科微学术

微生物学通报

蜡蚧刺束梗孢(Akanthomyces lecanii)的线粒体基因组特征与系统发育分析
作者:
基金项目:

安徽省高校优秀青年人才支持计划(gxyqZD2019013);安徽农业大学研究生创新基金(2020ysj-21)


Sequence characteristics and phylogenetic relationship of the mitochondrial genome of Akanthomyces lecanii
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】蜡蚧刺束梗孢(Akanthomyces lecanii)是重要的生防类虫生真菌,其线粒体基因组详细信息未见报道。【目的】系统研究蜡蚧刺束梗孢线粒体基因组信息,有助于明确该菌准确的系统发育地位,并为虫草科(Cordycipitaceae)真菌物种的系统发育、资源保护和开发利用提供分子依据。【方法】通过对蜡蚧刺束梗孢RCEF6920完整线粒体基因组进行测序,利用生物信息学分析其组成特征、序列重复、系统发育分析、共线性分析,以及与其他虫草科真菌线粒体基因组进行比较。【结果】菌株RCEF6920的环状线粒体基因组全长24 577 bp,共编码43个基因,由15个蛋白质编码基因、2个rRNA基因和26个tRNA基因组成。仅鉴定出一个内含子,其阻断rnl基因并鉴定出编码核糖体蛋白S3 (rps3)的开放阅读框(open reading frame, ORF) orf447。基因组核苷酸组成存在A+T偏移(72.89%)。26个tRNA基因可转运全部20种氨基酸,并表现为典型的三叶草结构。蛋白质编码基因中频率最高的密码子是AGA,其中精氨酸和亮氨酸出现频率最高,蛋氨酸和色氨酸出现频率最低。蛋白编码基因的系统发育关系显示,刺束梗孢属(Akanthomyces)和萨姆森虫草属(Samsoniella)互为姊妹属。与虫草科其他物种相比,蜡蚧刺束梗孢线粒体基因组较小,除部分虫草属(Cordyceps)物种外,在虫草科物种共线性较好。【结论】本研究获得了蜡蚧刺束梗孢的线粒体基因组全序列及相关信息。蛋白编码基因的系统发育分析支持了蜡蚧刺束梗孢的独立分类地位,也表明虫草科真菌线粒体基因组结构较保守。

    Abstract:

    [Background] Akanthomyces lecanii is an important entomogenous fungus for biocontrol, and its mitochondrial genome has not been reported. [Objective] The mitochondrial genome of A. lecanii was systematically studied, which would help clarify the taxonomic status of this fungus and provide a molecular basis for the phylogenetic research and the resource protection and utilization of Cordycipitaceae. [Methods] The full-length mitochondrial genome of A.lecanii RCEF6920 was sequenced, and bioinformatics tools were used to probe into the composition, sequence repeats, phylogenetic relationship, and collinearity. Furthermore, the mitochondrial genome was compared between A.lecanii and other species of Cordycipitaceae. [Results] The mitochondrial genome of A.lecanii RCEF6920 was a circular DNA molecule of 24 577 bp and contained 43 genes, including 15 protein-coding genes, 2 rRNA genes, and 26 tRNA genes. Only one intron was detected in the mitochondrial genome, and it interrupted rnl and contained orf447 encoding ribosomal protein S3. The nucleotide composition of the mitochondrial genome was A+T biased (72.89%). The 26 tRNA genes could transfer all the 20 amino acids and presented a typical cloverleaf structure. AGA was the most frequently used codon of the protein-coding genes. Arginine and leucine were identified as the most common amino acids, while methionine and tryptophan were the least common amino acids in the protein-coding genes. The phylogenetic analysis based on the protein-coding genes revealed that Akanthomyces and Samsoniella were sister genera. Compared with other species of Cordycipitaceae, A.lecanii had a small mitochondrial genome. Except several species, other species of Cordycipitaceae had good mitochondrial genome collinearity. [Conclusion] We obtained the full-length mitochondrial genome sequence and related information of A.lecanii. The phylogenetic analysis supports the independent taxonomic status of A. lecanii, and the mitochondrial genomes of fungi belonging to Cordycipitaceae are conserved.

    参考文献
    [1] LEBERT H. Ueber Einige Neue Oder Unvollkommen Gekannte Krankheiten der Insekten, Welche Durch Entwicklung Niederer Pflanzen im Lebenden Körper Enstehen[J]. Zeitschrift für Wissenschaftliche Zoologie, 1858, 9: 439-453.
    [2] SHINYA R, AIUCHI D, KUSHIDA A, TANI M, KURAMOCHI K, KOIKE M. Effects of fungal culture filtrates of Verticillium lecanii (Lecanicillium spp.) hybrid strains on Heterodera glycines eggs and juveniles[J]. Journal of Invertebrate Pathology, 2008, 97(3): 291-297.
    [3] ISHIDOH KI, KINOSHITA H, IGARASHI Y, IHARA F, NIHIRA T. Cyclic lipodepsipeptides verlamelin A and B, isolated from entomopathogenic fungus Lecanicillium sp.[J]. The Journal of Antibiotics, 2014, 67(6): 459-463.
    [4] ALI ABDULLE Y, NAZIR T, SAYED S, MAHMOUD SF, MAJEED MZ, ASLAM HMU, IQBAL Z, NISAR MS, KEERIO AU, ALI H, QIU DW. Sub-lethal effects of Lecanicillium lecanii (Zimmermann)-derived partially purified protein and its potential implication in cotton (Gossypium hirsutum L.) defense against Bemisia tabaci Gennadius (Aleyrodidae: Hemiptera)[J]. Agriculture, 2021, 11(8): 778.
    [5] OBERHOFER M, WACKERLIG J, ZEHL M, BÜYÜK H, CAO JJ, PRADO-ROLLER A, URBAN E, ZOTCHEV SB. Endophytic Akanthomyces sp. LN303 from edelweiss produces emestrin and two new 2-hydroxy-4 pyridone alkaloids[J]. ACS Omega, 2021, 6(3): 2184-2191.
    [6] ALI KHAN A, BACHA N, AHMAD B, LUTFULLAH G, FAROOQ U, COX RJ. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites[J]. Asian Pacific Journal of Tropical Biomedicine, 2014, 4(11): 859-870.
    [7] HALL RA. The fungus Verticillium lecanii as a microbial insecticide against aphids and scales[M]// BURGES HD ed. Microbial Control of Pests and Plant Diseases. London: Academic Press, 1981, 483-498.
    [8] AINI AN, MONGKOLSAMRIT S, WIJANARKA W, THANAKITPIPATTANA D, LUANGSA-ARD JJ, BUDIHARJO A. Diversity of Akanthomyces on moths (Lepidoptera) in Thailand[J]. MycoKeys, 2020, 71: 1-22.
    [9] de FARIA MR, WRAIGHT SP. Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types[J]. Biological Control, 2007, 43(3): 237-256.
    [10] RAVENSBERG WJ. A Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods[M]. Dordrecht: Springer Netherlands, 2011.
    [11] WRAIGHT SP, LOPES RB, FARIA M. Microbial control of mite and insect pests of greenhouse crops[M]//Microbial Control of Insect and Mite Pests. Amsterdam: Elsevier, 2017: 237-252.
    [12] NICOLETTI R, BECCHIMANZI A. Endophytism of Lecanicillium and Akanthomyces[J]. Agriculture, 2020, 10(6): 205.
    [13] ZIMMERMANN A. Over een schimmelepidemie der groene Luizen, Lorte Berichten uit’s Lands Plantentuin[J]. Teusmania, 1899, 9: 240-243.
    [14] ZARE R, GAMS W. A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov.[J]. Nova Hedwigia, 2001, 73(1/2): 1-50.
    [15] KEPLER RM, LUANGSA-ARD JJ, HYWEL-JONES NL, QUANDT CA, SUNG GH, REHNER SA, AIME MC, HENKEL TW, SANJUAN T, ZARE R, CHEN MJ, LI ZZ, ROSSMAN AY, SPATAFORA JW, SHRESTHA B. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales)[J]. IMA Fungus, 2017, 8(2): 335-353.
    [16] ABDEL-RAHEEM MA, AHMED AL-K L. Virulence of three entomopathogenic fungi against whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in tomato crop[J]. Journal of Entomology, 2017, 14(4): 155-159.
    [17] ESPINOSA DJL, Da SILVA IHS, DUARTE RT, GONÇALVES KC, POLANCZYK RA. Potential of entomopathogenic fungi as biological control agents of whitefly (Bemisia tabaci biotype B) (Genn.) (Hemiptera: Aleyrodidae)[J]. Journal of Experimental Agriculture International, 2019, 36(6): 1-8.
    [18] BROUMANDNIA F, RAJABPOUR A, PARIZIPOUR MHG, YARAHMADI F. Morphological and molecular identification of four isolates of the entomopathogenic fungal genus Akanthomyces and their effects against Bemisia tabaci on cucumber[J]. Bulletin of Entomological Research, 2021, 111(5): 628-636.
    [19] MILLER TC, GUBLER WD, LAEMMLEN FF, GENG S, RIZZO DM. Potential for using Lecanicillium lecanii for suppression of strawberry powdery mildew[J]. Biocontrol Science and Technology, 2004, 14(2): 215-220.
    [20] VANDERMEER J, PERFECTO I, LIERE H. Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web[J]. Plant Pathology, 2009, 58(4): 636-641.
    [21] GOETTEL MS, KOIKE M, KIM JJ, AIUCHI D, SHINYA R, BRODEUR J. Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases[J]. Journal of Invertebrate Pathology, 2008, 98(3): 256-261.
    [22] HENZE K, MARTIN W. Evolutionary biology: essence of mitochondria[J]. Nature, 2003, 426(6963): 127-128.
    [23] HU M, CHILTON NB, GASSER RB. The mitochondrial genomics of parasitic nematodes of socio-economic importance: recent progress, and implications for population genetics and systematics[J]. Advances in Parasitology, 2004, 56: 133-212.
    [24] BOTERO-CASTRO F, TILAK MK, JUSTY F, CATZEFLIS F, DELSUC F, DOUZERY EJP. Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae)[J]. Molecular Phylogenetics and Evolution, 2013, 69(3): 728-739.
    [25] NOVIČIĆ ZK, IMMONEN E, JELIĆ M, ANÐELKOVIĆ M, STAMENKOVIĆ-RADAK M, ARNQVIST G. Within-population genetic effects of mtDNA on metabolic rate in Drosophila subobscura[J]. Journal of Evolutionary Biology, 2015, 28(2): 338-346.
    [26] QIU F, KITCHEN A, BEERLI P, MIYAMOTO MM. A possible explanation for the population size discrepancy in tuna (genus Thunnus) estimated from mitochondrial DNA and microsatellite data[J]. Molecular Phylogenetics and Evolution, 2013, 66(2): 463-468.
    [27] KOROVESI AG, NTERTILIS M, KOUVELIS VN. Mt-rps3 is an ancient gene which provides insight into the evolution of fungal mitochondrial genomes[J]. Molecular Phylogenetics and Evolution, 2018, 127: 74-86.
    [28] BULLERWELL CE, LANG BF. Fungal evolution: the case of the vanishing mitochondrion[J]. Current Opinion in Microbiology, 2005, 8(4): 362-369.
    [29] COSTA GGL, CABRERA OG, TIBURCIO RA, MEDRANO FJ, CARAZZOLLE MF, THOMAZELLA DPT, SCHUSTER SC, CARLSON JE, GUILTINAN MJ, BAILEY BA, MIECZKOWSKI P, PEREIRA GAG, MEINHARDT LW. The mitochondrial genome of Moniliophthora roreri, the frosty pod rot pathogen of cacao[J]. Fungal Biology, 2012, 116(5): 551-562.
    [30] AGUILETA G, de VIENNE DM, ROSS ON, HOOD ME, GIRAUD T, PETIT E, GABALDÓN T. High variability of mitochondrial gene order among fungi[J]. Genome Biology and Evolution, 2014, 6(2): 451-465.
    [31] ZHANG YJ, YANG XB, ZHANG S. Complete mitogenome of the entomopathogenic fungus Akanthomyces lecanii[J]. Mitochondrial DNA Part B, Resources, 2020, 5(1): 1021-1022.<> fungal species and insights into phylogeny of Agaricomycetes[J]. International Journal of Biological Macromolecules, 2019, 121: 364-372.
    [52] MAHFOOZ S, SINGH P, MAURYA DK, YADAV MC, TAHOOR A, SAHAY H, SRIVASTA汖婁 A蜬蘠畐卒睁荋牁祓奈栠恁砮稠Micro味聡te孬彬兩乴奥嬠硲塥孰佥譡整 dynamics in mitochondrial genomes of phytopathogenic fungi: frequency and distribution?in the genic and intergenic regions[J]. Bioinformation, 2012, 8(23): 1171-1175.
    [53] JIMÉNEZ-BECERRIL MF, HERNÁNDEZ-DELGADO S, SOLÍS-OBA M, GONZÁLEZ PRIETO JM. Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico[J]. Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 2018, 29(1): 1-8.
    [54] KARAOGLU H, LEE CMY, MEYER W. Survey of simple sequence repeats in completed fungal genomes[J]. Molecular Biology and Evolution, 2005, 22(3): 639-649.
    [55] KIM TS, BOOTH JG, GAUCH HG Jr, SUN Q, PARK J, LEE YH, LEE K. Simple sequence repeats in Neurospora crassa: distribution, polymorphism and evolutionary inference[J]. BMC Genomics, 2008, 9: 31.
    [56] KANG XC, HU LQ, SHEN PY, LI R, LIU DB. SMRT sequencing revealed mitogenome characteristics and mitogenome-wide DNA modification pattern in Ophiocordyceps sinensis[J]. Frontiers in Microbiology, 2017, 8: 1422.
    [57] LI Y, LIN J, WANG YH, WANG K, WANG RL, ZHAO XC, YAO YJ. Complete mitochondrial genome of Pleurocordyceps sinensis (Hypocreales, Ascomycota), a species with uncertain family-level taxonomic assignment[J]. Quality Assurance and Safety of Crops & Foods, 2022, 14(4): 212-226.
    [58] GALTIER N, LOBRY JR. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes[J]. Journal of Molecular Evolution, 1997, 44(6): 632-636.
    [59] VINOGRADOV AE. Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship[J]. Cytometry, 1998, 31(2): 100-109.
    [60] XIN B, LIN RM, SHEN BM, MAO ZC, CHENG XY, XIE BY. The complete mitochondrial genome of the nematophagous fungus Lecanicillium saksenae[J]. Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 2017, 28(1): 52-53.
    [61] DUÒ A, BRUGGMANN R, ZOLLER S, BERNT M, GRÜNIG CR. Mitochondrial genome evolution in species belonging to the Phialocephala fortinii s.l. - Acephala applanata species complex[J]. BMC Genomics, 2012, 13: 166. complete mitochondrial genome of Engyodontium album and comparative analyses with Ascomycota mitogenomes[J]. Genetics and Molecular Biology, 2017, 40(4): 844-854.
    [46] WANG TH, ZHANG SQ, PEI TW, YU ZJ, LIU JZ. Tick mitochondrial genomes: structural characteristics and phylogenetic implications[J]. Parasites & Vectors, 2019, 12(1): 451.
    [47] 孙涛, 李天昊, 黄偶, 祝孔福, 陈思琪, 王雅南, 王垚, 王元兵, 虞泓. 蝙蝠蛾鳞翅虫草Samsoniella hepiali模式菌株线粒体基因组系统发育分析[J]. 菌物学报, 2022, 41(10): 1572-1584. SUN T, LI TH, HUANG O, ZHU KF, CHEN SQ, WANG YN, WANG Y, WANG YB, YU H. Phylogenetic analysis of the mitochondrial genome of the Samsoniella hepiali holotype strain[J]. Mycosystema, 2022, 41(10): 1572-1584 (in Chinese).
    [48] CHEN SQ, WANG YB, ZHU KF, YU H. Mitogenomics, phylogeny and morphology reveal Ophiocordyceps pingbianensis sp. nov., an entomopathogenic fungus from China[J]. Life, 2021, 11(7): 686.
    [49] DOYLE JM, BELL DA, BLOOM PH, EMMONS G, FESNOCK A, KATZNER TE, LaPRÉ L, LEONARD K, SanMIGUEL P, WESTERMAN R, ANDREW DEWOODY J. New insights into the phylogenetics and population structure of the prairie falcon (Falco mexicanus)[J]. BMC Genomics, 2018, 19(1): 233.
    [50] ANDROSIUK P, OKORSKI A, PAUKSZTO Ł, JASTRZĘBSKI JP, CIESIELSKI S, PSZCZÓŁKOWSKA A. Characterization and phylogenetic analysis of the complete mitochondrial genome of the pathogenic fungus Ilyonectria destructans[J]. Scientific Reports, 2022, 12: 2359.
    [51] LI Q, WANG QF, JIN X, CHEN ZQ, XIONG C, LI P, ZHAO J, HUANG WL. Characterization and comparison of the mitochondrial genomes from two Lyophyllum
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

常晓云,汪婷,李增智,陈名君. 蜡蚧刺束梗孢(Akanthomyces lecanii)的线粒体基因组特征与系统发育分析[J]. 微生物学通报, 2024, 51(8): 3103-3118

复制
相关视频

分享
文章指标
  • 点击次数:170
  • 下载次数: 379
  • HTML阅读次数: 264
  • 引用次数: 0
历史
  • 收稿日期:2023-10-25
  • 最后修改日期:2023-12-15
  • 在线发布日期: 2024-08-20
  • 出版日期: 2024-08-20
文章二维码