科微学术

微生物学通报

一株西瓜枯萎病生防菌Bacillus methylotrophicus的筛选、鉴定及抑菌物质分析
作者:
  • 余红凤

    余红凤

    齐齐哈尔大学生命科学与农林学院, 黑龙江 齐齐哈尔 161006;黑龙江省农业微生物制剂产业化技术创新中心, 黑龙江 齐齐哈尔 161006;黑龙江省农用生物制剂产业化协同创新中心, 黑龙江 齐齐哈尔 161006
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张琳

    张琳

    齐齐哈尔大学生命科学与农林学院, 黑龙江 齐齐哈尔 161006;黑龙江省农业微生物制剂产业化技术创新中心, 黑龙江 齐齐哈尔 161006;黑龙江省农用生物制剂产业化协同创新中心, 黑龙江 齐齐哈尔 161006
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 毕钰

    毕钰

    齐齐哈尔大学生命科学与农林学院, 黑龙江 齐齐哈尔 161006;黑龙江省农业微生物制剂产业化技术创新中心, 黑龙江 齐齐哈尔 161006;黑龙江省农用生物制剂产业化协同创新中心, 黑龙江 齐齐哈尔 161006
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王志刚

    王志刚

    齐齐哈尔大学生命科学与农林学院, 黑龙江 齐齐哈尔 161006;黑龙江省农业微生物制剂产业化技术创新中心, 黑龙江 齐齐哈尔 161006;黑龙江省农用生物制剂产业化协同创新中心, 黑龙江 齐齐哈尔 161006
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 徐伟慧

    徐伟慧

    齐齐哈尔大学生命科学与农林学院, 黑龙江 齐齐哈尔 161006;黑龙江省农业微生物制剂产业化技术创新中心, 黑龙江 齐齐哈尔 161006;黑龙江省农用生物制剂产业化协同创新中心, 黑龙江 齐齐哈尔 161006
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 黄欣冉

    黄欣冉

    齐齐哈尔大学生命科学与农林学院, 黑龙江 齐齐哈尔 161006;黑龙江省农业微生物制剂产业化技术创新中心, 黑龙江 齐齐哈尔 161006;黑龙江省农用生物制剂产业化协同创新中心, 黑龙江 齐齐哈尔 161006
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郭嘉仪

    郭嘉仪

    齐齐哈尔大学生命科学与农林学院, 黑龙江 齐齐哈尔 161006;黑龙江省农业微生物制剂产业化技术创新中心, 黑龙江 齐齐哈尔 161006;黑龙江省农用生物制剂产业化协同创新中心, 黑龙江 齐齐哈尔 161006
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

齐齐哈尔市食品产业研究院项目(SXSP-2021004);黑龙江省高校基本科研业务费项目(145209808);齐齐哈尔大学研究生创新项目(YJSCX2022020)


Screening, identification, and antifungal substances of an antagonistic strain Bacillus methylotrophicus against Fusarium oxysporum f. sp. niveum
Author:
  • YU Hongfeng

    YU Hongfeng

    College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Collaborative Innovation Center of Agrobiological Preparation Industrialization, Qiqihar 161006, Heilongjiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Lin

    ZHANG Lin

    College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Collaborative Innovation Center of Agrobiological Preparation Industrialization, Qiqihar 161006, Heilongjiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • BI Yu

    BI Yu

    College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Collaborative Innovation Center of Agrobiological Preparation Industrialization, Qiqihar 161006, Heilongjiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Zhigang

    WANG Zhigang

    College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Collaborative Innovation Center of Agrobiological Preparation Industrialization, Qiqihar 161006, Heilongjiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Weihui

    XU Weihui

    College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Collaborative Innovation Center of Agrobiological Preparation Industrialization, Qiqihar 161006, Heilongjiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Xinran

    HUANG Xinran

    College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Collaborative Innovation Center of Agrobiological Preparation Industrialization, Qiqihar 161006, Heilongjiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Jiayi

    GUO Jiayi

    College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, Heilongjiang, China;Heilongjiang Provincial Collaborative Innovation Center of Agrobiological Preparation Industrialization, Qiqihar 161006, Heilongjiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】西瓜专化型尖孢镰刀菌(Fusarium oxysporum f.sp.niveum,Fon)是西瓜枯萎病的致病菌,严重威胁连作西瓜的生产。【目的】筛选拮抗西瓜枯萎病菌的菌株并推测其无菌上清液(cell-free supernatant,CFS)的抑菌成分,为其在农业生产中的应用提供理论依据。【方法】利用平板对峙法筛选拮抗Fon的菌株,通过盆栽试验验证其抑制西瓜枯萎病的能力,并通过扫描电镜、共聚焦显微镜观察和抗氧化酶活性测定等方法研究Fon暴露在拮抗菌株次级代谢物下孢子形态的变化、膜的完整性和造成的氧化损伤,通过二代Illumina Hiseq联合三代PacBio Sequel测序平台进行全基因组测序、LC-MS非靶代谢组学、超高液相色谱系统和高分辨率质谱(UHPLC-ESI-MS/MS),明确拮抗菌株次级代谢物中的抑菌功能物质。【结果】从健康西瓜根际土筛选到拮抗Fon的一株优良菌株J4,盆栽试验表明其对西瓜枯萎病的防治效果为72.6%。经全基因组学鉴定为Bacillus methylotrophicus J4,该菌株可产蛋白酶、淀粉酶、葡聚糖酶和纤维素酶并有分泌铁载体的能力,其衰亡期无菌上清液对Fon菌丝生长抑制率为71.87%,菌株J4的CFS使Fon孢子表面凹陷,破坏其细胞膜的完整性,造成细胞死亡。菌株J4诱导Fon菌丝体活性氧(reactive oxygen species,ROS)的积累;菌株J4的CFS引起Fon菌丝超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、过氧化物酶(peroxidase,POD)、谷胱甘肽还原酶(glutathione reductase,GR)活性,以及可溶性蛋白和丙二醛(malondialdehyde,MDA)含量的显著升高。该菌株基因组中含有13个抑菌功能的次级代谢产物合成基因簇,菌株J4的CFS中含有3种多肽化合物,并且这3种脂肽具有抑制Fon菌丝生长的能力,推测菌株J4上清液中的抑菌功能物质是伊枯草菌素A (iturin A)、丰原素(fengycin)和表面活性素(surfactin)。【结论】菌株J4对西瓜枯萎病有较强的防效,在西瓜枯萎病生物防治中具有广泛的应用前景。

    Abstract:

    [Background] Fusarium oxysporum f. sp. niveum (Fon) is the causal agent of watermelon wilt, seriously threatening the production of watermelon in continuous cropping. [Objective] To screen out the antagonistic strain against Fon and identify the antifungal components in the cell-free supernatant (CFS), providing a theoretical basis for application of the strain in agricultural production. [Methods] Plate confrontation was employed to screen the antagonistic strain against Fon. Pot experiments were conducted to verify the control effect of the antagonistic strain on watermelon wilt. Scanning electron microscopy and confocal microscopy were employed to observe the conidial morphology and membrane integrity of Fon. The activities of antioxidant enzymes were determined to evaluate the oxidative damage. Whole genome sequencing through second-generation Illumina Hiseq combined with third-generation PacBio Sequel sequencing platform, LC-MS-based non-target metabolomics, and ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) were employed to identify the antifungal substances in the secondary metabolites of the strain. [Results] An antagonistic strain J4 was screened out from the rhizosphere soil of healthy watermelon. The pot experiments showed that its control effect against watermelon wilt was 72.6%. The strain was identified as Bacillus methylotrophicus J4 by whole genome sequencing, and it could produce protease, amylase, glucanase, cellulose, and siderophores. The CFS of J4 in the decline stage presented the inhibition rate of 71.87% on the growth of Fon. Moreover, it led to the collapsing of Fon spore surface, destroyed the integrity of the cell membrane, and caused cell death. Strain J4 induced the accumulation of reactive oxygen species (ROS) in the mycelia of Fon. The CFS of strain J4 significantly increased the activities of superoxide dismutase, catalase, peroxidase, and glutathione reductase and the content of soluble protein and malondialdehyde in the mycelia of Fon. The genome of strain J4 carried 13 gene clusters for the synthesis of secondary metabolites with antimicrobial functions. The CFS of strain J4 contained three peptides, which were proved to inhibit the growth of Fon. It was hypothesized that the antifungal functional substances in the CFS of strain J4 were iturin A, fengycin, and surfactin. [Conclusion] Strain J4 had a strong control effect on watermelon wilt and could be used to control watermelon wilt in the future.

    参考文献
    [1] HERMAN MA, NAULT BA, SMART CD. Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York[J]. Crop Protection, 2008, 27(6):996-1002.
    [2] SAIRANEN I, NOVÁK O, PĚNČÍK A, IKEDA Y, JONES B, SANDBERG G, LJUNG K. Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis[J]. The Plant Cell, 2012, 24(12):4907-4916.
    [3] NAUTIYAL CS, SRIVASTAVA S, CHAUHAN PS, SEEM K, MISHRA A, SOPORY SK. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress[J]. Plant Physiology and Biochemistry:PPB, 2013, 66:1-9.
    [4] CHOWDHURY SP, HARTMANN A, GAO XW, BORRISS R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42-a review[J]. Frontiers in Microbiology, 2015, 6:780.
    [5] LI SP, XIAO QL, YANG HJ, HUANG JG, LI Y. Characterization of a new Bacillus velezensis as a powerful biocontrol agent against tomato gray mold[J]. Pesticide Biochemistry and Physiology, 2022, 187:105199.
    [6] RADHAKRISHNAN R, SATHASIVAM R, RENGARAJAN R, HASHEM A, ALLAH EFA. Isolation and identification of charcoal rot disease causing agent in sesame (Sesamum indicum L.) and their growth inhibition by Bacillus methylotrophicus KE2[J]. Pakistan Journal of Botany, 2017, 49(6):2495-2497.
    [7] CARVALHAIS LC, DENNIS PG, FAN B, FEDOSEYENKO D, KIERUL K, BECKER A, von WIREN N, BORRISS R. Linking plant nutritional status to plant-microbe interactions[J]. PLoS One, 2013, 8(7):e68555.
    [8] RAMÍREZ V, MARTÍNEZ J, BUSTILLOS-CRISTALES MDR, CATAÑEDA-ANTONIO D, MUNIVE JA, BAEZ A. Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum[J]. Journal of Applied Microbiology, 2022, 132(1):470-482.
    [9] LI Q, HARVEY LM, MCNEIL B. Oxidative stress in industrial fungi[J]. Critical Reviews in Biotechnology, 2009, 29(3):199-213.
    [10] MASSAWE VC, HANIF A, FARZAND A, MBURU DK, OCHOLA SO, WU LM, TAHIR HAS, GU Q, WU HJ, GAO XW. Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum[J]. Phytopathology, 2018, 108(12):1373-1385.
    [11] TSIKAS D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples:analytical and biological challenges[J]. Analytical Biochemistry, 2017, 524:13-30.
    [12] GU Q, YANG Y, YUAN QM, SHI GM, WU LM, LOU ZY, HUO R, WU HJ, BORRISS R, GAO XW. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum[J]. Applied and Environmental Microbiology, 2017, 83(19):e01075-e01017.
    [13] RABBEE MF, ALI MS, CHOI J, HWANG BS, JEONG SC, BAEK KH. Bacillus velezensis:a valuable member of bioactive molecules within plant microbiomes[J]. Molecules (Basel, Switzerland), 2019, 24(6):1046.
    [14] BELBAHRI L, CHENARI BOUKET A, REKIK I, ALENEZI FN, VALLAT A, LUPTAKOVA L, PETROVOVA E, OSZAKO T, CHERRAD S, VACHER S, RATEB ME. Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a secondary metabolites rich accessory genome[J]. Frontiers in Microbiology, 2017, 8:1438.
    [15] TUMBARSKI Y, DESEVA I, MIHAYLOVA D, STOYANOVA M, KRASTEV L, NIKOLOVA R, YANAKIEVA V, IVANOV I. Isolation, characterization and amino acid composition of a bacteriocin produced by Bacillus methylotrophicus strain BM47[J]. Food Technology and Biotechnology, 2018, 56(4):546-552.
    [16] SHAN HY, ZHAO MM, CHEN DX, CHENG JL, LI J, FENG ZZ, MA ZY, AN DR. Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79[J]. Crop Protection, 2013, 44:29-37.
    [17] 杨杰. 枯草杆菌fmb60的NRPS和Ⅰ型PKS基因簇代谢产物发掘及其生物活性研究[D]. 南京:南京农业大学博士学位论文, 2017. Yang J. Genomics-driven discovery of NRPS and Type I PKS metabolites from Bacillus subtilis fmb60 and their bioactivity[D]. Nanjing:Doctoral Dissertation of Nanjing Agricultural University, 2017(in Chinese).
    [18] 赵燕妮, 余瑞, 刘欢, 王永波. 功能代谢组学技术在微生物研究中的应用[J]. 微生物学报, 2023, 63(8):3009-3025. Zhao YN, Yu R, Liu H, Wang YB. Application of functional metabolomics in microbiological studies[J]. Acta Microbiologica Sinica, 2023, 63(8):3009-3025(in Chinese).
    [19] 李苏冉, 李雪, 冯佳霖, 赵江琦, 黄磊. 生防菌解淀粉芽孢杆菌SQ-2全基因组测序及生物信息学分析[J]. 微生物学通报, 2023, 50(3):1073-1097. LI SR, LI X, FENG JL, ZHAO JQ, HUANG L. Whole genome sequencing and genomics analysis of Bacillus amyloliquefaciens SQ-2 with biocontrol activity[J]. Microbiology China, 2023, 50(3):1073-1097(in Chinese).
    [20] 徐伟慧, 王恒煦, 赵井明, 王志刚, 王可昕. 西瓜枯萎病拮抗菌筛选及其拮抗性能研究[J]. 农业生物技术学报, 2019, 27(12):2238-2247. XU WH, WANG HX, ZHAO JM, WANG ZG, WANG KX. Antagonistic properties screening of antagonistic bacteria against Fusarium wilt of watermelon (Citrullus lanatus) and its antagonistic properties[J]. Journal of Agricultural Biotechnology, 2019, 27(12):2238-2247(in Chinese).
    [21] 刘海洋, 王琦, 王伟, 张仁福, 韩万里, 姚举. 拮抗菌AL7的鉴定及其生防特性的初步研究[J]. 植物保护, 2018, 44(2):53-60. LIU HY, WANG Q, WANG W, ZHANG RF, HAN WL, YAO J. Species identification and biocontrol characteristics of antagonistic bacterium AL7[J]. Plant Protection, 2018, 44(2):53-60(in Chinese).
    [22] 荣良燕, 姚拓, 赵桂琴, 柴强, 席琳乔, 王小利. 产铁载体PGPR菌筛选及其对病原菌的拮抗作用[J]. 植物保护, 2011, 37(1):59-64. RONG LY, YAO T, ZHAO GQ, CHAI Q, XI LQ, WANG XL. Screening of siderophore-producing PGPR bacteria and their antagonism against the pathogens[J]. Plant Protection, 2011, 37(1):59-64(in Chinese).
    [23] 徐伟慧, 吴凤芝, 王志刚, 孙国雁, 徐红红. 连作西瓜光合特性及抗病性对小麦伴生的响应[J]. 中国生态农业学报, 2014, 22(6):655-660. XU WH, WU FZ, WANG ZG, SUN GY, XU HH. Response of photosynthetic characteristics and disease resistance of watermelon to companion with wheat[J]. Chinese Journal of Eco-Agriculture, 2014, 22(6):655-660(in Chinese).
    [24] WANG KX, XU WH, CHEN ZN, HU JL, LUO SQ AND WANG ZG. Complete genome sequence of Bacillus velezensis WB, an isolate from the watermelon rhizosphere:genomic insights into its antifungal effects[J]. Journal of Global Antimicrobial Resistance, 2022, 30:442-444.
    [25] WANG KX, WANG ZG, XU WH. Induced oxidative equilibrium damage and reduced toxin synthesis in Fusarium oxysporum f. sp. niveum by secondary metabolites from Bacillus velezensis WB[J]. FEMS Microbiology Ecology, 2022, 98(8):fiac080.
    [26] WANG HX, WANG ZG, XU WH, WANG KX. Comprehensive transcriptomic and proteomic analyses identify intracellular targets for myriocin to induce Fusarium oxysporum f. sp. niveum cell death[J]. Microbial Cell Factories, 2021, 20(1):1-15.
    [27] BENITEZ LB, VELHO RV, LISBOA MP, da COSTA MEDINA LF, BRANDELLI A. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006[J]. The Journal of Microbiology, 2010, 48(6):791-797.
    [28] SUN M, MENG XG, PENG TL, HU XH. Effect of Bacillus methylotrophicus on tomato plug seedling[J]. Horticulturae, 2022, 8(10):947.
    [29] NI J, YU L, LI F, LI YL, ZHANG MF, DENG YP, LIU XL. Macrolactin R from Bacillus siamensis and its antifungal activity against Botrytis cinerea[J]. World Journal of Microbiology & Biotechnology, 2023, 39(5):117.
    [30] 项佳胤, 商桑, 田丽波. 贝莱斯芽孢杆菌N46对苦瓜白粉病的防治机理研究[J]. 热带作物学报, 2023. https://kns.cnki.net/kcms2/detail/46.1019.S.20230629.1530.002.html. XIANG JY, SHANG S, TIAN LB. Study on the control mechanism of Bacillus velezensis N4 against powdery mildew of bitter melon[J]. Chinese Journal of Tropical Crops, 2023. https://kns.cnki.net/kcms2/detail/46.1019.S.20230629.1530.002.html (in Chinese).
    [31] 刘龙, 荣华, 郑童童, 马俊杰, 郭庆元. 莫海威芽孢杆菌对梨腐烂病的抑菌防病效果[J]. 中国农学通报, 2022, 38(18):140-146. LIU L, RONG H, ZHENG TT, MA JJ, GUO QY. Antifungal and control effect of Bacillus mojavensis on pear Valsa canker[J]. Chinese Agricultural Science Bulletin, 2022, 38(18):140-146(in Chinese).
    [32] VENICE F, PINTO MC, NOVERO M, GHIGNONE S, SALVIOLI A, BONFANTE P. Gigaspora margarita with and without its endobacterium shows adaptive responses to oxidative stress[J]. Mycorrhiza, 2017, 27(8):747-759.
    [33] KAZEK M, KACZMAREK A, WROŃSKA AK, BOGUŚ MI. Conidiobolus coronatus induces oxidative stress and autophagy response in Galleria mellonella larvae[J]. PLoS One, 2020, 15(2):e0228407.
    [34] FARZAND A, MOOSA A, ZUBAIR M, KHAN AR, MASSAWE VC, TAHIR HAS, SHEIKH TMM, AYAZ M, GAO XW. Suppression of Sclerotinia sclerotiorum by the induction of systemic resistance and regulation of antioxidant pathways in tomato using fengycin produced by Bacillus amyloliquefaciens FZB42[J]. Biomolecules, 2019, 9(10):613.
    [35] 燕霞飞, 郑长英, 李凯月, 万方浩, 王俊平. 球孢白僵菌在重金属Cd(Ⅱ)作用下抗氧化酶系变化[J]. 环境昆虫学报, 2017, 39(5):992-999. YAN XF, ZHENG CY, LI KY, WAN FH, WANG JP. The effect of Cd(Ⅱ) on antioxidant enzymes cctivity of Beauveria bassiana[J]. Journal of Environmental Entomology, 2017, 39(5):992-999(in Chinese).
    [36] SATO I, SHIMATANI K, FUJITA K, ABE T, SHIMIZU M, FUJII T, HOSHINO T, TAKAYA N. Glutathione reductase/glutathione is responsible for cytotoxic elemental sulfur tolerance via polysulfide shuttle in fungi[J]. The Journal of Biological Chemistry, 2011, 286(23):20283-20291.
    [37] YIN DC, QI JY. The physiological response of Ectomycorrhizal fungus Lepista sordida to Cd and Cu stress[J]. PeerJ, 2021, 9:e11115.
    [38] HALIFU S, DENG X, SONG XS, SONG RQ, LIANG X. Inhibitory mechanism of Trichoderma virens ZT05 on Rhizoctonia solani[J]. Plants (Basel, Switzerland), 2020, 9(7):912.
    [39] LI L, SHI YH, CHENG XR, XIA SF, CHESEREK MJ, LE GW. A cell-penetrating peptide analogue, P7, exerts antimicrobial activity against Escherichia coli ATCC25922 via penetrating cell membrane and targeting intracellular DNA[J]. Food Chemistry, 2015, 166:231-239.
    [40] LI Y, XIANG Q, ZHANG QH, HUANG YD, SU ZJ. Overview on the recent study of antimicrobial peptides:origins, functions, relative mechanisms and application[J]. Peptides, 2012, 37(2):207-215.
    [41] CHEN L, HENG JY, QIN SY, BIAN K. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight[J]. PLoS One, 2018, 13(6):e0198560.
    [42] KIM YS, LEE Y, CHEON W, PARK J, KWON HT, BALARAJU K, KIM J, YOON YJ, JEON Y. Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides[J]. Scientific Reports, 2021, 11:626.
    [43] ZERIOUH H, ROMERO D, GARCÍA-GUTIÉRREZ L, CAZORLA FM, de VICENTE A, PÉREZ-GARCÍA A. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits[J]. Molecular Plant-Microbe Interactions, 2011, 24(12):1540-1552.
    [44] SHAN MY, MENG FQ, ZHOU LB, LU FX, BIE XM, ZHAO HZ, LU ZX. Surfactin inhibits the growth of Propionibacterium acnes by destroying the cell wall and membrane[J]. Letters in Applied Microbiology, 2021, 73(6):684-693.
    [45] HANIF A, ZHANG F, LI PP, LI CC, XU YJ, ZUBAIR M, ZHANG MX, JIA DD, ZHAO XZ, LIANG JG, MAJID T, YAN J, FARZAND A, WU HJ, GU Q, GAO XW. Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis[J]. Toxins, 2019, 11(5):295.
    [46] WANG YY, ZHANG CY, LIANG J, WU LF, GAO WB, JIANG JZ. Iturin A extracted from Bacillus subtilis WL-2 affects Phytophthora infestans via cell structure disruption, oxidative stress, and energy supply dysfunction[J]. Frontiers in Microbiology, 2020, 11:536083.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

余红凤,张琳,毕钰,王志刚,徐伟慧,黄欣冉,郭嘉仪. 一株西瓜枯萎病生防菌Bacillus methylotrophicus的筛选、鉴定及抑菌物质分析[J]. 微生物学通报, 2024, 51(2): 534-553

复制
分享
文章指标
  • 点击次数:344
  • 下载次数: 1041
  • HTML阅读次数: 721
  • 引用次数: 0
历史
  • 收稿日期:2023-08-01
  • 录用日期:2023-08-23
  • 在线发布日期: 2024-01-23
  • 出版日期: 2024-02-20
文章二维码