科微学术

微生物学通报

解脂耶氏酵母合成萜类化合物的研究进展
作者:
基金项目:

河北省自然科学基金(H2021209027,B2022209030);河北省重点研发计划(23372505D)


Research progress in the synthesis of terpenoids from Yarrowia lipolytica
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [161]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    解脂耶氏酵母(Yarrowia lipolytica)是一种遗传背景清晰、基因编辑工具完备的非常规油脂酵母。萜类化合物是以异戊二烯为基本结构单元,广泛存在自然界的天然次级代谢产物。近年来随着合成生物学的高速发展,代谢工程改造解脂耶氏酵母合成萜类化合物越来越受到人们的关注。本文从增强前体供应、亚细胞器合成和碳源利用等方面对代谢工程改造解脂耶氏酵母合成萜类化合物进行综述,并对未来可能的研究方向进行展望,为后续研究工作提供参考。

    Abstract:

    Yarrowia lipolytica is a species of unconventional lipid-producing yeast with a well-defined genetic background and a comprehensive suite of gene editing tools. Terpenoids are natural secondary metabolites with isoprene as the basic structural unit and are ubiquitous in nature. In recent years, with the rapid development of synthetic biology, the synthesis of terpenoids by metabolic engineering has attracted increasing attention. In this paper, we reviewed the metabolic engineering in Y. lipolytica for the synthesis of terpenoids from enhanced precursor supply, subcellular organelle synthesis, and carbon source utilization. In addition, this paper envisions the potential research directions, with a view to providing guidance for the following research.

    参考文献
    [1] TETALI SD. Terpenes and isoprenoids: a wealth of compounds for global use[J]. Planta, 2019, 249(1): 1-8.
    [2] MASYITA A, SARI RM, ASTUTI AD, YASIR B, RUMATA NR, BIN EMRAN T, NAINU F, SIMAL-GANDARA J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives[J]. Food Chemistry: X, 2022, 13: 100217.
    [3] MA YR, WANG KF, WANG WJ, DING Y, SHI TQ, HUANG H, JI XJ. Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids[J]. Bioresource Technology, 2019, 281: 449-456.
    [4] PICHERSKY E, RAGUSO RA. Why do plants produce so many terpenoid compounds?[J]. The New Phytologist, 2018, 220(3): 692-702.
    [5] ARNESEN JA, JACOBSEN IH, DYEKJÆR JD, RAGO D, KRISTENSEN M, KLITGAARD AK, RANDELOVIC M, MARTINEZ JL, BORODINA I. Production of abscisic acid in the oleaginous yeast Yarrowia lipolytica[J]. FEMS Yeast Research, 2022, 22(1): foac015.
    [6] EL-BABA C, BAASSIRI A, KIRIAKO G, DIA B, FADLALLAH S, MOODAD S, DARWICHE N. Terpenoids’ anti-cancer effects: focus on autophagy[J]. Apoptosis, 2021, 26(9): 491-511.
    [7] SCHEMPP FM, DRUMMOND L, BUCHHAUPT M, SCHRADER J. Microbial cell factories for the production of terpenoid flavor and fragrance compounds[J]. Journal of Agricultural and Food Chemistry, 2018, 66(10): 2247-2258.
    [8] BUTION ML, MOLINA G, ABRAHÃO MRE, PASTORE GM. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates[J]. Critical Reviews in Biotechnology, 2015, 35(3): 313-325.
    [9] LANGE BM, RUJAN T, MARTIN W, CROTEAU R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(24): 13172-13177.
    [10] LIAO P, HEMMERLIN A, BACH TJ, CHYE ML. The potential of the mevalonate pathway for enhanced isoprenoid production[J]. Biotechnology Advances, 2016, 34(5): 697-713.
    [11] VRANOVÁ E, COMAN D, GRUISSEM W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annual Review of Plant Biology, 2013, 64: 665-700.
    [12] HUANG MY, WANG WY, LIANG ZZ, HUANG YC, YI Y, NIU FX. Enhancing the production of pinene in Escherichia coli by using a combination of shotgun, product-tolerance and I-SceI cleavage systems[J]. Biology, 2022, 11(10): 1484.
    [13] DALETOS G, KATSIMPOURAS C, STEPHANOPOULOS G. Novel strategies and platforms for industrial isoprenoid engineering[J]. Trends in Biotechnology, 2020, 38(7): 811-822.
    [14] CRAVENS A, PAYNE J, SMOLKE CD. Synthetic biology strategies for microbial biosynthesis of plant natural products[J]. Nature Communications, 2019, 10: 2142.
    [15] LV XM, WANG F, ZHOU PP, YE LD, XIE WP, XU HM, YU HW. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae[J]. Nature Communications, 2016, 7: 12851.
    [16] MUHAMMAD A, FENG XD, RASOOL A, SUN WT, LI C. Production of plant natural products through engineered Yarrowia lipolytica[J]. Biotechnology Advances, 2020, 43: 107555.
    [17] LI ZJ, WANG YZ, WANG LR, SHI TQ, SUN XM, HUANG H. Advanced strategies for the synthesis of terpenoids in Yarrowia lipolytica[J]. Journal of Agricultural and Food Chemistry, 2021, 69(8): 2367-2381.
    [18] XU XH, LIU YF, DU GC, LEDESMA-AMARO R, LIU L. Microbial chassis development for natural product biosynthesis[J]. Trends in Biotechnology, 2020, 38(7): 779-796.
    [19] ZHU Q, JACKSON EN. Metabolic engineering of Yarrowia lipolytica for industrial applications[J]. Current Opinion in Biotechnology, 2015, 36: 65-72.
    [20] TAI M, STEPHANOPOULOS G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production[J]. Metabolic Engineering, 2013, 15: 1-9.
    [21] JURETZEK T, WANG HJ, NICAUD JM, MAUERSBERGER S, BARTH G. Comparison of promoters suitable for regulated overexpression of β-galactosidase in the alkane-utilizing yeast Yarrowia lipolytica[J]. Biotechnology and Bioprocess Engineering, 2000, 5(5): 320-326.
    [22] WONG L, ENGEL J, JIN EQ, HOLDRIDGE B, XU P. YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica[J]. Metabolic Engineering Communications, 2017, 5: 68-77.
    [23] BLAZECK J, LIU LQ, REDDEN H, ALPER H. Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach[J]. Applied and Environmental Microbiology, 2011, 77(22): 7905-7914.
    [24] LE HIR H, NOTT A, MOORE MJ. How introns influence and enhance eukaryotic gene expression[J]. Trends in Biochemical Sciences, 2003, 28(4): 215-220.
    [25] HONG SP, SEIP J, WALTERS-POLLAK D, RUPERT R, JACKSON R, XUE ZX, ZHU Q. Engineering Yarrowia lipolytica to express secretory invertase with strong FBA1IN promoter[J]. Yeast, 2012, 29(2): 59-72.
    [26] TRASSAERT M, VANDERMIES M, CARLY F, DENIES O, THOMAS S, FICKERS P, NICAUD JM. New inducible promoter for gene expression and synthetic biology in Yarrowia lipolytica[J]. Microbial Cell Factories, 2017, 16(1): 141.
    [27] PARK YK, KORPYS P, KUBIAK M, CELINSKA E, SOUDIER P, TRÉBULLE P, LARROUDE M, ROSSIGNOL T, NICAUD JM. Engineering the architecture of erythritol-inducible promoters for regulated and enhanced gene expression in Yarrowia lipolytica[J]. FEMS Yeast Research, 2019, 19(1): foy105.
    [28] PARK YK, VANDERMIES M, SOUDIER P, TELEK S, THOMAS S, NICAUD JM, FICKERS P. Efficient expression vectors and host strain for the production of recombinant proteins by Yarrowia lipolytica in process conditions[J]. Microbial Cell Factories, 2019, 18(1): 167.
    [29] XIONG XC, CHEN SL. Expanding toolbox for genes expression of Yarrowia lipolytica to include novel inducible, repressible, and hybrid promoters[J]. ACS Synthetic Biology, 2020, 9(8): 2208-2213.
    [30] GUO Q, LI YW, YAN F, LI K, WANG YT, YE C, SHI TQ, HUANG H. Dual cytoplasmic-peroxisomal engineering for high-yield production of sesquiterpene α-humulene in Yarrowia lipolytica[J]. Biotechnology and Bioengineering, 2022, 119(10): 2819-2830.
    [31] WANG C, LIN MX, YANG ZL, LU XY, LIU YF, LU HZ, ZHU J, SUN XM, GU Y. Characterization of the endogenous promoters in Yarrowia lipolytica for the biomanufacturing applications[J]. Process Biochemistry, 2023, 124: 245-252.
    [32] GEORGIADIS I, TSILIGKAKI C, PATAVOU V, ORFANIDOU M, TSOUREKI A, ANDREADELLI A, THEODOSIOU E, MAKRIS AM. Identification and construction of strong promoters in Yarrowia lipolytica suitable for glycerol-based bioprocesses[J]. Microorganisms, 2023, 11(5): 1152.
    [33] GEISBERG JV, MOQTADERI Z, FAN XC, OZSOLAK F, STRUHL K. Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast[J]. Cell, 2014, 156(4): 812-824.
    [34] CAO L, LI J, YANG Z, HU X, WANG P. A review of synthetic biology tools in Yarrowia lipolytica[J]. World Journal of Microbiology and Biotechnology, 2023, 39(5): 129.
    [35] MADZAK C. Yarrowia lipolytica strains and their biotechnological applications: how natural biodiversity and metabolic engineering could contribute to cell factories improvement[J]. Journal of Fungi, 2021, 7(7): 548.
    [36] CURRAN KA, KARIM AS, GUPTA A, ALPER HS. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications[J]. Metabolic Engineering, 2013, 19: 88-97.
    [37] CURRAN KA, MORSE NJ, MARKHAM KA, WAGMAN AM, GUPTA A, ALPER HS. Short synthetic terminators for improved heterologous gene expression in yeast[J]. ACS Synthetic Biology, 2015, 4(7): 824-832.
    [38] MADZAK C, GAILLARDIN C, BECKERICH JM. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review[J]. Journal of Biotechnology, 2004, 109(1/2): 63-81.
    [39] SHI TQ, LI YW, ZHU L, TONG YY, YANG JJ, FANG YM, WANG M, ZHANG JZ, JIANG Y, YANG S. Engineering the oleaginous yeast Yarrowia lipolytica for β-farnesene overproduction[J]. Biotechnology Journal, 2021, 16(7): e2100097.
    [40] LE DALL MT, NICAUD JM, GAILLARDIN C. Multiple-copy integration in the yeast Yarrowia lipolytica[J]. Current Genetics, 1994, 26(1): 38-44.
    [41] LARROUDE M, PARK YK, SOUDIER P, KUBIAK M, NICAUD JM, ROSSIGNOL T. A modular Golden Gate toolkit for Yarrowia lipolytica synthetic biology[J]. Microbial Biotechnology, 2019, 12(6): 1249-1259.
    [42] LIU F, LIU SC, QI YK, LIU ZJ, CHEN J, WEI LJ, HUA Q. Enhancing trans-nerolidol productivity in Yarrowia lipolytica by improving precursor supply and optimizing nerolidol synthase activity[J]. Journal of Agricultural and Food Chemistry, 2022, 70(48): 15157-15165.
    [43] FICKERS P, LE DALL MT, GAILLARDIN C, THONART P, NICAUD JM. New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica[J]. Journal of Microbiological Methods, 2003, 55(3): 727-737.
    [44] VERNIS L, ABBAS A, CHASLES M, GAILLARDIN CM, BRUN C, HUBERMAN JA, FOURNIER P. An origin of replication and a centromere are both needed to establish a replicative plasmid in the yeast Yarrowia lipolytica[J]. Molecular and Cellular Biology, 1997, 17(4): 1995-2004.
    [45] GUO ZP, BORSENBERGER V, CROUX C, DUQUESNE S, TRUAN G, MARTY A, BORDES F. An artificial chromosome ylAC enables efficient assembly of multiple genes in Yarrowia lipolytica for biomanufacturing[J]. Communications Biology, 2020, 3: 199.
    [46] SCHWARTZ C, SHABBIR-HUSSAIN M, FROGUE K, BLENNER M, WHEELDON I. Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica[J]. ACS Synthetic Biology, 2017, 6(3): 402-409.
    [47] CUI ZY, ZHENG HH, JIANG ZN, WANG ZX, HOU J, WANG Q, LIANG QF, QI QS. Identification and characterization of the mitochondrial replication origin for stable and episomal expression in Yarrowia lipolytica[J]. ACS Synthetic Biology, 2021, 10(4): 826-835.
    [48] LOPEZ C, CAO MF, YAO ZY, SHAO ZY. Revisiting the unique structure of autonomously replicating sequences in Yarrowia lipolytica and its role in pathway engineering[J]. Applied Microbiology and Biotechnology, 2021, 105(14/15): 5959-5972.
    [49] HESLOT H. Genetics and genetic engineering of the industrial yeast Yarrowia lipolytica[M]//Applied Molecular Genetics. Berlin/Heidelberg: Springer-Verlag, 2005: 43-73.
    [50] LIU LQ, OTOUPAL P, PAN A, ALPER HS. Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function[J]. FEMS Yeast Research, 2014, 14(7): 1124-1127.
    [51] ZHANG TL, YU HW, YE LD. Metabolic engineering of Yarrowia lipolytica for terpenoid production: tools and strategies[J]. ACS Synthetic Biology, 2023, 12(3): 639-656.
    [52] CUI ZY, JIANG X, ZHENG HH, QI QS, HOU J. Homology-independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica[J]. Biotechnology and Bioengineering, 2019, 116(2): 354-363.
    [53] LIU YH, JIANG X, CUI ZY, WANG ZX, QI QS, HOU J. Engineering the oleaginous yeast Yarrowia lipolytica for production of α-farnesene[J]. Biotechnology for Biofuels, 2019, 12: 296.
    [54] SCHWARTZ CM, HUSSAIN MS, BLENNER M, WHEELDON I. Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9- mediated genome editing in Yarrowia lipolytica[J]. ACS Synthetic Biology, 2016, 5(4): 356-359.
    [55] SHI TQ, HUANG H, KERKHOVEN EJ, JI XJ. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system[J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9541-9548.
    [56] ARNESEN JA, BORODINA I. Engineering of Yarrowia lipolytica for terpenoid production[J]. Metabolic Engineering Communications, 2022, 15: e00213.
    [57] YAO F, LIU SC, WANG DN, LIU ZJ, HUA Q, WEI LJ. Engineering oleaginous yeast Yarrowia lipolytica for enhanced limonene production from xylose and lignocellulosic hydrolysate[J]. FEMS Yeast Research, 2020, 20(6): foaa046.
    [58] LI J, ZHU K, MIAO L, RONG LX, ZHAO Y, LI SL, MA LJ, LI JX, ZHANG CY, XIAO DG, FOO JL, YU AQ. Simultaneous improvement of limonene production and tolerance in Yarrowia lipolytica through tolerance engineering and evolutionary engineering[J]. ACS Synthetic Biology, 2021, 10(4): 884-896.
    [59] BI HR, XU CC, BAO YF, ZHANG CW, WANG K, ZHANG Y, WANG M, CHEN BQ, FANG YM, TAN TW. Enhancing precursor supply and modulating metabolism to achieve high-level production of β-farnesene in Yarrowia lipolytica[J]. Bioresource Technology, 2023, 382: 129171.
    [60] GUO Q, SHI TQ, PENG QQ, SUN XM, JI XJ, HUANG H. Harnessing Yarrowia lipolytica peroxisomes as a subcellular factory for α-humulene overproduction[J]. Journal of Agricultural and Food Chemistry, 2021, 69(46): 13831-13837.
    [61] ARNESEN JA, del AMA AB, JAYACHANDRAN S, DAHLIN J, RAGO D, ANDERSEN AJC, BORODINA I. Engineering of Yarrowia lipolytica for the production of plant triterpenoids: asiatic, madecassic, and arjunolic acids[J]. Metabolic Engineering Communications, 2022, 14: e00197.
    [62] SHAIKH KM, ODANETH AA. Metabolic engineering of Yarrowia lipolytica for the production of isoprene[J]. Biotechnology Progress, 2021, 37(6): e3201.
    [63] CAO X, LV YB, CHEN J, IMANAKA T, WEI LJ, HUA Q. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction[J]. Biotechnology for Biofuels, 2016, 9: 214.
    [64] PANG YR, ZHAO YK, LI SL, ZHAO Y, LI J, HU ZH, ZHANG CY, XIAO DG, YU AQ. Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil[J]. Biotechnology for Biofuels, 2019, 12: 241.
    [65] CHENG BQ, WEI LJ, LV YB, CHEN J, HUA Q. Elevating limonene production in oleaginous yeast Yarrowia lipolytica via genetic engineering of limonene biosynthesis pathway and optimization of medium composition[J]. Biotechnology and Bioprocess Engineering, 2019, 24(3): 500-506.
    [66] ARNESEN JA, KILDEGAARD KR, PASTOR MC, JAYACHANDRAN S, KRISTENSEN M, BORODINA I. Yarrowia lipolytica strains engineered for the production of terpenoids[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 945.
    [67] Li SL, Rong LX, Wang SH, Liu SQ, Lu ZH, Miao L, Zhao BX, Zhang CY, Xiao DG, Pushpanathan K, Wong AS, Yu AQ. Enhanced limonene production by metabolically engineered Yarrowia lipolytica from cheap carbon sources[J]. Chemical Engineering Science, 2022: 249.
    [68] CAO X, WEI LJ, LIN JY, HUA Q. Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica[J]. Bioresource Technology, 2017, 245(Pt B): 1641-1644.
    [69] WEI LJ, ZHONG YT, NIE MY, LIU SC, HUA Q. Biosynthesis of α-pinene by genetically engineered Yarrowia lipolytica from low-cost renewable feedstocks[J]. Journal of Agricultural and Food Chemistry, 2021, 69(1): 275-285.
    [70] YANG X, NAMBOU K, WEI LJ, HUA Q. Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica[J]. Bioresource Technology, 2016, 216: 1040-1048.
    [71] LIU SC, LIU ZJ, WEI LJ, HUA Q. Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica[J]. Journal of Biotechnology, 2020, 319: 74-81.
    [72] LIU YH, ZHANG J, LI QB, WANG ZX, CUI ZY, SU TY, LU XM, QI QS, HOU J. Engineering Yarrowia lipolytica for the sustainable production of β-farnesene from waste oil feedstock[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 101.
    [73] BI HR, XV C, SU CS, FENG P, ZHANG CW, WANG M, FANG YM, TAN T. β-farnesene production from low-cost glucose in lignocellulosic hydrolysate by engineered Yarrowia lipolytica[J]. Fermentation, 2022, 8(10): 532.
    [74] BI H, WANG K, XU C, WANG M, CHEN B, FANG Y, TAN X, ZENG J, TAN T. Biofuel synthesis from carbon dioxide via a bio-electrocatalysis system[J]. Chem Catalysis, 2023, 3(3): 100557.
    [75] GUO Q, PENG QQ, CHEN YY, SONG P, JI XJ, HUANG H, SHI TQ. High-yield α-humulene production in Yarrowia lipolytica from waste cooking oil based on transcriptome analysis and metabolic engineering[J]. Microbial Cell Factories, 2022, 21(1): 271.
    [76] JIA D, XU S, SUN J, ZHANG CB, LI DS, LU WY. Yarrowia lipolytica construction for heterologous synthesis of α-santalene and fermentation optimization[J]. Applied Microbiology and Biotechnology, 2019, 103(8): 3511-3520.
    [77] MARSAFARI M, XU P. Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica[J]. Metabolic Engineering Communications, 2020, 10: e00121.
    [78] MARSAFARI M, AZI F, DOU SH, XU P. Modular co-culture engineering of Yarrowia lipolytica for amorphadiene biosynthesis[J]. Microbial Cell Factories, 2022, 21(1): 279.
    [79] ZHAO YK, ZHU K, LI J, ZHAO Y, LI SL, ZHANG CY, XIAO DG, YU AQ. High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica[J]. Microbial Biotechnology, 2021, 14(6): 2497-2513.
    [80] MA YR, LI WJ, MAI J, WANG JP, WEI YJ, LEDESMA-AMARO R, JI XJ. Engineering Yarrowia lipolytica for sustainable production of the chamomile sesquiterpene (-)-α-bisabolol[J]. Green Chemistry, 2021, 23(2): 780-787.
    [81] ZHU K, ZHAO BX, ZHANG YH, KONG J, RONG LX, LIU SQ, WANG YP, ZHANG CY, XIAO DG, FOO JL, YU AQ. Mitochondrial engineering of Yarrowia lipolytica for sustainable production of α-bisabolene from waste cooking oil[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9644-9653.
    [82] EL-SHAROUD WALID M, ZALMA SAMAR A, LEONARDO RL, RODRIGO LA. Over-expression of α-bisabolene by metabolic engineering of Yarrowia lipolytica employing a golden gate DNA assembly toolbox[J]. Biotechnology Notes, 2023, 4: 14-19.
    [83] LU ZH, WANG YP, LI Z, ZHANG YH, HE SC, ZHANG ZY, LEONG S, WONG A, ZHANG CY, YU AQ. Combining metabolic engineering and lipid droplet storage engineering for improved α-bisabolene production in Yarrowia lipolytica[J]. Journal of Agricultural and Food Chemistry, 2023, 71(30): 11534-11543.
    [84] PENG QQ, GUO Q, CHEN C, SONG P, WANG YT, JI XJ, YE C, SHI TQ. High-level production of patchoulol in Yarrowia lipolytica via systematic engineering strategies[J]. Journal of Agricultural and Food Chemistry, 2023, 71(11): 4638-4645.
    [85] LIU Q, ZHANG G, SU LQ, LIU P, JIA SR, WANG QH, DAI ZJ. Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A[J]. Green Chemistry, 2023, 25(20): 7988-7997.
    [86] LI WJ, MAI J, LIN L, ZHANG ZG, LEDESMA- AMARO R, DONG WL, JI XJ. Combination of microbial and chemical synthesis for the sustainable production of β-elemene, a promising plant-extracted anticancer compound[J]. Biotechnology and Bioengineering, 2023, 120(12): 3612-3621.
    [87] XU M, XIE WL, LUO Z, LI CX, HUA Q, XU JH. Improving solubility and copy number of taxadiene synthase to enhance the titer of taxadiene in Yarrowia lipolytica[J]. Synthetic and Systems Biotechnology, 2023, 8(2): 331-338.
    [88] SUN J, ZHANG CB, NAN WH, LI DS, KE D, LU WY. Glycerol improves heterologous biosynthesis of betulinic acid in engineered Yarrowia lipolytica[J]. Chemical Engineering Science, 2019, 196: 82-90.
    [89] JIN CC, ZHANG JL, SONG H, CAO YX. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering[J]. Microbial Cell Factories, 2019, 18(1): 77.
    [90] LI DS, WU YF, ZHANG CB, SUN J, ZHOU ZJ, LU WY. Production of triterpene ginsenoside compound K in the non-conventional yeast Yarrowia lipolytica[J]. Journal of Agricultural and Food Chemistry, 2019, 67(9): 2581-2588.
    [91] ZHANG JL, BAI QY, PENG YZ, FAN J, JIN CC, CAO YX, YUAN YJ. High production of triterpenoids in Yarrowia lipolytica through manipulation of lipid components[J]. Biotechnology for Biofuels, 2020, 13:133.
    [92] LI DS, WU YF, WEI PP, GAO X, LI M, ZHANG CB, ZHOU ZJ, LU WY. Metabolic engineering of Yarrowia lipolytica for heterologous oleanolic acid production[J]. Chemical Engineering Science, 2020, 218:115529.
    [93] WU YF, XU S, GAO X, LI M, LI DS, LU WY. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica[J]. Microbial Cell Factories, 2019, 18(1):83.
    [94] HUANG YY, JIAN XX, LÜ YB, NIAN KQ, GAO Q, CHEN J, WEI LJ, HUA Q. Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism[J]. Journal of Biotechnology, 2018, 281:106-114.
    [95] GAO SL, TONG YY, ZHU L, GE M, ZHANG YA, CHEN DJ, JIANG Y, YANG S. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production[J]. Metabolic Engineering, 2017, 41:192-201.
    [96] LIU H, WANG F, DENG L, XU P. Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica[J]. Bioresource Technology, 2020, 317:123991.
    [97] WEI LJ, CAO X, LIU JJ, KWAK S, JIN YS, WANG W, HUA Q. Increased accumulation of squalene in engineered Yarrowia lipolytica through deletion of PEX10 and URE2[J]. Applied and Environmental Microbiology, 2021, 87(17):e0048121.
    [98] KILDEGAARD KR, ADIEGO-PÉREZ B, BELDA DD, KHANGURA JK, HOLKENBRINK C, BORODINA I. Engineering of Yarrowia lipolytica for production of astaxanthin[J]. Synthetic and Systems Biotechnology, 2017, 2(4):287-294.
    [99] TRAMONTIN LRR, KILDEGAARD KR, SUDARSAN S, BORODINA I. Enhancement of astaxanthin biosynthesis in oleaginous yeast Yarrowia lipolytica via microalgal pathway[J]. Microorganisms, 2019, 7(10):472.
    [100] LI NY, HAN ZL, O'DONNELL TJ, KURASAKI R, KAJIHARA L, WILLIAMS PG, TANG YJ, SU WW. Production and excretion of astaxanthin by engineered Yarrowia lipolytica using plant oil as both the carbon source and the biocompatible extractant[J]. Applied Microbiology and Biotechnology, 2020, 104(16):6977-6989.
    [101] MA YS, LI JB, HUANG SW, STEPHANOPOULOS G. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica[J]. Metabolic Engineering, 2021, 68:152-161.
    [102] CUI ZY, ZHENG HH, ZHANG JH, JIANG ZN, ZHU ZW, LIU XQ, QI QS, HOU J. A CRISPR/Cas9-mediated, homology-independent tool developed for targeted genome integration in Yarrowia lipolytica[J]. Applied and Environmental Microbiology, 2021, 87(6):e02666-20.
    [103] LARROUDE M, CELINSKA E, BACK A, THOMAS S, NICAUD JM, LEDESMA-AMARO R. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene[J]. Biotechnology and Bioengineering, 2018, 115(2):464-472.
    [104] BRUDER S, MELCHER FA, ZOLL T, HACKENSCHMIDT S, KABISCH J. Evaluation of a Yarrowia lipolytica strain collection for its lipid and carotenoid production capabilities[J]. European Journal of Lipid Science and Technology, 2020, 122(1):1900172.
    [105] ZHANG XK, WANG DN, CHEN J, LIU ZJ, WEI LJ, HUA Q. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica[J]. Biotechnology Letters, 2020, 42(6):945-956.
    [106] QIANG S, WANG J, XIONG XC, QU YL, LIU L, HU CY, MENG YH. Promoting the synthesis of precursor substances by overexpressing hexokinase (Hxk) and hydroxymethylglutaryl-CoA synthase (Erg13) to elevate β-carotene production in engineered Yarrowia lipolytica[J]. Frontiers in Microbiology, 2020, 11:1346.
    [107] LV PJ, QIANG S, LIU L, HU CY, MENG YH. Dissolved-oxygen feedback control fermentation for enhancing β-carotene in engineered Yarrowia lipolytica[J]. Scientific Reports, 2020, 10:17114.
    [108] DE SOUZA CP, RIBEIRO BD, ZARUR COELHO MA, ALMEIDA RV, NICAUD JM. Construction of wild-type Yarrowia lipolytica IMUFRJ 50682 auxotrophic mutants using dual CRISPR/Cas9 strategy for novel biotechnological approaches[J]. Enzyme and Microbial Technology, 2020, 140:109621.
    [109] YANG F, LIU L, QIANG S, HU CY, LI Y, MENG YH. Enhanced β-carotene production by overexpressing the DID2 gene, a subunit of ESCRT complex, in engineered Yarrowia lipolytica[J]. Biotechnology Letters, 2021, 43(9):1799-1807.
    [110] LIU L, QU YL, DONG GR, WANG J, HU CY, MENG YH. Elevated β-carotene production using codon-adapted CarRA&B and metabolic balance in engineered Yarrowia lipolytica[J]. Frontiers in Microbiology, 2021, 12:627150.
    [111] LIU XQ, LIU MM, ZHANG J, CHANG YZ, CUI ZY, JI BY, NIELSEN J, QI QS, HOU J. Mapping of nonhomologous end joining-mediated integration facilitates genome-scale trackable mutagenesis in Yarrowia lipolytica[J]. ACS Synthetic Biology, 2022, 11(1):216-227.
    [112] LIU MM, ZHANG J, YE JR, QI QS, HOU J. Morphological and metabolic engineering of Yarrowia lipolytica to increase β-carotene production[J]. ACS Synthetic Biology, 2021, 10(12):3551-3560.
    [113] JING YW, WANG JN, GAO HY, JIANG YJ, JIANG WK, JIANG M, XIN FX, ZHANG WM. Enhanced β-carotene production in Yarrowia lipolytica through the metabolic and fermentation engineering[J]. Journal of Industrial Microbiology& Biotechnology, 2023, 50(1):kuad009.
    [114] MA YS, LIU N, GREISEN P, LI JB, QIAO KJ, HUANG SW, STEPHANOPOULOS G. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica[J]. Nature Communications, 2022, 13:572.
    [115] MATTHÄUS F, KETELHOT M, GATTER M, BARTH G. Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica[J]. Applied and Environmental Microbiology, 2014, 80(5):1660-1669.
    [116] NAMBOU K, JIAN XX, ZHANG XK, WEI LJ, LOU JJ, MADZAK C, HUA Q. Flux balance analysis inspired bioprocess upgrading for lycopene production by a metabolically engineered strain of Yarrowia lipolytica[J]. Metabolites, 2015, 5(4):794-813.
    [117] SCHWARTZ C, FROGUE K, MISA J, WHEELDON I. Host and pathway engineering for enhanced lycopene biosynthesis in Yarrowia lipolytica[J]. Frontiers in Microbiology, 2017, 8:2233.
    [118] ZHANG XK, NIE MY, CHEN J, WEI LJ, HUA Q. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica[J]. Journal of Biotechnology, 2019, 289:46-54.
    [119] LUO ZS, LIU N, LAZAR Z, CHATZIVASILEIOU A, WARD V, CHEN J, ZHOU JW, STEPHANOPOULOS G. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity[J]. Metabolic Engineering, 2020, 61:344-351.
    [120] CZAJKA JJ, NATHENSON JA, BENITES VT, BAIDOO EEK, CHENG QS, WANG YC, TANG YJ. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone[J]. Microbial Cell Factories, 2018, 17(1):136.
    [121] LU YP, YANG QY, LIN ZL, YANG XF. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica[J]. Microbial Cell Factories, 2020, 19(1):49.
    [122] CHEN SY, LU YP, WANG W, HU YZ, WANG JF, TANG SX, LIN CSK, YANG XF. Efficient production of the β-ionone aroma compound from organic waste hydrolysates using an engineered Yarrowia lipolytica strain[J]. Frontiers in Microbiology, 2022, 13:960558.
    [123] LIU MS, WANG C, REN XF, GAO S, YU SQ, ZHOU JW. Remodelling metabolism for high-level resveratrol production in Yarrowia lipolytica[J]. Bioresource Technology, 2022, 365:128178.
    [124] SHANG YZ, ZHANG P, WEI WP, LI J, YE BC. Metabolic engineering for the high-yield production of polydatin in Yarrowia lipolytica[J]. Bioresource Technology, 2023, 381:129129.
    [125] PALMER CM, MILLER KK, NGUYEN A, ALPER HS. Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy[J]. Metabolic Engineering, 2020, 57:174-181.
    [126] WEI WP, ZHANG P, SHANG YZ, ZHOU Y, YE BC. Metabolically engineering of Yarrowia lipolytica for the biosynthesis of naringenin from a mixture of glucose and xylose[J]. Bioresource Technology, 2020, 314:123726.
    [127] DISSOOK S, KUZUYAMA T, NISHIMOTO Y, KITANI S, PUTRI S, FUKUSAKI E. Stable isotope and chemical inhibition analyses suggested the existence of a non-mevalonate-like pathway in the yeast Yarrowia lipolytica[J]. Scientific Reports, 2021, 11:5598.
    [128] BURG JS, ESPENSHADE PJ. Regulation of HMG-CoA reductase in mammals and yeast[J]. Progress in Lipid Research, 2011, 50(4):403-410.
    [129] LUO GJ, LIN Y, CHEN ST, XIAO RM, ZHANG JX, LI C, SINSKEY AJ, YE L, LIANG SL. Overproduction of patchoulol in metabolically engineered Komagataella phaffii[J]. Journal of Agricultural and Food Chemistry, 2023, 71(4):2049-2058.
    [130] MUÑOZ-FERNÁNDEZ G, MARTÍNEZ-BUEY R, REVUELTA JL, JIMÉNEZ A. Metabolic engineering of Ashbya gossypii for limonene production from xylose[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1):79.
    [131] BLAZECK J, HILL A, LIU LQ, KNIGHT R, MILLER J, PAN A, OTOUPAL P, ALPER HS. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production[J]. Nature Communications, 2014, 5:3131.
    [132] YUZBASHEVA EY, SCARCIA P, YUZBASHEV TV, MESSINA E, KOSIKHINA IM, PALMIERI L, SHUTOV AV, TARATYNOVA MO, AMARO RL, PALMIERI F, SINEOKY SP, AGRIMI G. Engineering Yarrowia lipolytica for the selective and high-level production of isocitric acid through manipulation of mitochondrial dicarboxylate-tricarboxylate carriers[J]. Metabolic Engineering, 2021, 65:156-166.
    [133] YUZBASHEVA EY, AGRIMI G, YUZBASHEV TV, SCARCIA P, VINOGRADOVA EB, PALMIERI L, SHUTOV AV, KOSIKHINA IM, PALMIERI F, SINEOKY SP. The mitochondrial citrate carrier in Yarrowia lipolytica:its identification, characterization and functional significance for the production of citric acid[J]. Metabolic Engineering, 2019, 54:264-274.
    [134] MEADOWS AL, HAWKINS KM, TSEGAYE Y, ANTIPOV E, KIM Y, RAETZ L, DAHL RH, TAI AN, MAHATDEJKUL-MEADOWS T, XU L, ZHAO LS, DASIKA MS, MURARKA A, LENIHAN J, ENG DA, LENG JS, LIU CL, WENGER JW, JIANG HX, CHAO L, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016, 537:694-697.
    [135] ZHANG HY, ZHANG LN, CHEN HQ, CHEN YQ, RATLEDGE C, SONG YD, CHEN W. Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation[J]. Biotechnology Letters, 2013, 35(12):2091-2098.
    [136] QIAO KJ, WASYLENKO TM, ZHOU K, XU P, STEPHANOPOULOS G. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism[J]. Nature Biotechnology, 2017, 35:173-177.
    [137] DOBROWOLSKI A, DRZYMAŁA K, MITUŁA P, MIROŃCZUK AM. Production of tailor-made fatty acids from crude glycerol at low pH by Yarrowia lipolytica[J]. Bioresource Technology, 2020, 314:123746.
    [138] SHI XY, PARK HM, KIM M, LEE ME, JEONG WY, CHANG J, CHO BH, HAN SO. Isopropanol biosynthesis from crude glycerol using fatty acid precursors via engineered oleaginous yeast Yarrowia lipolytica[J]. Microbial Cell Factories, 2022, 21(1):168.
    [139] CHEN L, YAN W, QIAN XJ, CHEN MJ, ZHANG XY, XIN FX, ZHANG WM, JIANG M, OCHSENREITHER K. Increased lipid production in Yarrowia lipolytica from acetate through metabolic engineering and cosubstrate fermentation[J]. ACS Synthetic Biology, 2021, 10(11):3129-3138.
    [140] KOMMOJI S, GOPINATH M, SATYA SAGAR P, YUVARAJ D, IYYAPPAN J, JAYA VARSHA A, SUNIL V. Lipid bioproduction from delignified native grass (Cyperus distans) hydrolysate by Yarrowia lipolytica[J]. Bioresource Technology, 2021, 324:124659.
    [141] SUN T, YU YZ, WANG LX, QI YC, XU T, WANG Z, LIN L, LEDESMA-AMARO R, JI XJ. Combination of a push-pull-block strategy with a heterologous xylose assimilation pathway toward lipid overproduction from lignocellulose in Yarrowia lipolytica[J]. ACS Synthetic Biology, 2023, 12(3):761-767.
    [142] MANKAR AR, PANDEY A, MODAK A, PANT KK. Pretreatment of lignocellulosic biomass:a review on recent advances[J]. Bioresource Technology, 2021, 334:125235.
    [143] CHENG HH, WHANG LM. Resource recovery from lignocellulosic wastes via biological technologies:advancements and prospects[J]. Bioresource Technology, 2022, 343:126097.
    [144] vAN DYK JS, PLETSCHKE BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes:factors affecting enzymes, conversion and synergy[J]. Biotechnology Advances, 2012, 30(6):1458-1480.
    [145] MOYSÉS DN, REIS VCB, de ALMEIDA JRM, de MORAES LMP, TORRES FAG. Xylose fermentation by Saccharomyces cerevisiae:challenges and prospects[J]. International Journal of Molecular Sciences, 2016, 17(3):207.
    [146] RODRIGUEZ GM, HUSSAIN MS, GAMBILL L, GAO DF, YAGUCHI A, BLENNER M. Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway[J]. Biotechnology for Biofuels, 2016, 9:149.
    [147] LEDESMA-AMARO R, LAZAR Z, RAKICKA M, GUO ZP, FOUCHARD F, COQ AM CL, NICAUD JM. Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose[J]. Metabolic Engineering, 2016, 38:115-124.
    [148] PRABHU AA, THOMAS DJ, LEDESMA-AMARO R, LEEKE GA, MEDINA A, VERHEECKE-VAESSEN C, COULON F, AGRAWAL D, KUMAR V. Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica[J]. Microbial Cell Factories, 2020, 19(1):121.
    [149] RYU S, HIPP J, TRINH CT. Activating and elucidating metabolism of complex sugars in Yarrowia lipolytica[J]. Applied and Environmental Microbiology, 2015, 82(4):1334-1345.
    [150] LI HB, ALPER HS. Enabling xylose utilization in Yarrowia lipolytica for lipid production[J]. Biotechnology Journal, 2016, 11(9):1230-1240.
    [151] PRABHU AA, LEDESMA-AMARO R, LIN CSK, COULON F, THAKUR VK, KUMAR V. Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control[J]. Biotechnology for Biofuels, 2020, 13:113.
    [152] GOEPPERT A, CZAUN M, JONES JP, SURYA PRAKASH GK, OLAH GA. Recycling of carbon dioxide to methanol and derived products-closing the loop[J]. Chemical Society Reviews, 2014, 43(23):7995-8048.
    [153] COTTON CA, CLAASSENS NJ, BENITO-VAQUERIZO S, BAR-EVEN A. Renewable methanol and formate as microbial feedstocks[J]. Current Opinion in Biotechnology, 2020, 62:168-180.
    [154] WANG GK, OLOFSSON-DOLK M, HANSSON FG, DONATI S, LI XL, CHANG H, CHENG J, DAHLIN J, BORODINA I. Engineering yeast Yarrowia lipolytica for methanol assimilation[J]. ACS Synthetic Biology, 2021, 10(12):3537-3550.
    [155] ZHAI XX, GAO JQ, LI YX, GRININGER M, ZHOU YJ. Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(12):e2220816120.
    [156] HOU R, GAO LH, LIU JH, LIANG Z, ZHOU YJ, ZHANG LH, ZHANG YK. Comparative proteomics analysis of Pichia pastoris cultivating in glucose and methanol[J]. Synthetic and Systems Biotechnology, 2022, 7(3):862-868.
    [157] WU XY, CAI P, GAO LH, LI YX, YAO L, ZHOU YJ. Efficient bioproduction of 3-hydroxypropionic acid from methanol by a synthetic yeast cell factory[J]. ACS Sustainable Chemistry& Engineering, 2023, 11(16):6445-6453.
    [158] ZHAN CJ, LI XW, LAN GX, BAIDOO EEK, YANG YK, LIU YZ, SUN Y, WANG SJ, WANG YY, WANG GK, NIELSEN J, KEASLING JD, CHEN Y, BAI ZH. Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph[J]. Nature Catalysis, 2023, 6:435-450.
    [159] ZHANG SJ, GUO F, YANG Q, JIANG YJ, YANG SH, MA JF, XIN FX, HASUNUMA T, KONDO A, ZHANG WM, JIANG M. Improving methanol assimilation in Yarrowia lipolytica via systematic metabolic engineering combined with compartmentalization[J]. Green Chemistry, 2023, 25(1):183-195.
    [160] LIN YP, FENG YZ, ZHENG L, ZHAO MM, HUANG MT. Improved protein production in yeast using cell engineering with genes related to a key factor in the unfolded protein response[J]. Metabolic Engineering, 2023, 77:152-161.
    [161] LV YK, GU Y, XU JL, ZHOU JW, XU P. Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield[J]. Metabolic Engineering, 2020, 61:79-88.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐龙兴,袁丽杰,刘顺成. 解脂耶氏酵母合成萜类化合物的研究进展[J]. 微生物学通报, 2024, 51(9): 3268-3302

复制
分享
文章指标
  • 点击次数:197
  • 下载次数: 625
  • HTML阅读次数: 281
  • 引用次数: 0
历史
  • 收稿日期:2023-12-08
  • 录用日期:2024-01-30
  • 在线发布日期: 2024-09-19
  • 出版日期: 2024-09-20
文章二维码