科微学术

微生物学通报

肠外致病性大肠杆菌致病机制及公共卫生学意义
作者:
基金项目:

国家自然科学基金(32172856,31972654);上海市自然科学基金(22ZR1476100)


Pathogenic mechanism and public health significance of extraintestinal pathogenic Escherichia coli (ExPEC)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [102]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    致病性大肠杆菌包括肠致病性大肠杆菌(intestinal pathogenic Escherichia coli, IPEC)和肠外致病性大肠杆菌(extraintestinal pathogenic E. coli, ExPEC),可引起人和动物多种感染性疾病。ExPEC主要在肠道外其他组织脏器定殖并导致感染,包括尿道致病性大肠杆菌(uropathogenic E. coli, UPEC)、新生儿脑膜炎大肠杆菌(newborn meningitis E. coli, NMEC)和禽致病性大肠杆菌(avian pathogenic E. coli, APEC)。人源ExPEC (UPEC和NMEC)主要引起人尿道感染、肾盂肾炎和新生儿脑膜炎,而APEC可导致禽类的大肠杆菌病,造成家禽业的巨大经济损失。另外,乳腺致病性大肠杆菌(mammary pathogenic E. coli, MPEC)和猪源ExPEC可导致奶牛乳房炎、猪的肺炎及急性败血症等病症。研究发现,ExPEC类菌株在基因组结构上很相似,与IPEC本质区别在于致病机制不同,ExPEC具有很多相同的毒力基因和耐药基因,而且动物源ExPEC的毒力基因和耐药基因可通过食用动物传播给人类,危害人类健康,提示动物源ExPEC是人源ExPEC (NMEC和UPEC)的毒力基因贮库,在公共卫生方面具有重要意义。本文对肠外致病性大肠杆菌的危害、毒力因子、致病机制及公共卫生学意义方面进行综述,有助于全面、深入地认识肠外致病性大肠杆菌。

    Abstract:

    Pathogenic Escherichia coli infecting humans and domesticated animals can be classified into intestinal and extraintestinal pathogenic E. coli. Extraintestinal pathogenic E. coli (ExPEC) mainly colonizes tissues and organs outside the intestine and causes a wide range of extraintestinal infections, including uropathogenic E. coli (UPEC), newborn meningitis E. coli (NMEC), and avian pathogenic E. coli (APEC). Human ExPEC (including UPEC and NMEC) is the etiologic agent of urinary tract infections, pyelonephritis, and neonatal meningitis. APEC can lead to avian colibacillosis, causing huge economic losses in the poultry industry. In addition, mammary pathogenic E. coli and porcine ExPEC can bring forth cow mastitis, pig pneumonia, and acute sepsis. Studies have demonstrated that human and animal ExPEC strains have similarities in genomic structure, and they are essentially different from IPEC in pathogenic mechanism. ExPEC strains have a variety of similar virulence genes and resistance genes. The virulence genes and resistance genes in animal ExPEC can be transmitted to humans through edible animals, jeopardizing human health, which indicates that ExPEC strains from animals potentially serve as a reservoir of virulence genes and resistance genes for human ExPEC. ExPEC brings a tremendous burden on public health. Here, we review the hazards, virulence factors, pathogenic mechanism, and public health significance of ExPEC, hoping to enrich the knowledge about them.

    参考文献
    [1] LEE JB, KIM SK, YOON JW. Pathophysiology of enteropathogenic Escherichia coli during a host infection[J]. Journal of Veterinary Science, 2022, 23(2):e28.
    [2] RILEY LW. Distinguishing pathovars from nonpathovars:Escherichia coli[J]. Microbiology Spectrum, 2020, 8(4):10.
    [3] Tapader R, Basu S, Pal A. Secreted proteases:a new insight in the pathogenesis of extraintestinal pathogenic Escherichia coli[J]. International Journal of Medical Microbiology, 2019, 309(3/4):159-168.
    [4] SORA VM, MERONI G, MARTINO PA, SOGGIU A, BONIZZI L, ZECCONI A. Extraintestinal pathogenic Escherichia coli:virulence factors and antibiotic resistance[J]. Pathogens(Basel, Switzerland), 2021, 10(11):1355.
    [5] KATHAYAT D, HELMY YA, DEBLAIS L, SRIVASTAVA V, CLOSS G Jr, KHUPSE R, RAJASHEKARA G. Novel small molecule growth inhibitor affecting bacterial outer membrane reduces extraintestinal pathogenic Escherichia coli (ExPEC) infection in avian model[J]. Microbiology Spectrum, 2021, 9(2):e0000621.
    [6] SUN HY, LI NY, TAN JS, LI H, ZHANG JB, QU LJ, LAMONT SJ. Transcriptional regulation of RIP2 gene by NFIB is associated with cellular immune and inflammatory response to APEC infection[J]. International Journal of Molecular Sciences, 2022, 23(7):3814.
    [7] DEBROY C, FRATAMICO PM, ROBERTS E. Molecular serogrouping of Escherichia coli[J]. Animal Health Research Reviews, 2018, 19(1):1-16.
    [8] LIU B, FUREVI A, PEREPELOV AV, GUO X, CAO HC, WANG Q, REEVES PR, KNIREL YA, WANG L, WIDMALM G. Structure and genetics of Escherichia coli O antigens[J]. FEMS Microbiology Reviews, 2020, 44(6):655-683.
    [9] REHMAN MA, REMPEL H, CARRILLO CD, ZIEBELL K, ALLEN K, MANGES AR, TOPP E, DIARRA MS. Virulence genotype and phenotype of multiple antimicrobial-resistant Escherichia coli isolates from broilers assessed from a "one-health" perspective[J]. Journal of Food Protection, 2022, 85(2):336-354.
    [10] ALFINETE NW, BOLUKAOTO JY, HEINE L, POTGIETER N, BARNARD TG. Virulence and phylogenetic analysis of enteric pathogenic Escherichia coli isolated from children with diarrhoea in South Africa[J]. International Journal of Infectious Diseases:IJID:Official Publication of the International Society for Infectious Diseases, 2022, 114:226-232.
    [11] LU Q, ZHANG WT, LUO L, WANG HL, SHAO HB, ZHANG TF, LUO QP. Genetic diversity and multidrug resistance of phylogenic groups B2 and D in InPEC and ExPEC isolated from chickens in Central China[J]. BMC Microbiology, 2022, 22(1):60.
    [12] NOIE OSKOUIE A, HASANI A, AHANGARZADEH REZAEE M, SOROUSH BAR HAGHI MH, HASANI A, SOLTANI E. A relationship between O-serotype, antibiotic susceptibility and biofilm formation in uropathogenic Escherichia coli[J]. Microbial Drug Resistance(Larchmont, N Y), 2019, 25(6):951-958.
    [13] COOPER TE, TENG C, HOWELL M, TEIXEIRA-PINTO A, JAURE A, WONG G. D-mannose for preventing and treating urinary tract infections[J]. The Cochrane Database of Systematic Reviews, 2022, 8(8):CD013608.
    [14] SHAH C, BARAL R, BARTAULA B, SHRESTHA LB. Virulence factors of uropathogenic Escherichia coli (UPEC) and correlation with antimicrobial resistance[J]. BMC Microbiology, 2019, 19(1):204.
    [15] 许姝. 禽致脑膜炎型大肠杆菌外膜蛋白OmpA突破血脑屏障致病机制的研究[D]. 扬州:扬州大学硕士学位论文, 2020. XU S. Pathogenic mechanism of OmpA from avian pathogenic Escherichia coli for blood-brain barrier breakthrough[D]. Yangzhou:Master's Thesis of Yangzhou University, 2020 (in Chinese).
    [16] WIJETUNGE DS, GONGATI S, DebROY C, KIM KS, COURAUD PO, ROMERO IA, WEKSLER B, KARIYAWASAM S. Characterizing the pathotype of neonatal meningitis causing Escherichia coli (NMEC)[J]. BMC Microbiology, 2015, 15:211.
    [17] Huang SH, Stins MF, Kim KS. Bacterial penetration across the blood-brain barrier during the development of neonatal meningitis[J]. Microbes and Infection, 2000, 2(10):1237-1244.
    [18] EWERS C, JANSSEN T, WIELER LH. Avian pathogenic Escherichia coli (APEC)[J]. Berliner Und Munchener Tierarztliche Wochenschrift, 2003, 116(9/10):381-395.
    [19] AFAYIBO D, ZHU H, ZHANG BB, YAO L, ABDELGAWAD H, TIAN MX, QI JJ, LIU YL, WANG SH. Isolation, molecular characterization, and antibiotic resistance of avian pathogenic Escherichia coli in Eastern China[J]. Veterinary Sciences, 2022, 9(7):319.
    [20] KOUTSIANOS D, ATHANASIOU LV, MOSSIALOS D, FRANZO G, CECCHINATO M, KOUTOULIS KC. Investigation of serotype prevalence of Escherichia coli strains isolated from layer poultry in Greece and interactions with other infectious agents[J]. Veterinary Sciences, 2022, 9(4):152.
    [21] WANG ZH, ZHENG XK, GUO GL, HU ZM, MIAO JF, DONG YY, XU ZJ, ZHOU QG, WEI XK, HAN XG, LIU YQ, ZHANG W. O145 may be emerging as a predominant serogroup of Avian pathogenic Escherichia coli (APEC) in China[J]. Veterinary Microbiology, 2022, 266:109358.
    [22] KATHAYAT D, LOKESH D, RANJIT S, RAJASHEKARA G. Avian pathogenic Escherichia coli (APEC):an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies[J]. Pathogens(Basel, Switzerland), 2021, 10(4):467.
    [23] LEIMBACH A, POEHLEIN A, VOLLMERS J, GÖRLICH D, DANIEL R, DOBRINDT U. No evidence for a bovine mastitis Escherichia coli pathotype[J]. BMC Genomics, 2017, 18(1):359.
    [24] MA JL, CHENG ZX, BAI QK, ZHAO KJ, PAN ZH, YAO HC. Screening virulence factors of porcine extraintestinal pathogenic Escherichia coli (an emerging pathotype) required for optimal growth in swine blood[J]. Transboundary and Emerging Diseases, 2021, 68(4):2005-2016.
    [25] KIM B, KIM JH, LEE Y. Virulence factors associated with Escherichia coli bacteremia and urinary tract infection[J]. Annals of Laboratory Medicine, 2022, 42(2):203-212.
    [26] HABOURIA H, BESSAIAH H, POKHAREL P, DHAKAL S, MARIS S, BURON J, HOULE S, DOZOIS CM. A newly identified group of P-like (PL) Fimbria genes from extraintestinal pathogenic Escherichia coli (ExPEC) encode distinct adhesin subunits and mediate adherence to host cells[J]. Applied and Environmental Microbiology, 2022, 88(13):e0142121.
    [27] ORNDORFF PE, Bloch CA The role of type 1 pili in the pathogenesis of Escherichia coli infections:a short review and some new ideas[J]. Microbial Pathogenesis, 1990, 9(2):75-79.
    [28] CONNELL I, AGACE W, KLEMM P, SCHEMBRI M, MĂRILD S, SVANBORG C. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(18):9827-9832.
    [29] KHAN NA, KIM Y, SHIN S, KIM KS. FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells[J]. Cellular Microbiology, 2007, 9(1):169-178.
    [30] ALEKSANDROWICZ A, KHAN MM, SIDORCZUK K, NOSZKA M, KOLENDA R. Whatever makes them stick-adhesins of avian pathogenic Escherichia coli[J]. Veterinary Microbiology, 2021, 257:109095.
    [31] KIESSLING AR, MALIK A, GOLDMAN A. Recent advances in the understanding of trimeric autotransporter adhesins[J]. Medical Microbiology and Immunology, 2020, 209(3):233-242.
    [32] ALLSOPP LP, BELOIN C, ULETT GC, VALLE J, TOTSIKA M, SHERLOCK O, GHIGO JM, SCHEMBRI MA. Molecular characterization of UpaB and UpaC, two new autotransporter proteins of uropathogenic Escherichia coli CFT073[J]. Infection and Immunity, 2012, 80(1):321-332.
    [33] WANG SH, XIA YJ, DAI JJ, SHI ZY, KOU YH, LI HQ, BAO YL, LU CP. Novel roles for autotransporter adhesin AatA of avian pathogenic Escherichia coli:colonization during infection and cell aggregation[J]. FEMS Immunology & Medical Microbiology, 2011, 63(3):328-338.
    [34] ZHUGE XK, WANG SH, FAN HJ, PAN ZH, REN JL, YI L, MENG QM, YANG XQ, LU CP, DAI JJ. Characterization and functional analysis of AatB, a novel autotransporter adhesin and virulence factor of avian pathogenic Escherichia coli[J]. Infection and Immunity, 2013, 81(7):2437-2447.
    [35] EWERS C, LI GW, WILKING H, KIESSLING S, ALT K, ANTÁO EM, LATURNUS C, DIEHL I, GLODDE S, HOMEIER T, BÖHNKE U, STEINRÜCK H, PHILIPP HC, WIELER LH. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli:how closely related are they?[J]. International Journal of Medical Microbiology:IJMM, 2007, 297(3):163-176.
    [36] ZHAO WD, LIU DX, WEI JY, MIAO ZW, ZHANG K, SU ZK, ZHANG XW, LI Q, FANG WG, QIN XX, SHANG DS, LI B, LI QC, CAO L, KIM KS, CHEN YH. Caspr1 is a host receptor for meningitis-causing Escherichia coli[J]. Nature Communications, 2018, 9(1):2296.
    [37] WANG SH, NIU CL, SHI ZY, XIA YJ, YAQOOB M, DAI JJ, LU CP. Effects of ibeA deletion on virulence and biofilm formation of avian pathogenic Escherichia coli[J]. Infection and Immunity, 2011, 79(1):279-287.
    [38] HUANG SH, CHEN YH, FU Q, STINS M, WANG Y, WASS C, KIM KS. Identification and characterization of an Escherichia coli invasion gene locus, ibeB, required for penetration of brain microvascular endothelial cells[J]. Infection and Immunity, 1999, 67(5):2103-2109.
    [39] WANG SH, SHI ZY, XIA YJ, LI HQ, KOU YH, BAO YI, DAI JJ, LU CP. IbeB is involved in the invasion and pathogenicity of avian pathogenic Escherichia coli[J]. Veterinary Microbiology, 2012, 159(3/4):411-419.
    [40] KRISHNAN S, PRASADARAO NV. Outer membrane protein A and OprF:versatile roles in Gram-negative bacterial infections[J]. The FEBS Journal, 2012, 279(6):919-931.
    [41] SAROWSKA J, FUTOMA-KOLOCH B, JAMA-KMIECIK A, FREJ-MADRZAK M, KSIAZCZYK M, BUGLA-PLOSKONSKA G, CHOROSZY-KROL I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources:recent reports[J]. Gut Pathogens, 2019, 11:10.
    [42] ZHANG FY, LI BQ, DONG HJ, CHEN M, YAO S, LI JW, ZHANG HH, LIU XG, WANG HW, SONG NN, ZHANG KD, DU N, XU SJ, GU LC. YdiV regulates Escherichia coli ferric uptake by manipulating the DNA-binding ability of Fur in a SlyD-dependent manner[J]. Nucleic Acids Research, 2020, 48(17):9571-9588.
    [43] Fontenot CR, Tasnim H, Valdes KA, Popescu CV, Ding H. Ferric uptake regulator (Fur) reversibly binds a[2Fe-2S] cluster to sense intracellular iron homeostasis in Escherichia coli[J]. Journal of Biological Chemistry, 2020, 295(46):15454-15463.
    [44] KHASHEII B, MAHMOODI P, MOHAMMADZADEH A. Siderophores:importance in bacterial pathogenesis and applications in medicine and industry[J]. Microbiological Research, 2021, 250:126790.
    [45] LI CF, PAN DM, LI MY, WANG Y, SONG LT, YU DY, ZUO YX, WANG KN, LIU YQ, WEI ZY, LU ZQ, ZHU LF, SHEN XH. Aerobactin-mediated iron acquisition enhances biofilm formation, oxidative stress resistance, and virulence of Yersinia pseudotuberculosis[J]. Frontiers in Microbiology, 2021, 12:699913.
    [46] WAYNE R, FRICK K, NEILANDS JB. Siderophore protection against colicins M, B, V, and ia in Escherichia coli[J]. Journal of Bacteriology, 1976, 126(1):7-12.
    [47] LING JL, PAN HZ, GAO QQ, XIONG LP, ZHOU YF, ZHANG DB, GAO S, LIU XF. Aerobactin synthesis genes iucA and iucC contribute to the pathogenicity of avian pathogenic Escherichia coli O2 strain E058[J]. PLoS One, 2013, 8(2):e57794.
    [48] ZHAO WW, GAO B, LIU C, ZHANG B, SHAN CL, DENG J, WAN Q, WANG X, ZHAO R, GAO LB, AO PX, XIAO P, GAO H. High pathogenicity island is associated with enhanced autophagy in pathogenic Escherichia coli HPI-infected macrophages[J]. Research in Veterinary Science, 2021, 135:113-120.
    [49] FETHERSTON JD, KIRILLINA O, BOBROV AG, PAULLEY JT, PERRY RD. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague[J]. Infection and Immunity, 2010, 78(5):2045-2052.
    [50] FOLEY SL, HORNE SM, GIDDINGS CW, ROBINSON M, NOLAN LK. Iss from a virulent avian Escherichia coli[J]. Avian Diseases, 2000, 44(1):185-191.
    [51] FAN Y, SUN HM, YANG W, BAI J, LIU P, HUANG M, GUO X, YANG B, FENG L. YbdO promotes the pathogenicity of Escherichia coli K1 by regulating capsule synthesis[J]. International Journal of Molecular Sciences, 2022, 23(10):5543.
    [52] SWIETNICKI W. Secretory system components as potential prophylactic targets for bacterial pathogens[J]. Biomolecules, 2021, 11(6):892.
    [53] EL QAIDI S, SCOTT NE, HAYS MP, GEISBRECHT BV, WATKINS S, HARDWIDGE PR. An intra-bacterial activity for a T3SS effector[J]. Scientific Reports, 2020, 10(1):1073.
    [54] MIYAZAKI J, BA-THEIN W, KUMAO T, AKAZA H, HAYASHI H. Identification of a type III secretion system in uropathogenic Escherichia coli[J]. FEMS Microbiology Letters, 2002, 212(2):221-228.
    [55] Wang SH, Liu X, Xu X, Zhao YC, Yang DH, Han XG, Tian MX, Ding C, Peng DX, Yu SQ. Escherichia coli type Ⅲ secretion system 2 (ETT2) is widely distributed in avian pathogenic Escherichia coli isolates from Eastern China[J]. Epidemiology and Infection, 2016, 144(13):2824-2830.
    [56] SHULMAN A, YAIR Y, BIRAN D, SURA T, OTTO A, GOPHNA U, BECHER D, HECKER M, RON EZ. The Escherichia coli type III secretion system 2 has a global effect on cell surface[J]. mBio, 2018, 9(4):e01070-e01018.
    [57] WANG SH, LIU X, XU X, YANG DH, WANG D, HAN XG, SHI YH, TIAN MX, DING C, PENG DX, YU SQ. Escherichia coli type III secretion system 2 ATPase EivC is involved in the motility and virulence of avian pathogenic Escherichia coli[J]. Frontiers in Microbiology, 2016, 7:1387.
    [58] YAO YF, XIE Y, PERACE D, ZHONG Y, LU J, TAO J, GUO XK, KIM KS. The type III secretion system is involved in the invasion and intracellular survival of Escherichia coli K1 in human brain microvascular endothelial cells[J]. FEMS Microbiology Letters, 2009, 300(1):18-24.
    [59] DAUTIN N. Folding control in the path of type 5 secretion[J]. Toxins, 2021, 13(5):341.
    [60] 周栋梁, 王少辉, 吴晓君, 易正飞, 信素华, 张耀东, 丁铲, 于圣青, 戴建君. V型分泌系统(T5SS)在禽致病性大肠杆菌中的分布及流行情况[J]. 微生物学通报, 2019, 46(11):3076-3083. ZHOU DL, WANG SH, WU XJ, YI ZF, XIN SH, ZHANG YD, DING C, YU SQ, DAI JJ. Distribution and epidemiological analysis of type V secretion system (T5SS) in avian pathogenic Escherichia coli[J]. Microbiology China, 2019, 46(11):3076-3083 (in Chinese).
    [61] ZHUGE XK, PAN ZH, TANG F, MAO X, HU L, WANG SH, XU B, LU CP, FAN HJ, DAI JJ. The effects of upaB deletion and the double/triple deletion of upaB, aatA, and aatB genes on pathogenicity of avian pathogenic Escherichia coli[J]. Applied Microbiology and Biotechnology, 2015, 99(24):10639-10654.
    [62] GUYER DM, HENDERSON IR, NATARO JP, MOBLEY HLT. Identification of sat, an autotransporter toxin produced by uropathogenic Escherichia coli[J]. Molecular Microbiology, 2000, 38(1):53-66.
    [63] ZHAO YC, WANG SH, YANG DH, LIU X, HAN XG, TIAN MX, DING C, LIU ZP, YU SQ. Vacuolating autotransporter toxin affects biological characteristics and pathogenicity of avian pathogenic Escherichia coli[J]. Acta Microbiologica Sinica, 2015, 55(9):1208-1214.
    [64] DOZOIS CM, DHO-MOULIN M, BRÉE A, FAIRBROTHER JM, DESAUTELS C, CURTISS 3rd R. Relationship between the Tsh autotransporter and pathogenicity of avian Escherichia coli and localization and analysis of the Tsh genetic region[J]. Infection and Immunity, 2000, 68(7):4145-4154.
    [65] LU WJ, TAN J, LU H, WANG GY, DONG WQ, WANG CC, LI XD, TAN C. Function of rhs proteins in porcine extraintestinal pathogenic Escherichia coli PCN033[J]. Journal of Microbiology, 2021, 59(9):854-860.
    [66] JOURNET L, CASCALES E. The type VI secretion system in Escherichia coli and related species[J]. EcoSal Plus, 2016, 7(1).
    [67] 刘新, 王少辉, 孟庆美, 韩先干, 许漩, 杨登辉, 丁铲, 彭大新, 于圣青. VI型分泌系统2核心组分VgrG对禽致病性大肠杆菌致病性的影响[J]. 微生物学通报, 2016, 43(9):2106-2113. LIU X, WANG SH, MENG QM, HAN XG, XU X, YANG DH, DING C, PENG DX, YU SQ. Effects of type VI secretion system 2 core component VgrG on the pathogenicity of avian Escherichia coli[J]. Microbiology China, 2016, 43(9):2106-2113 (in Chinese).
    [68] 王栋, 王少辉, 孟庆美, 刘新, 许漩, 杨登辉, 韩先干, 丁铲, 张焕荣, 于圣青. 禽致病性大肠杆菌Ⅵ型分泌系统2 evfC基因缺失株的构建及其生物学特性分析[J]. 中国动物传染病学报, 2016, 24(3):21-26. WANG D, WANG SH, MENG QM, LIU X, XU X, YANG DH, HAN XG, DING C, ZHANG HR, YU SQ. Constrution and biological characteristics analysis of type Ⅵ secretion system 2 core component evfC mutant in avian pathogenic Escherichia coli[J]. Chinese Journal of Animal Infectious Diseases, 2016, 24(3):21-26 (in Chinese).
    [69] WANG SH, DAI JJ, MENG QM, HAN XG, HAN Y, ZHAO YC, YANG DH, DING C, YU SQ. DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli[J]. Frontiers in Microbiology, 2014, 5:588.
    [70] GUGLIETTA A. Recurrent urinary tract infections in women:risk factors, etiology, pathogenesis and prophylaxis[J]. Future Microbiology, 2017, 12:239-246.
    [71] RODRIGUES IC, RODRIGUES SC, DUARTE FV, COSTA PMD, COSTA PMD. The role of outer membrane proteins in UPEC antimicrobial resistance:a systematic review[J]. Membranes, 2022, 12(10):981.
    [72] TAMADONFAR KO, OMATTAGE NS, SPAULDING CN, HULTGREN SJ. Reaching the end of the line:urinary tract infections[J]. Microbiology Spectrum, 2019, 7(3).
    [73] Asadi Karam MR, Habibi M, Bouzari S. Urinary tract infection:pathogenicity, antibiotic resistance and development of effective vaccines against uropathogenic Escherichia coli[J]. Molecular Immunology, 2019, 108:56-67.
    [74] SIMMS AN, MOBLEY HLT. PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli[J]. Infection and Immunity, 2008, 76(11):4833-4841.
    [75] KAPER JB, NATARO JP, MOBLEY HLT. Pathogenic Escherichia coli[J]. Nature Reviews Microbiology, 2004, 2(2):123-140.
    [76] WOOSTER DG, MARUVADA R, BLOM AM, PRASADARAO NV. Logarithmic phase Escherichia coli K1 efficiently avoids serum killing by promoting C4bp-mediated C3b and C4b degradation[J]. Immunology, 2006, 117(4):482-493.
    [77] SELVARAJ SK, PRASADARAO NV. Escherichia coli K1 inhibits proinflammatory cytokine induction in monocytes by preventing NF-κB activation[J]. Journal of Leukocyte Biology, 2005, 78(2):544-554.
    [78] Khan NA, Wang Y, Kim KJ, Chung JW, Wass CA, Kim KS. Cytotoxic necrotizing factor-1 contributes to Escherichia coli K1 invasion of the central nervous system[J]. Journal of Biological Chemistry, 2002, 277(18):15607-15612.
    [79] SMITH JL, FRATAMICO PM, GUNTHER NW. Extraintestinal pathogenic Escherichia coli[J]. Foodborne Pathogens and Disease, 2007, 4(2):134-163.
    [80] HOMEIER T, SEMMLER T, WIELER LH, EWERS C. The GimA locus of extraintestinal pathogenic E. coli:does reductive evolution correlate with habitat and pathotype?[J]. PLoS One, 2010, 5(5):e10877.
    [81] STEHLING EG, CAMPOS TA, BROCCHI M, de CARVALHO AZEVEDO VA, da SILVEIRA WD. The expression of plasmid mediated afimbrial adhesin genes in an avian septicemic Escherichia coli strain[J]. Journal of Veterinary Science, 2008, 9(1):75-83.
    [82] HU JG, AFAYIBO D, ZHANG BB, ZHU H, YAO L, GUO WQ, WANG XY, WANG ZY, WANG D, PENG HH, TIAN MX, QI JJ, WANG SH. Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC)[J]. Frontiers in Microbiology, 2022, 13:1049391.
    [83] CHRISTENSEN H, BACHMEIER J, BISGAARD M. New strategies to prevent and control avian pathogenic Escherichia coli (APEC)[J]. Avian Pathology, 2021, 50(5):370-381.
    [84] KIM KS. Strategy of Escherichia coli for crossing the blood-brain barrier[J]. The Journal of Infectious Diseases, 2002, 186(Supplement_2):S220-S224.
    [85] 吴晓晓, 俞进, 万新军, 段真真, 贾毅飞. 细菌性奶牛乳房炎的防控[J]. 养殖与饲料, 2022, 21(9):116-118. WU XX, YU J, WAN XJ, DUAN ZZ, JIA YF. Prevention and control of bacterial mastitis in dairy cows[J]. Animals Breeding and Feed, 2022, 21(9):116-118 (in Chinese).
    [86] RAINARD P, RIOLLET C. Innate immunity of the bovine mammary gland[J]. Veterinary Research, 2006, 37(3):369-400.
    [87] HU J, WANG DF, HUANG XF, YANG Y, LIAN X, WANG WJ, XU X, LIU YL. Effects of TolC on the pathogenicity of porcine extraintestinal pathogenic Escherichia coli[J]. Frontiers in Immunology, 2022, 13:929740.
    [88] BIRAN D, RON EZ. Extraintestinal pathogenic Escherichia coli[J]. Current Topics in Microbiology and Immunology, 2018, 416:149-161.
    [89] TAN C, TANG XB, ZHANG X, DING Y, ZHAO ZQ, WU B, CAI XW, LIU ZF, HE QG, CHEN HC. Serotypes and virulence genes of extraintestinal pathogenic Escherichia coli isolates from diseased pigs in China[J]. Veterinary Journal (London, England:1997), 2012, 192(3):483-488.
    [90] JØRGENSEN SL, STEGGER M, KUDIRKIENE E, LILJE B, POULSEN LL, RONCO T, PIRES dos SANTOS T, KIIL K, BISGAARD M, PEDERSEN K, NOLAN LK, PRICE LB, OLSEN RH, ANDERSEN PS, CHRISTENSEN H. Diversity and population overlap between avian and human Escherichia coli belonging to sequence type 95[J]. mSphere, 2019, 4(1):e00333-e00318.
    [91] MEENA PR, PRIYANKA P, SINGH AP. Extraintestinal pathogenic Escherichia coli (ExPEC) reservoirs, and antibiotics resistance trends:a one-health surveillance for risk analysis from farm-to-fork[J]. Letters in Applied Microbiology, 2023, 76(1):ovac016.
    [92] ZhuGe XK, JIANG JW, PAN ZH, HU L, WANG SH, WANG HJ, LEUNG FC, DAI JJ, FAN HJ. Comparative genomic analysis shows that avian pathogenic Escherichia coli isolate IMT5155 (O2:K1:H5; ST complex 95, ST140) shares close relationship with ST95 APEC O1:K1 and human ExPEC O18:K1 strains[J]. PLoS One, 2014, 9(11):e112048.
    [93] ZHANG DX, ZHANG ZH, HUANG CC, GAO X, WANG Z, LIU YC, TIAN CL, HONG W, NIU SL, LIU MC. The phylogenetic group, antimicrobial susceptibility, and virulence genes of Escherichia coli from clinical bovine mastitis[J]. Journal of Dairy Science, 2018, 101(1):572-580.
    [94] 周磊, 李泽伟, 孙起荣, 邢刚, 魏建忠, 孙裴, 刘雪兰, 李郁. 54株猪源肠外致病性大肠杆菌血清型、系统进化群和基因型[J]. 微生物学通报, 2021, 48(4):1182-1194. ZHOU L, LI ZW, SUN QR, XING G, WEI JZ, SUN P, LIU XL, LI Y. Serotypes, phylogenetic groups and genotypes of 54 extraintestinal pathogenic Escherichia coli from pig[J]. Microbiology China, 2021, 48(4):1182-1194 (in Chinese).
    [95] JAKOBSEN L, GARNEAU P, BRUANT G, HAREL J, OLSEN SS, PORSBO LJ, HAMMERUM AM, FRIMODT-MØLLER N. Is Escherichia coli urinary tract infection a zoonosis? Proof of direct link with production animals and meat[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2012, 31(6):1121-1129.
    [96] BUBERG ML, MO SS, SEKSE C, SUNDE M, WASTESON Y, WITSØ IL. Population structure and uropathogenic potential of extended-spectrum cephalosporin-resistant Escherichia coli from retail chicken meat[J]. BMC Microbiology, 2021, 21(1):94.
    [97] LONGHI C, MAURIZI L, CONTE AL, MARAZZATO M, COMANDUCCI A, NICOLETTI M, ZAGAGLIA C. Extraintestinal pathogenic Escherichia coli:beta-lactam antibiotic and heavy metal resistance[J]. Antibiotics (Basel, Switzerland), 2022, 11(3):328.
    [98] Cheng P, Yang YQ, Zhang JC, Li FL, Li XT, Liu HB, Ishfaq M, Xu GF, Zhang XY. Antimicrobial resistance and virulence profiles of mcr-1-positive Escherichia coli isolated from swine farms in Heilongjiang Province of China[J]. Journal of Food Protection, 2020, 83(12):2209-2215.
    [99] ZOU M, MA PP, LIU WS, LIANG X, LI XY, LI YZ, LIU BT. Prevalence and antibiotic resistance characteristics of extraintestinal pathogenic Escherichia coli among healthy chickens from farms and live poultry markets in China[J]. Animals:an Open Access Journal from MDPI, 2021, 11(4):1112.
    [100] POIREL L, MADEC JY, LUPO A, SCHINK AK, KIEFFER N, NORDMANN P, SCHWARZ S. Antimicrobial resistance in Escherichia coli[J]. Microbiology Spectrum, 2018, 6(4):559-566.
    [101] HUIJBERS PMC, GRAAT EAM, HAENEN APJ, van SANTEN MG, van ESSEN-ZANDBERGEN A, MEVIUS DJ, van DUIJKEREN E, van HOEK AHAM. Extended-spectrum and AmpC β-lactamase-producing Escherichia coli in broilers and people living and/or working on broiler farms:prevalence, risk factors and molecular characteristics[J]. Journal of Antimicrobial Chemotherapy, 2014, 69(10):2669-2675.
    [102] LIU YY, WANG Y, WALSH TR, YI LX, ZHANG R, SPENCER J, DOI Y, TIAN GB, DONG BL, HUANG XH, YU LF, GU DX, REN HW, CHEN XJ, LV LC, HE DD, ZHOU HW, LIANG ZS, LIU JH, SHEN JZ. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China:a microbiological and molecular biological study[J]. The Lancet Infectious Diseases, 2016, 16(2):161-168.
    相似文献
    引证文献
引用本文

王欣宇,胡剑刚,张贝贝,郭伟奇,王少辉. 肠外致病性大肠杆菌致病机制及公共卫生学意义[J]. 微生物学通报, 2023, 50(7): 3073-3087

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-09
  • 录用日期:2023-03-17
  • 在线发布日期: 2023-07-10
  • 出版日期: 2023-07-20
文章二维码