建立[J]. 中国兽医科学,2014, 44(12):1231-1235. LI FX, LIAO DF, YAO J, XIONG HL, LI HC. Development of TaqMan real-time PCR for detection of Klebsiella pneumoniae[J]. Chinese Veterinary Science, 2014, 44(12):1231-1235 (in Chinese). [2] 王华, 王俊瑞, 郑文琪. 高毒力肺炎克雷伯菌致病及耐药分子机制研究进展[J]. 微生物学通报, 2021, 48(1):288-294. WANG H, WANG JR, ZHENG WQ. Research progress in the mechanism of molecular pathogenesis and drug resistance of hypervirulent Klebsiella pneumoniae[J]. Microbiology China, 2021, 48(1):288-294 (in Chinese). [3] NAVON-VENEZIA S, KONDRATYEVA K, CARATTOLI A. Klebsiella pneumoniae:a major worldwide source and shuttle for antibiotic resistance[J]. FEMS Microbiology Reviews, 2017, 41(3):252-275. [4] YIGIT H, QUEENAN AM, ANDERSON GJ, DOMENECH-SANCHEZ A, BIDDLE JW, STEWARD CD, ALBERTI S, BUSH K, TENOVER FC. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae[J]. Antimicrobial Agents and Chemotherapy, 2001, 45(4):1151-1161. [5] PITOUT JDD, NORDMANN P, POIREL L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(10):5873-5884. [6] GRUNDMANN H, GLASNER C, ALBIGER B, AANENSEN DM, TOMLINSON CT, ANDRASEVIĆ AT, CANTÓN R, CARMELI Y, FRIEDRICH AW, GISKE CG, GLUPCZYNSKI Y, GNIADKOWSKI M, LIVERMORE DM, NORDMANN P, POIREL L, ROSSOLINI GM, SEIFERT H, VATOPOULOS A, WALSH T, WOODFORD N, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE):A prospective, multinational study[J]. The Lancet Infectious Diseases, 2017, 17(2):153-163. [7] SAHIN K, TEKIN A, OZDAS S, AKIN D, YAPISLAR H, DILEK AR, SONMEZ E. Evaluation of carbapenem resistance using phenotypic and genotypic techniques in Enterobacteriaceae isolates[J]. Annals of Clinical Microbiology and Antimicrobials, 2015, 14:44. [8] CHEN SD, HU FP, XU XG, LIU Y, WU WH, ZHU DM, WANG HH. High prevalence of KPC-2-type carbapenemase coupled with CTX-M-type extended-spectrum beta-lactamases in carbapenem-resistant Klebsiella pneumoniae in a teaching hospital in China[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(5):2493-2494. [9] CHEN L, MATHEMA B, CHAVDA KD, DELEO FR, BONOMO RA, KREISWIRTH BN. Carbapenemase-producing Klebsiella pneumoniae:molecular and genetic decoding[J]. Trends in Microbiology, 2014, 22(12):686-696.
    [10] 张青, 陈喆, 李克诚, 夏菲, 戴其锋, 李云丰, 钱定良, 潘晓夫, 李向阳. 改良Hodge与Carba NP和mCIM试验快速检测产碳青霉烯酶肺炎克雷伯菌的方法学比较[J]. 中华医院感染学杂志, 2019, 29(10):1441-1446. ZHANG Q, CHEN Z, LI KC, XIA F, DAI QF, LI YF, QIAN DL, PAN XF, LI XY. A comparative study of modified Hodge test, Carba NP test and mCIM test for rapid detection of carbapenemase-producing Klebsiella pneumoniae[J]. Chinese Journal of Nosocomiology, 2019, 29(10):1441-1446 (in Chinese).
    [11] HINDIYEH M, SMOLLEN G, GROSSMAN Z, RAM D, DAVIDSON Y, MILEGUIR F, VAX M, BEN DAVID D, TAL I, RAHAV G, SHAMISS A, MENDELSON E, KELLER N. Rapid detection of blaKPC carbapenemase genes by real-time PCR[J]. Journal of Clinical Microbiology, 2008, 46(9):2879-2883.
    [12] WEIß D, ENGELMANN I, BRAUN SD, MONECKE S, EHRICHT R. A multiplex real-time PCR for the direct, fast, economic and simultaneous detection of the carbapenemase genes blaKPC, blaNDM, blaVIM and blaOXA-48[J]. Journal of Microbiological Methods, 2017, 142:20-26.
    [13] MILILLO M, KWAK YI, SNESRUD E, WATERMAN PE, LESHO E, MCGANN P. Rapid and simultaneous detection of blaKPC and blaNDM by use of multiplex real-time PCR[J]. Journal of Clinical Microbiology, 2013, 51(4):1247-1249.
    [14] MORISSET D, ŠTEBIH D, MILAVEC M, GRUDEN K, ŽEL J. Quantitative analysis of food and feed samples with droplet digital PCR[J]. PLoS One, 2013, 8(5):e62583.
    [15] 詹成, 燕丽, 王琳, 金玉麟, 陈力, 时雨, 王群. 数字PCR技术的发展和应用[J]. 复旦学报(医学版), 2015, 42(6):786-789. ZHAN C, YAN L, WANG L, JIN YL, CHEN L, SHI Y, WANG Q. The development and application of digital PCR[J]. Fudan University Journal of Medical Sciences, 2015, 42(6):786-789 (in Chinese).
    [16] CAVIGLIA GP, ABATE ML, TANDOI F, CIANCIO A, AMOROSO A, SALIZZONI M, SARACCO GM, RIZZETTO M, ROMAGNOLI R, SMEDILE A. Quantitation of HBV cccDNA in anti-HBc-positive liver donors by droplet digital PCR:a new tool to detect occult infection[J]. Journal of Hepatology, 2018, 69(2):301-307.
    [17] VASUDEVAN HN, XU P, SERVELLITA V, MILLER S, LIU LQ, GOPEZ A, CHIU CY, ABATE AR. Digital droplet PCR accurately quantifies SARS-CoV-2 viral load from crude lysate without nucleic acid purification[J]. Scientific Reports, 2021, 11:780.
    [18] STRAIN MC, LADA SM, LUONG T, ROUGHT SE, GIANELLA S, TERRY VH, SPINA CA, WOELK CH, RICHMAN DD. Highly precise measurement of HIV DNA by droplet digital PCR[J]. PLoS One, 2013, 8(4):e55943.
    [19] 王静, 张慧敏, 魏玮, 贾俊涛, 李春喜, 秦燕. SD-PMA-ddPCR检测食品中沙门氏菌的研究[J]. 食品工业科技, 2016, 37(10):67-71. WANG J, ZHANG HM, WEI W, JIA JT, LI CX, QIN Y. Detection of Salmonella cells based on SD-PMA-dd PCR[J]. Science and Technology of Food Industry, 2016, 37(10):67-71 (in Chinese).
    [20] CHO SM, SHIN S, KIM Y, SONG W, HONG SG, JEONG SH, KANG MS, LEE KA. A novel approach for tuberculosis diagnosis using exosomal DNA and droplet digital PCR[J]. Clinical Microbiology and
    Infection, 2020, 26(7):942.e1-942.e5.
    [21] VERHAEGEN B, de REU K, de ZUTTER L, VERSTRAETE K, HEYNDRICKX M, van COILLIE E. Comparison of droplet digital PCR and qPCR for the quantification of shiga toxin-producing Escherichia coli in bovine feces[J]. Toxins, 2016, 8(5):157.
    [22] 袁润余, 曾汉日, 苏娟, 黎薇, 莫艳玲, 陆靖, 柯昌文. 一种通用型肠道病毒微滴式数字PCR检测方法的建立及应用[J]. 华南预防医学, 2019, 45(1):15-20. YUAN RY, ZENG HR, SU J, LI W, MO YL, LU J, KE CW. Establishment and application of universal droplet digital polymerase chain reaction method for quantification of enterovirus[J]. South China Journal of Preventive Medicine, 2019, 45(1):15-20 (in Chinese).
    [23] 董莲华, 张玲, 姜君, 王江南, 王晶, 陈唯军. 大肠杆菌O157:H7微滴数字PCR定量方法的建立[J]. 分析化学, 2015, 43(3):319-324. DONG LH, ZHANG L, JIANG J, WANG JN, WANG J, CHEN WJ. Development of droplet digital polymerase chain reaction for quantifying Escherichia coli O157:H7[J]. Chinese Journal of Analytical Chemistry, 2015, 43(3):319-324 (in Chinese).
    [24] KELLEY K, COSMAN A, BELGRADER P, CHAPMAN B, SULLIVAN DC. Detection of methicillin-resistant Staphylococcus aureus by a duplex droplet digital PCR assay[J]. Journal of Clinical Microbiology, 2013, 51(7):2033-2039.
    [25] RAGUSEO C, GERIN D, POLLASTRO S, ROTOLO C, ROTONDO PR, FARETRA F, DE MICCOLIS ANGELINI RM. A duplex-droplet digital PCR assay for simultaneous quantitative detection of Monilinia fructicola and Monilinia laxa on stone fruits[J]. Frontiers in Microbiology, 2021, 12:747560.
    [26] 王一萍, 段林洁, 曾杰生, 刘华敏, 王哲. 基于双重数字PCR检测副溶血弧菌和鼠伤寒沙门氏菌[J]. 现代食品, 2021(15):176-181, 185. WANG YP, DUAN LJ, ZENG JS, LIU HM, WANG Z. Detection of Vibrio parahaemolyticus and Salmonella typhimurium by duplex droplet digital PCR[J]. Modern Food, 2021(15):176-181, 185 (in Chinese).
    [27] 台萃, 旷代, 张萍, 许杰, 张薇, 罗倩. 肺炎克雷伯菌的芯片式数字PCR检测方法的建立[J]. 微生物学通报, 2022, 49(3):1200-1213. TAI C, KUANG D, ZHANG P, XU J, ZHANG W, LUO Q. Development of a chip digital PCR assay for detection of Klebsiella pneumoniae[J]. Microbiology China, 2022, 49(3):1200-1213 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

台萃,张薇,许杰,欧一新,罗倩. 基于双重芯片式数字PCR快速鉴定KPC型碳青霉烯耐药肺炎克雷伯菌的方法[J]. 微生物学通报, 2023, 50(7): 3058-3072

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-26
  • 录用日期:2022-10-09
  • 在线发布日期: 2023-07-10
  • 出版日期: 2023-07-20
文章二维码