科微学术

微生物学通报

高耐受性酿酒酵母的适应性驯化选育与发酵
作者:
基金项目:

湖南省自然科学基金青年基金(2022JJ40210);湖南省农业科技创新项目(2022CX119)


A Saccharomyces cerevisiae strain with high tolerance: breeding by gradual acclimation and fermentation performance
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】酿酒酵母(Saccharomyces cerevisiae)是葡萄糖发酵产乙醇的重要菌株,然而在生物乙醇发酵过程中,常会出现高乙醇浓度、高糖、高温和低pH等胁迫环境,从而影响酿酒酵母菌株的发酵效果。【目的】获得乙醇耐受性及高温、高糖等相关耐受性能提高的优良菌株,并讨论驯化菌株和出发菌株的高糖发酵乙醇性能。【方法】采用高浓度乙醇胁迫环境逐步驯化实验室保存的酿酒酵母菌株(CICC 33068),通过对比驯化菌株和出发菌株在高浓度乙醇、高糖、高温和低pH环境中的生长曲线及高糖发酵乙醇性能,探讨驯化菌株的高耐受特性。【结果】相较于出发菌株,获得的驯化菌株可在含13%乙醇的液体培养基中生长,并保持完整的细胞生长周期和细胞形态,能耐受葡萄糖浓度450 g/L、温度45 ℃和pH 3.5。该驯化菌株能够在糖浓度450 g/L、45 ℃和pH 3.5的环境下生长,糖醇转化率可达79.22%,较出发菌株提高7.72%,通过检测相关基因表达发现,该菌株耐受性能提高与胞内海藻糖合成代谢上调相关。【结论】获得了具有耐受高浓度乙醇、高糖、高温和低pH特性的优良酿酒酵母菌株,该菌株通过上调菌株胞内海藻糖合成代谢提高耐受性能,使其发酵高浓度葡萄糖的能力显著高于出发菌株,可为后续其他菌株的驯化筛选提供研究基础。

    Abstract:

    [Background] Saccharomyces cerevisiae is an important microorganism in the fermentation of glucose to yield ethanol. However, high concentrations of ethanol and sugar, high temperature, low pH, and other highly stressful conditions often occur during the fermentation, which affect the fermentation efficiency of S. cerevisiae. [Objective] To obtain a S. cerevisiae strain with improved tolerance to high concentrations of ethanol and sugar and high temperatures and evaluate the fermentation performance of the domesticated strain in the case of high sugar levels. [Methods] A laboratory-preserved strain (CICC 33068) of S. cerevisiae was gradually acclimated to an environment of highly concentrated ethanol. The domesticated strain was compared with the original strain in terms of the growth curves and fermentation performance under high concentrations of ethanol and sugar, high temperature, and low pH for the evaluation of its tolerance. [Results] Compared with the original strain, the domesticated strain displayed a complete growth cycle and normal morphology in the broth medium with 13% ethanol. The domesticated strain was capable of growing in the presence of 450 g/L glucose and at 45 ℃ and pH 3.5, with the glucose-to-ethanol conversion rate of 79.22%, which was 7.72% higher than that of the original strain. The gene expression levels indicated that the improved tolerance was associated with the up-regulation of intracellular trehalose synthesis pathway. [Conclusion] A S. cerevisiae strain with improved tolerance to high concentrations of ethanol and sugar and high temperatures and low pH was obtained by environmental acclimation to high levels of ethanol. The domesticated strain outperformed the original strain in the fermentation with high glucose for ethanol production. The results demonstrate that adaptive acclimation could enhance the strain tolerance by upregulating intracellular trehalose synthesis. The findings provide fundamental data for subsequent domestication and screening of other strains.

    参考文献
    [1] 刘胜. 稻谷发酵产乙醇中酵母抗逆性的研究[D].大连: 大连理工大学硕士学位论文, 2023. LIU S. Yeast resistance in ethanol fermentation using rice with husk[D]. Dalian: Master’s Thesis of Dalian University of Technology, 2023(in Chinese).
    [2] SHEN DX, HE XL, WENG PF, LIU YN, WU ZF. A review of yeast: high cell-density culture, molecular mechanisms of stress response and tolerance during fermentation[J]. FEMS Yeast Research, 2022, 22(1): foac050.
    [3] QURESHI SA, ZHANG J, BAO J. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain[J]. Bioresource Technology, 2015, 189: 399-404.
    [4] GALLONE B, MERTENS S, GORDON JL, MAERE S, VERSTREPEN KJ, STEENSELS J. Origins, evolution, domestication and diversity of Saccharomyces beer yeasts[J]. Current Opinion in Biotechnology, 2018, 49: 148-155.
    [5] CAO TS, CHI Z, LIU GL, CHI ZM. Expression of TPS1 gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 enhances trehalose accumulation, ethanol tolerance, and ethanol production[J]. Molecular Biotechnology, 2014, 56(1): 72-78.
    [6] DIVATE NR, HUANG PJ, CHEN GH, CHUNG YC. Construction of recombinant Saccharomyces cerevisiae with ethanol and aldehydes tolerance via overexpression of aldehyde reductase[J]. Microorganisms, 2022, 10(5): 850.
    [7] WANG PM, ZHENG DQ, CHI XQ, LI O, QIAN CD, LIU TZ, ZHANG XY, DU FG, SUN PY, QU AM, WU XC. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains[J]. Bioresource Technology, 2014, 152: 371-376.
    [8] TECHAPARIN A, THANONKEO P, KLANRIT P. Gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8 during high-temperature ethanol fermentation using sweet sorghum juice[J]. Biotechnology Letters, 2017, 39(10): 1521-1527.
    [9] MATSUMOTO I, ARAI T, NISHIMOTO Y, LEELAVATCHARAMAS V, FURUTA M, KISHIDA M. Thermo tolerant yeast Kluyveromyces marxianus reveals more tolerance to heat shock than the brewery yeast Saccharomyces cerevisiae[J]. Biocontrol Science, 2018, 23(3): 133-138.
    [10] 张士双. 乙醇耐受性啤酒酵母突变体YN81的选育及其耐受机制研究[D]. 新乡: 河南科技学院硕士学位论文, 2022. ZHANG SS. Breeding of ethanol-tolerant mutant YN81 of beer yeast and its tolerance mechanism[D]. Xinxiang: Master’s Thesis of Henan Institute of Science and Technology, 2022(in Chinese).
    [11] 金海炎. 猕猴桃酒优良酿酒菌株的选育及混菌发酵工艺优化研究[D]. 南阳: 南阳师范学院硕士学位论文, 2022. JIN HY. Breeding of excellent brewing strains for kiwifruit wine and optimization of mixed fermentation technology[D]. Nanyang: Master’s Thesis of Nanyang Normal University, 2022(in Chinese).
    [12] 方佩佩, 王世清, 李静, 熊旭波, 谭海刚, 刘晓莉. 耐酒精酿酒酵母大气压等离子体诱变条件的建立及选育[J]. 酿酒科技, 2016(9): 31-37. FANG PP, WANG SQ, LI J, XIONG XB, TAN HG, LIU XL. Establishment of the conditions of atmospheric plasma-inducing mutation of S. cerevisiae and breeding of an ethanol-tolerant strain[J]. Liquor-Making Science & Technology, 2016(9): 31-37(in Chinese).
    [13] YI S, ZHANG X, LI HX, DU XX, LIANG SW, ZHAO XH. Screening and mutation of Saccharomyces cerevisiae UV-20 with a high yield of second generation bioethanol and high tolerance of temperature, glucose and ethanol[J]. Indian Journal of Microbiology, 2018, 58(4): 440-447.
    [14] ZHANG Q, JIN YL, FANG Y, ZHAO H. Adaptive evolution and selection of stress-resistant Saccharomyces cerevisiae for very high-gravity bioethanol fermentation[J]. Electronic Journal of Biotechnology, 2019, 41: 88-94.
    [15] 何迎粉, 何荣荣, 刘敦华, 孙悦. 海藻糖与酿酒酵母乙醇耐受性相关性的研究进展[J]. 中国酿造, 2020, 39(11): 1-4. HE YF, HE RR, LIU DH, SUN Y. Correlation between trehalose and ethanol tolerance in Saccharomyces cerevisiae[J]. China Brewing, 2020, 39(11): 1-4(in Chinese).
    [16] 徐伟, 柴丽娜, 傅徐阳, 马婷婷, 付大伟, 王薇. 耐低pH酵母菌的分离及其对酸胁迫环境的适应性[J]. 食品工业科技, 2019, 40(16): 112-117. XU W, CHAI LN, FU XY, MA TT, FU DW, WANG W. Isolation of low pH resistant yeast and its adaptability to acid stress environment[J]. Science and Technology of Food Industry, 2019, 40(16): 112-117(in Chinese).
    [17] 刘延波, 宋艳洁, 李海登, 沈祥坤, 张立新, 孙西玉, 韩素娜, 潘春梅. 复合诱变选育耐高温产乙醇酵母菌的研究[J]. 中国酿造, 2022, 41(10): 55-61. LIU YB, SONG YJ, LI HD, SHEN XK, ZHANG LX, SUN XY, HAN SN, PAN CM. Breeding of high temperature resistant with ethanol yield yeast by compound mutagenesis[J]. China Brewing, 2022, 41(10): 55-61(in Chinese).
    [18] DIVATE NR, CHEN GH, WANG PM, OU BR, CHUNG YC. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose[J]. Bioengineered, 2016, 7(6): 445-458.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘安,王丹阳,王振,武小芬,齐慧,邓明,王克勤,陈亮. 高耐受性酿酒酵母的适应性驯化选育与发酵[J]. 微生物学通报, 2024, 51(3): 1018-1032

复制
分享
文章指标
  • 点击次数:391
  • 下载次数: 889
  • HTML阅读次数: 763
  • 引用次数: 0
历史
  • 收稿日期:2023-08-30
  • 录用日期:2023-10-03
  • 在线发布日期: 2024-03-04
  • 出版日期: 2024-03-20
文章二维码