科微学术

微生物学通报

肠道菌群在脊髓损伤后认知功能障碍中的研究进展
作者:
基金项目:

陕西省科学技术厅一般项目(2024SF-YBXM-037)


Gut microbiota in cognitive dysfunction after spinal cord injury: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    脊髓损伤作为一种破坏性的中枢神经系统疾病,除了会损害患者的运动、感觉能力外还会引起不同程度的认知功能障碍,对患者的生活质量造成重大影响。近年来的研究表明肠道菌群与中枢神经系统功能之间存在密切的联系,尤其是在脊髓损伤患者中引起认知功能异常的机制方面引起了广泛关注。因此本文将围绕脊髓损伤后肠道菌群发生改变进而影响认知功能,从下丘脑-垂体-肾上腺轴、神经递质及免疫系统3个途径,探讨肠道菌群在脊髓损伤后认知功能障碍中的研究进展。

    Abstract:

    Spinal cord injuries, as a destructive disorder of the central nervous system, not only impair the patients’ motor and sensory abilities but also lead to varying degrees of cognitive dysfunction, affecting the quality of life of the patients. In recent years, studies have found a close association between gut microbiota and central nervous system function, especially concerning the mechanism of cognitive dysfunction in the individuals with spinal cord injuries. This paper reviews the progress in the role of gut microbiota in cognitive dysfunction after spinal cord injuries via three pathways: the hypothalamic-pituitary-adrenal axis, neurotransmitters, and the immune system.

    参考文献
    [1] ROPPER AE, ROPPER AH. Acute spinal cord compression[J]. The New England Journal of Medicine, 2017, 376(14): 1358-1369.
    [2] HOU Y, LIU X, GUO Y, LIU D, GUO P, LIU J. Strategies for effective neural circuit reconstruction after spinal cord injury: use of stem cells and biomaterials[J]. World Neurosurgery, 2022, 161: 82-89.
    [3] QUADRI SA, FAROOQUI M, IKRAM A, ZAFAR A, KHAN MA. Recent update on basic mechanisms of spinal cord injury[J]. Neurosurgical Review, 2020, 43(2): 425-441.
    [4] CHAY W, KIRSHBLUM S. Predicting outcomes after spinal cord injury[J]. Physical Medicine and Rehabilitation Clinics of North America, 2020, 31(3): 331-343.
    [5] CRAIG A, GUEST R, TRAN Y, MIDDLETON J. Cognitive impairment and mood states after spinal cord injury[J]. Journal of Neurotrauma, 2017, 34(6): 1156-1163.
    [6] LI F, HUO S, SONG W. Multidimensional review of cognitive impairment after spinal cord injury[J]. Acta Neurologica Belgica, 2021, 121(1): 37-46.
    [7] 王青燕, 高慧, 何盟泽, 白心悦, 席回林, 杨彦玲. 肠道菌群影响脊髓损伤后焦虑情绪的研究进展[J]. 微生物学通报, 2023, 50(12): 5563-5573. WANG QY, GAO H, HE MZ, BAI XY, XI HL, YANG YL. Gut microbiota in anxiety after spinal cord injury: a review[J]. Microbiology China, 2023, 50(12): 5563-5573(in Chinese).
    [8] BARRIO C, ARIAS-SÁNCHEZ S, MARTÍN-MONZÓN I. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: a systematic review[J]. Psychoneuroendocrinology, 2022, 137: 105640.
    [9] CHEN Y, XU J, CHEN Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders[J]. Nutrients, 2021, 13(6): 2099.
    [10] APPLETON J. The gut-brain axis: influence of microbiota on mood and mental health[J]. Integrative Medicine (Encinitas, Calif.), 2018, 17(4): 28-32.
    [11] WECHT JM, WEIR JP, KATZELNICK CG, WYLIE G, ERAIFEJ M. Systemic and cerebral hemodynamic contribution to cognitive performance in spinal cord injury[J]. Journal of Neurotrauma, 2018, 35(24): 2957-2964.
    [12] EL-SAYED A, ALEYA L, KAMEL M. Microbiota’s role in health and diseases[J]. Environmental Science and Pollution Research International, 2021, 28(28): 36967-36983.
    [13] CHEN Y, ZHOU J, WANG L. Role and mechanism of gut microbiota in human disease[J]. Frontiers in Cellular and Infection Microbiology, 2021. doi: 10.3389/fcimb.2021.625913.
    [14] FERREIRO AL, CHOI J, RYOU J, NEWCOMER EP, THOMPSON R. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease[J]. Science Translational Medicine, 2023, 15(700): eabo2984.
    [15] ZHENG SY, LI HX, XU RC, MIAO WT, DAI MY, DING ST, LIU HD. Potential roles of gut microbiota and microbial metabolites in Parkinson’s disease[J]. Ageing Research Reviews, 2021, 69: 101347.
    [16] LIU L, WANG H, CHEN X, ZHANG Y, ZHANG H, XIE P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment[J]. eBioMedicine, 2023. doi: 10.1016/j.ebiom.2023.104527.
    [17] JIN LY, LI J, WANG KF, XIA WW, ZHU ZQ. Blood-spinal cord barrier in spinal cord injury: a review[J]. Journal of Neurotrauma, 2021, 38(9): 1203-1224.
    [18] 高慧, 贾宁, 梁家兴, 刘佳, 邓智中, 杨彦玲. 肠道菌群在脊髓损伤后胃肠道炎症反应中的研究进展[J]. 微生物学通报, 2023, 50(2): 709-718. GAO H, JIA N, LIANG JX, LIU J, DENG ZZ, YANG YL. Gut microbiota in gastrointestinal inflammatory response after spinal cord injury: a review[J]. Microbiology China, 2023, 50(2): 709-718(in Chinese).
    [19] JING Y, YU Y, BAI F, WANG L, YANG D. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis[J]. Microbiome, 2021, 9(1): 59.
    [20] KIGERL KA, HALL JCE, WANG L, MO X, YU Z, POPOVICH PG. Gut dysbiosis impairs recovery after spinal cord injury[J]. The Journal of Experimental Medicine, 2016, 213(12): 2603.
    [21] KANG JN, SUN ZF, LI XY, ZHANG XD, JIN ZX. Alterations in gut microbiota are related to metabolite profiles in spinal cord injury[J]. Neural Regeneration Research, 2022, 18(5): 1076-1083.
    [22] BAZZOCCHI G, TURRONI S, BULZAMINI MC, D’AMICO F, BAVA A. Changes in gut microbiota in the acute phase after spinal cord injury correlate with severity of the lesion[J]. Scientific Reports, 2021, 11: 12743.
    [23] ZR, YH, HC, MC, HW. Gut Microbiota disorders promote inflammation and aggravate spinal cord injury through the TLR4/MyD88 signaling pathway[J]. Frontiers in Nutrition, 2021. doi: 10.3389/fnut. 2021.702659.
    [24] WU Z, ZHU R, YU Y, WANG JJ, HU X. Spinal cord injury-activated C/EBPβ-AEP axis mediates cognitive impairment through APP C586/Tau N368 fragments spreading[J]. Progress in Neurobiology, 2023, 227: 102467.
    [25] D’ARGENIO V, VENERUSO I, GONG C, CECARINI V, BONFILI L, ELEUTERI A M. Gut microbiome and mycobiome alterations in an in vivo model of Alzheimer’s disease[J]. Genes, 2022, 13(9): 1564.
    [26] YE H, ROBAK LA, YU M, CYKOWSKI M, SHULMAN JM. Genetics and pathogenesis of Parkinson’s syndrome[J]. Annual Review of Pathology, 2023, 18: 95-121.
    [27] KHEYRKHAH H, SOLTANI ZANGBAR H, SALIMI O, SHAHABI P, ALAEI HA. Prefrontal dopaminergic system and its role in working memory and cognition in spinal cord-injured rats[J]. Experimental Physiology, 2020, 105(9): 1579-1587.
    [28] GAZERANI P. Probiotics for Parkinson’s disease[J]. International Journal of Molecular Sciences, 2019, 20(17): 4121.
    [29] CAO W, XING M, LIANG S, SHI Y, LI Z, ZOU W. Causal relationship of gut microbiota and metabolites on cognitive performance: a mendelian randomization analysis[J]. Neurobiology of Disease, 2024, 191: 106395.
    [30] CUI Y, LIU J, LEI X, LIU S, CHEN H. Dual-directional regulation of spinal cord injury and the gut microbiota[J]. Neural Regeneration Research, 2024, 19(3): 548.
    [31] KUIJER EJ, STEENBERGEN L. The microbiota- gut-brain axis in hippocampus-dependent learning and memory: current state and future challenges[J]. Neuroscience & Biobehavioral Reviews, 2023, 152: 105296.
    [32] CARABOTTI M, SCIROCCO A, MASELLI MA, SEVERI C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems[J]. Annals of Gastroenterology : Quarterly Publication of the Hellenic Society of Gastroenterology, 2015, 28(2): 203-209.
    [33] RUSCH JA, LAYDEN BT, DUGAS LR. Signalling cognition: the gut microbiota and hypothalamic- pituitary-adrenal axis[J]. Frontiers in Endocrinology, 2023, 14: 1130689.
    [34] ZENG H, CHENG L, LU DZ, FAN S, WANG KX. Unbiased multitissue transcriptomic analysis reveals complex neuroendocrine regulatory networks mediated by spinal cord injury-induced immunodeficiency[J]. Journal of Neuroinflammation, 2023, 20: 219.
    [35] WU Q, XU Z, SONG S, ZHANG H, ZHANG W. Gut microbiota modulates stress-induced hypertension through the HPA axis[J]. Brain Research Bulletin, 2020, 162: 49-58.
    [36] MUDD AT, BERDING K, WANG M, DONOVAN SM, DILGER RN. Serum cortisol mediates the relationship between fecal Ruminococcus and brain N-acetylaspartate in the young pig[J]. Gut Microbes, 2017, 8(6): 589-600.
    [37] KRUSE AO, BUSTILLO JR. Glutamatergic dysfunction in schizophrenia[J]. Translational Psychiatry, 2022, 12(1): 500.
    [38] OSTFELD I, HOFFMAN JR. The effect of β-alanine supplementation on performance, cognitive function and resiliency in soldiers[J]. Nutrients, 2023, 15(4): 1039.
    [39] LOHANI S, MOBERLY AH, BENISTY H, LANDA B, JING M. Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity[J]. Nature Neuroscience, 2022, 25(12): 1706-1713.
    [40] MELDRUM BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology[J]. The Journal of Nutrition, 2000, 130(Suppl 4S): 1007S-15S.
    [41] LIPTON SA, ROSENBERG PA. Excitatory amino acids as a final common pathway for neurologic disorders[J]. New England Journal of Medicine, 1994, 330(9): 613-622.
    [42] LIU D, XU GY, PAN E, MCADOO DJ. Neurotoxicity of glutamate at the concentration released upon spinal cord injury[J]. Neuroscience, 1999, 93(4): 1383-1389.
    [43] CHANG CH, LIN CH, LANE HY. d-glutamate and gut microbiota in Alzheimer’s disease[J]. International Journal of Molecular Sciences, 2020, 21(8): 2676.
    [44] ZAREIAN M, EBRAHIMPOUR A, BAKAR FA, MOHAMED AKS, FORGHANI B, AB-KADIR MSB, SAARI N. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods[J]. International Journal of Molecular Sciences, 2012, 13(5): 5482-5497.
    [45] OSTFELD I, BEN-ZEEV T, ZAMIR A, LEVI C, GEPNER Y, SPRINGER S, HPFFMAN JR. Role of β-alanine supplementation on cognitive function, mood, and physical function in older adults: double-blind randomized controlled study[J]. Nutrients, 2023, 15(4): 923.
    [46] XUE MY, SUN HZ, WU XH, LIU GX, GUAN LL. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance[J]. Microbiome, 2020, 8: 64.
    [47] IWATA Y, NAKADE Y, KITAJIMA S, YONEDA NS, OSHIMA M. Protective effect of d-alanine against acute kidney injury[J]. American Journal of Physiology. Renal Physiology, 2022, 322(6): F667-F679.
    [48] GARCIA-MARQUES FJ, ZAKRASEK E, BERMUDEZ A, POLASKO AL, LIU S. Proteomics analysis of urine and catheter-associated biofilms in spinal cord injury patients[J]. American Journal of Clinical and Experimental Urology, 2023, 11(3): 206-219.
    [49] CHEN ZR, HUANG JB, YANG SL, HONG FF. Role of cholinergic signaling in Alzheimer’s disease[J]. Molecules, 2022, 27(6): 1816.
    [50] ROGERS JL, KESNER RP. Cholinergic modulation of the hippocampus during encoding and retrieval of tone/shock-induced fear conditioning[J]. Learning & Memory, 2004, 11(1): 102-107.
    [51] SUN Q, ZHANG J, LI A, YAO M, LIU G. Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer’s disease[J]. Nature Communications, 2022, 13: 998.
    [52] MILLE T, QUILGARS C, CAZALETS JR, BERTRAND SS. Acetylcholine and spinal locomotor networks: the insider[J]. Physiological Reports, 2021, 9(3): e14736.
    [53] THYE AYK, LAW JWF, TAN LTH, CHAN KG, LEE LH. Exploring the gut microbiome in myasthenia gravis[J]. Nutrients, 2022, 14(8): 1647.
    [54] DAËRON M. The immune system as a system of relations[J]. Frontiers in Immunology, 2022, 13: 984678.
    [55] van BROECKHOVEN J, SOMMER D, DOOLEY D, HENDRIX S, FTANSSEN AJPM. Macrophage phagocytosis after spinal cord injury: when friends become foes[J]. Brain, 2021, 144(10): 2933-2945.
    [56] CUNNINGHAM AJ, MURRAY CA, O’NEILL LAJ, LYNCH MA. Interleukin-1β (IL-1β) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro[J]. Neuroscience Letters, 1996, 203(1): 17-20.
    [57] KELLY Á, VEREKER E, NOLAN Y, BRADY M, BARRY C. Activation of p38 plays a pivotal role in the inhibitory effect of lipopolysaccharide and interleukin-1β on long term potentiation in rat dentate gyrus[J]. Journal of Biological Chemistry, 2003, 278(21): 19453-19462.
    [58] PLATA-SALAMÁN CR, FFRENCH-MULLEN JMH. Interleukin-1β depresses calcium currents in CA1 hippocampal neurons at pathophysiological concentrations[J]. Brain Research Bulletin, 1992, 29(2): 221-223.
    [59] BARRIENTOS RM, HIGGINS EA, SPRUNGER DB, WATKINS LR, RUDY JW, MAIER SF. Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus[J]. Behavioural Brain Research, 2002, 134(1): 291-298.
    [60] YU Z, CHEN W, ZHANG L, CHEN Y, CHEN W. Gut-derived bacterial LPS attenuates incubation of methamphetamine craving via modulating microglia[J]. Brain, Behavior, and Immunity, 2023, 111: 101-115.
    [61] LEE SI, KIM HS, KOO JM, KIM HS, KOO JM, KIM IH. Lactobacillus acidophilus modulates inflammatory activity by regulating the TLR4 and NF-κB expression in porcine peripheral blood mononuclear cells after lipopolysaccharide challenge[J]. The British Journal of Nutrition, 2016, 115(4): 567-575.
    [62] HE GX, PEI JM, WANG LY, SHI R, GAO XC, LI J, YANG YL. Paeonol inhibits the phosphorylation of NF-κB p65 and the expression of inflammatory cytokines in mouse BV2 microglia induced by lipopolysaccharide[J]. Chinese Journal of Cellular and Molecular Immunology, 2022, 38(4): 289-294.
    [63] LU X, XU G, LIN Z, ZOU F, LIU S. Engineered exosomes enriched in netrin-1 modRNA promote axonal growth in spinal cord injury by attenuating inflammation and pyroptosis[J]. Biomaterials Research, 2023, 27: 3.
    [64] KELLY JR, ALLEN AP, TEMKO A, HUTCH W, KENNEDY PJ. Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in healthy male subjects[J]. Brain, Behavior, and Immunity, 2017, 61: 50-59.
    [65] SILVA YP, BERNARDI A, FROZZA RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication[J]. Frontiers in Endocrinology, 2020, 11: 25.
    [66] KIM CS, CHA L, SIM M, JUNG S, CHUN WY, BAIK HW, SHIN DM. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial[J]. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2020, 76(1): 32-40.
    [67] KHALATBARY AR. Natural polyphenols and spinal cord injury[J]. Iranian Biomedical Journal, 2014, 18(3): 120-129.
    [68] HE N, SHEN G, JIN X, LI H, WANG J. Resveratrol suppresses microglial activation and promotes functional recovery of traumatic spinal cord via improving intestinal microbiota[J]. Pharmacological Research, 2022, 183: 106377.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

田春平,王青燕,高慧,马佳蕊,吴佳俊,杜嘉妮,胡倩倩,杨彦玲. 肠道菌群在脊髓损伤后认知功能障碍中的研究进展[J]. 微生物学通报, 2024, 51(11): 4383-4393

复制
分享
文章指标
  • 点击次数:146
  • 下载次数: 297
  • HTML阅读次数: 373
  • 引用次数: 0
历史
  • 收稿日期:2024-03-04
  • 录用日期:2024-04-22
  • 在线发布日期: 2024-10-31
  • 出版日期: 2024-11-20
文章二维码