科微学术

微生物学通报

微生物菌肥在植物减肥增效中的应用研究进展:以果树为例
作者:
基金项目:

山东省重点研发计划(2020CXGC010803-06);山东省科技厅青年创新团队项目(2022KJ333);国家自然科学基金青年基金(42007208);山东省自然科学基金青年基金(ZR2020QD084)


Research progress in the application of microbial fertilizers in chemical fertilizer reduction and efficiency increase in orcharding
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [110]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在国内外积极发展绿色农业的背景下,生产绿色优质农产品已成为当今农业绿色发展新趋势。然而,果树栽培中仍存在化肥农药过量施用的问题,造成农田生态环境严重污染,果实品质下降,进而危害人体健康。微生物菌肥是一类能够改良土壤生态、促进植物生长发育的新型绿色肥料,含有多种有益活性微生物,有助于改善农田生态环境,提高果实产量和品质,实现植物种植减肥增效。以往有关微生物菌肥的研究多局限于少数几种菌或单一植物领域,缺乏对微生物菌肥作用机制及功效的系统探讨。本文综合梳理了微生物菌肥改良土壤生态和提高植物抗病/抗逆的作用机制,并以果树为例,重点阐述微生物菌肥在提高果实产量和品质、改善农业生态环境的应用,同时指出技术瓶颈,提出新的研究思路和方向,为改善农业生态环境、促进现代农业可持续发展提供理论指导。

    Abstract:

    The production of green and high-quality agricultural products has become a new trend, especially in the context of developing green agriculture. However, the excessive use of fertilizers and pesticides in orcharding has caused severe pollution of the farmland environment, resulting in low-quality fruits and posing a threat to human health. Microbial fertilizers are a new type of green fertilizers that contain beneficial microorganisms to enhance soil ecology, promote plant development, and increase productivity and can reduce the application of chemical fertilizers. Although the current research on microbial fertilizers is limited to a few microbial species and single crops, the studies have shown the potential of microbial fertilizers in improving soil, yield, and plant quality, while the mechanisms and effectiveness of these fertilizers need systematic investigation. Therefore, this article reviews the mechanisms of microbial fertilizers in improving soil ecology and enhancing plant resistance to disease and stress. Taking fruit trees as an example, we focus on the application of microbial fertilizers in improving the fruit yield and quality as well as the agricultural environment. In addition, we discuss the technical bottlenecks and put forward new research ideas and directions, aiming to provide theoretical references for improving the agricultural environment and promoting sustainable agricultural development.

    参考文献
    [1] MENG JX, ZHANG XY, HAN XS, FAN B. Application and development of biocontrol agents in China[J]. Pathogens, 2022, 11(10): 1120.
    [2] 农业农村部. 农业农村部关于印发《到2025年化肥减量化行动方案》和《到2025年化学农药减量化行动方案》的通知[J]. 中华人民共和国农业农村部公报, 2022(12): 11-19. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Circular of the Ministry of Agriculture and Rural Affairs on printing and distributing the Action Plan for Chemical Fertilizer Use Reduction by 2025 and the Action Plan for Chemical Pesticides Use Reduction by 2025[J]. Gazette of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2022(12): 11-19(in Chinese).
    [3] 何燕燕. 微生物菌肥在农业生产中的价值和应用[J]. 工业微生物, 2023, 53(2): 8-10. HE YY. Research on the value and application of microbial fertilizer in agricultural production[J]. Industrial Microbiology, 2023, 53(2): 8-10(in Chinese).
    [4] 戴美松, 王月志, 蔡丹英, 施泽彬, 孙钧. 我国微生物菌肥登记现状及其在果树减肥增效中的应用[J]. 浙江农业科学, 2021, 62(2): 241-246. DAI MS, WANG YZ, CAI DY, SHI ZB, SUN J. Registration status of microbial fertilizer and its application in fertilizer reduction with efficiency increase on fruit tree in China[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(2): 241-246(in Chinese).
    [5] 仝倩倩, 祝英, 崔得领, 赵毅, 陈玉坤, 王治业, 熊友才. 我国微生物肥料发展现状及在蔬菜生产中的应用[J]. 中国土壤与肥料, 2022(4): 259-266. TONG QQ, ZHU Y, CUI DL, ZHAO Y, CHEN YK, WANG ZY, XIONG YC. The development status of microbial fertilizer in China and its application in vegetable planting[J]. Soil and Fertilizer Sciences in China, 2022(4): 259-266(in Chinese).
    [6] 李涛, 张朝辉, 郭雅雯, 田香, 许晓莞, 邱立友. 国内外微生物肥料研究进展及展望[J]. 江苏农业科学, 2019, 47(10): 37-41. LI T, ZHANG ZH, GUO YW, TIAN X, XU XW, QIU LY. Research progress and prospect of microbial fertilizer at domestic and abroad[J]. Jiangsu Agricultural Sciences, 2019, 47(10): 37-41(in Chinese).
    [7] 张旭奇, 刘文钰. 生物菌肥作用机制研究进展[J]. 现代农业科技, 2023(23): 163-165, 169. ZHANG XQ, LIU WY. Research progress on the mechanism of biological bacterial fertilizer[J]. Modern Agricultural Science and Technology, 2023(23): 163-165, 169(in Chinese).
    [8] 李辉, 杨海霞, 孙燚, 王彬娜, 郝羽, 柴静, 王金凤. 中国农用微生物菌肥登记情况及在草莓中的应用进展[J]. 农业工程技术, 2022, 42(19): 90-94. LI H, YANG HX, SUN Y, WANG BN, HAO Y, CHAI J, WANG JF. Registration of agricultural microbial fertilizer in China and its application progress in strawberries[J]. Agricultural Engineering Technology, 2022, 42(19): 90-94(in Chinese).
    [9] 刘云峰, 杨宁, 温丹, 王晓, 孙凯宁, 王克安, 于占东. 微生物菌肥在果树上的应用研究[J]. 安徽农业科学, 2022, 50(7): 11-15. Liu YF, Yang N, Wen D, Wang X, Sun KN, Wang KA. Research progress on application of microbial fertilizers to horticultural crops[J]. Journal of Anhui Agricultural Sciences, 2022, 50(7): 11-15(in Chinese).
    [10] 李钦, 王引权, 彭桐, 荔淑楠, 姚阳阳. 微生物菌肥的研究进展及其在中药材生产中的应用[J]. 农业与技术, 2020, 40(19): 1-4. LI Q, WANG YQ, PENG T, LI SN, YAO YY. Research progress of microbial bacterial fertilizer and its application in Chinese herbal medicine production[J]. Agriculture and Technology, 2020, 40(19): 1-4(in Chinese).
    [11] LIU ZZ, AWASTHI MK, ZHAO JF, LIU G, SYED A, AL-SHWAIMAN HA, FANG J. Unraveling impacts of inoculating novel microbial agents on nitrogen conversion during cattle manure composting: core microorganisms and functional genes[J]. Bioresource Technology, 2023, 390: 129887.
    [12] LIU LY, LIU S, ZHU SR, ZHOU XY, MA YS, PAN NG, LI D, LI Y, LI CT. Effects of different concentrations of biological maturity agents on nitrogen and microbial diversity of Auricularia heimuer residue compost[J]. Bioresource Technology, 2023, 388: 129641.
    [13] TANG Y, CHE YJ, BAI XY, WANG ZY, GU SY. Effects of application of phosphate and phosphate- solubilizing bacteria on bacterial diversity and phosphorus fractions in a Phaeozems[J]. Heliyon, 2023, 9(12): e22937.
    [14] DAS PP, SINGH KR, NAGPURE G, MANSOORI A, SINGH RP, AHMAD GHAZI I, KUMAR A, SINGH J. Plant-soil-microbes: a tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices[J]. Environmental Research, 2022, 214(Pt 1): 113821.
    [15] 王晓艳. 不同菌肥对油茶叶内源激素及氮磷钾含量和林下土壤理化性质的影响[J]. 江苏林业科技, 2021, 48(5): 28-32, 38. WANG XY. Effects of different bacterial fertilizers on soil properties, leaf endogenous hormones and N, P, K contents in Camellia oleifera Abel[J]. Journal of Jiangsu Forestry Science & Technology, 2021, 48(5): 28-32, 38(in Chinese).
    [16] 袁雅文. 有益微生物作用机理及微生物菌肥的应用前景[J]. 杂交水稻, 2022, 37(4): 7-14. YUAN YW. Action mechanism of beneficial microorganisms and application prospect of microbial fertilizers[J]. Hybrid Rice, 2022, 37(4): 7-14(in Chinese).
    [17] RASHEEDA SM, MARY SONALI J, KUMAR PS, RANGASAMY G, GAYATHRI KV, PARTHASARATHY V. Rhizobium mayense sp. nov., an efficient plant growth-promoting nitrogen-fixing bacteria isolated from rhizosphere soil[J]. Environmental Research, 2023, 220: 115200.
    [18] 徐云龙, 周游, 汪军, 郭立佳, 黄俊生, 杨腊英. 一株自生固氮菌的分离鉴定及其对不同品种香蕉的促生特性[J]. 热带作物学报, 2024, 45(5): 936-943. Xu YL, Zhou Y, Wang J, Guo LJ, Huang JS, Yang LY. Isolation and identification of a nitrogen fixing bacteria and its growth promoting characteristics on different banana varieties[J]. Chinese Journal of Tropical Crops, 2024, 45(5): 936-943(in Chinese).
    [19] SHEN SL, LI YH, CHEN MB, HUANG J, LIU F, XIE SJ, KONG LP, PAN Y. Reduced cadmium toxicity in rapeseed via alteration of root properties and accelerated plant growth by a nitrogen-fixing bacterium[J]. Journal of Hazardous Materials, 2023, 449: 131040.
    [20] CHENG YY, NARAYANAN M, SHI XJ, CHEN XP, LI ZL, MA Y. Phosphate-solubilizing bacteria: their agroecological function and optimistic application for enhancing agro-productivity[J]. The Science of the Total Environment, 2023, 901: 166468.
    [21] 温佳旭, 陈雪丽, 肖洋, 万书明, 孙磊, 方海瑞. 土壤中主要溶磷菌种类及其作用机制[J]. 北方园艺, 2023(14): 139-145. WEN JX, CHEN XL, XIAO Y, WAN SM, SUN L, FANG HR. Major phosphorus-dissolving bacteria species in soils and mechanisms of action[J]. Northern Horticulture, 2023(14): 139-145(in Chinese).
    [22] SARIKHANI MR, KHOSHRU B, GREINER R. Isolation and identification of temperature tolerant phosphate solubilizing bacteria as a potential microbial fertilizer[J]. World Journal of Microbiology and Biotechnology, 2019, 35(8): 126.
    [23] KOCZORSKI P, FURTADO BU, BAUM C, WEIH M, INGVARSSON P, HULISZ P, HRYNKIEWICZ K. Large effect of phosphate-solubilizing bacteria on the growth and gene expression of Salix spp. at low phosphorus levels[J]. Frontiers in Plant Science, 2023, 14: 1218617.
    [24] 刘岱松, 王义伟, 蔡柯, 张晓亮, 张自豪, 马俊锋, 苗春雨, 刘猛, 徐传强, 郑玉欣, 胡佳丽, 曹媛媛. 根际解钾菌的筛选及其对烟草钾素吸收的影响[J]. 安徽农业大学学报, 2023, 50(4): 557-562. LIU DS, WANG YW, CAI K, ZHANG XL, ZHANG ZH, MA JF, MIAO CY, LIU M, XU CQ, ZHENG YX, HU JL, CAO YY. Isolation of potassium-solubilizing rhizobacteria and the effects on potassium absorption of tobacco plants[J]. Journal of Anhui Agricultural University, 2023, 50(4): 557-562(in Chinese).
    [25] 王乙富, 朱新开. 解钾菌对盐胁迫下小麦种子萌发和幼苗生长的促进作用及其机制分析[J]. 分子植物育种, 2023, 21(17): 5761-5767. WANG YF, ZHU XK. Promotion of wheat seed germination and seedling growth under salt stress by KSB and analysis of its mechanism[J]. Molecular Plant Breeding, 2023, 21(17): 5761-5767(in Chinese).
    [26] MUTHURAJA R, MUTHUKUMAR T. Co-inoculation of halotolerant potassium solubilizing Bacillus licheniformis and Aspergillus violaceofuscus improves tomato growth and potassium uptake in different soil types under salinity[J]. Chemosphere, 2022, 294: 133718.
    [27] FENG JN, CHEN LL, XIA TY, RUAN YN, SUN XL, WU T, ZHONG Y, SHAO XD, TANG ZX. Microbial fertilizer regulates C:N:P stoichiometry and alleviates phosphorus limitation in flue-cured tobacco planting soil[J]. Scientific Reports, 2023, 13: 10276.
    [28] PARK I, SEO YS, MANNAA M. Recruitment of the rhizo-microbiome army: assembly determinants and engineering of the rhizosphere microbiome as a key to unlocking plant potential[J]. Frontiers in Microbiology, 2023, 14: 1163832.
    [29] 赖锟阳, 肖建才, 王红阳, 邱金镇, 万修福, 闫滨滨, 康传志, 孙楷, 张燕, 郭兰萍. 微生物菌肥调控药用植物品质形成的作用机制及应用与展望[J]. 中国中药杂志, 2024, 49(4): 912-923. LAI KY, XIAO JC, WANG HY, QIU JZ, WAN XF, YAN BB, KANG CZ, SUN K, ZHANG Y, GUO LP. Mechanism and application prospects of microbial fertilizers in regulating quality formation of medicinal plants[J]. China Journal of Chinese Materia Medica, 2024, 49(4): 912-923(in Chinese).
    [30] PU RF, WANG PP, GUO LP, LI MH, CUI XM, WANG CX, LIU Y, YANG Y. The remediation effects of microbial organic fertilizer on soil microorganisms after chloropicrin fumigation[J]. Ecotoxicology and Environmental Safety, 2022, 231: 113188.
    [31] AFANADOR-BARAJAS LN, NAVARRO-NOYA YE, LUNA-GUIDO ML, DENDOOVEN L. Impact of a bacterial consortium on the soil bacterial community structure and maize (Zea mays L.) cultivation[J]. Scientific Reports, 2021, 11: 13092.
    [32] ZHAO YG, LU GX, JIN X, WANG YC, MA K, ZHANG HJ, YAN HL, ZHOU XL. Effects of microbial fertilizer on soil fertility and alfalfa rhizosphere microbiota in alpine grassland[J]. Agronomy, 2022, 12(7): 1722.
    [33] 岳宏忠, 张东琴, 侯栋, 李亚莉, 姚拓, 黄书超. 微生物菌肥部分替代化肥对设施黄瓜产量和土壤细菌群落结构的影响[J]. 西北农林科技大学学报(自然科学版), 2022, 50(7): 118-126, 137. YUE HZ, ZHANG DQ, HOU D, LI YL, YAO T, HUANG SC. Effects of partial substitution of chemical fertilizer by microbial fertilizer on yield of cucumber and soil bacterial community structure in greenhouse[J]. Journal of Northwest A&F University (Natural Science Edition), 2022, 50(7): 118-126, 137(in Chinese).
    [34] 肖娴, 桂一峰, 朱艳, 符菁, 朱雪松, 朱显, 赵远. 微生物菌肥对水稻土壤细菌群落结构与活性的影响[J]. 西南农业学报, 2021, 34(10): 2174-2181. XIAO X, GUI YF, ZHU Y, FU J, ZHU XS, ZHU X, ZHAO Y. Effects of microbial inoculations on structure and activity of paddy soil bacterial community[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(10): 2174-2181(in Chinese).
    [35] LI XQ, LI DY, JIANG YG, XU J, REN XX, ZHANG Y, WANG H, LU QJ, YAN JL, AHMED T, LI B, GUO K. The effects of microbial fertilizer based Aspergillus brunneoviolaceus HZ23 on pakchoi growth, soil properties, rhizosphere bacterial community structure, and metabolites in newly reclaimed land[J]. Frontiers in Microbiology, 2023, 14: 1091380.
    [36] 孟庆英, 杨晓贺, 姚亮亮, 张茂明, 邱磊, 王自杰, 丁俊杰, 朱宝国. 秸秆与微生物菌肥配施对盐碱稻田土壤团聚体及真菌群落多样性的影响[J]. 黑龙江农业科学, 2022(8): 25-30. MENG QY, YANG XH, YAO LL, ZHANG MM, QIU L, WANG ZJ, DING JJ, ZHU BG. Effects of combined application of straw and microbial fertilizer on soil aggregates and fungal community diversity of rice field saline alkali soil[J]. Heilongjiang Agricultural Sciences, 2022(8): 25-30(in Chinese).
    [37] FU CY, MA WR, QIANG BB, JIN XJ, ZHANG YX, WANG MX. Effect of chemical fertilizer with compound microbial fertilizer on soil physical properties and soybean yield[J]. Agronomy, 2023, 13(10): 2488.
    [38] PENG YY, ZHANG H, LIAN JS, ZHANG W, LI GH, ZHANG JF. Combined application of organic fertilizer with microbial inoculum improved aggregate formation and salt leaching in a secondary salinized soil[J]. Plants, 2023, 12(16): 2945.
    [39] RILLIG MC, MULLER LAH, LEHMANN A. Soil aggregates as massively concurrent evolutionary incubators[J]. The ISME Journal, 2017, 11(9): 1943-1948.
    [40] NAYAK M. Microbial fertilizer effect in soil enhancement[J]. Journal of Microbial & Biochemical Technology, 2021, 13(4): 1.
    [41] ZHOU N, MU MJ, YANG M, ZHOU Y, MA MG. The effect of microbial fertilizer on the growth, rhizospheric environment and medicinal quality of Fritillaria taipaiensis[J]. Horticulturae, 2021, 7(11): 500.
    [42] 冯世鑫, 蒋妮, 陈乾平, 蒋水元, 唐辉. 微生物菌肥对罗汉果根结线虫和土壤酶活性的影响[J]. 热带农业科学, 2021, 41(4): 73-78. FENG SX, JIANG N, CHEN QP, JIANG SY, TANG H. Effects of compound microbial fertilizer on root-knot nematode disease of Siraitia grosvenorii and soil enzyme activity[J]. Chinese Journal of Tropical Agriculture, 2021, 41(4): 73-78(in Chinese).
    [43] ZHANG LQ, HU J, LI C, CHEN YY, ZHENG LG, DING D, SHAN SF. Synergistic mechanism of iron manganese supported biochar for arsenic remediation and enzyme activity in contaminated soil[J]. Journal of Environmental Management, 2023, 347: 119127.
    [44] 程鸿燕, 张大琪, 黄斌, 任立瑞, 郝宝强, 靳茜, 颜冬冬, 王秋霞, 曹坳程. 微生物菌肥对熏蒸剂处理后土壤微生态的影响研究进展[J]. 农药学学报, 2020, 22(5): 734-741. CHENG HY, ZHANG DQ, HUANG B, REN LR, HAO BQ, JIN X, YAN DD, WANG QX, CAO AC. Research progress on the effect of microbial fertilizers on soil microecology after soil fumigation[J]. Chinese Journal of Pesticide Science, 2020, 22(5): 734-741(in Chinese).
    [45] 庞勋, 梁冉, 刘继国, 张翰林, 郭瑞阳, 耿亚菲, 刘兆东, 耿立清, 王艳芹. 生物有机肥对农田土壤特性、作物产量与品质影响的研究进展[J]. 土壤科学, 2023, 11(2): 100-106. Pang X, Liang R, Liu JG, Zhang HL, Guo RY, Geng YF, Liu ZD, Geng LQ, Wang YQ. Research progress on effects of bio-organic fertilizer on soil characteristics of farmland, crop yield and quality[J]. Hans Journal of Soil Science, 2023, 11(2): 100-106(in Chinese).
    [46] GARCIA-LEMOS AM, GROßKINSKY DK, STOKHOLM MS, LUND OS, NICOLAISEN MH, ROITSCH TG, VEIERSKOV B, NYBROE O. Root-associated microbial communities of Abies nordmanniana: insights into interactions of microbial communities with antioxidative enzymes and plant growth[J]. Frontiers in Microbiology, 2019, 10: 1937.
    [47] MAKAURE BT, AREMU AO, GRUZ J, MAGADLELA A. Phenolic acids and plant antioxidant capacity enhance growth, nutrition, and plant-microbe interaction of Vigna unguiculata L. (walp) grown in acidic and nutrient-deficient grassland and savanna soils[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(1): 190-203.
    [48] FIRA D, DIMKIĆ I, BERIĆ T, LOZO J, STANKOVIĆ S. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology, 2018, 285: 44-55.
    [49] CHOE SG, MAENG HR, PAK SJ, SONG NAM U. Production of Bacillus thuringiensis biopesticide using penicillin fermentation waste matter and application in agriculture[J]. Journal of Natural Pesticide Research, 2022, 2: 100012.
    [50] SUBEDI A, MINSAVAGE GV, JONES JB, GOSS EM, ROBERTS PD. Exploring diversity of bacterial spot associated Xanthomonas population of pepper in southwest Florida[J]. Plant Disease, 2023, 107(10): 2978-2985.
    [51] FATIMA R, MAHMOOD T, MOOSA A, ASLAM MN, SHAKEEL MT, MAQSOOD A, SHAFIQ MU, AHMAD T, MOUSTAFA M, AL-SHEHRI M. Bacillus thuringiensis CHGP12 uses a multifaceted approach for the suppression of Fusarium oxysporum f. sp. ciceris and to enhance the biomass of chickpea plants[J]. Pest Management Science, 2023, 79(1): 336-348.
    [52] 郝大志, 王咏坤, 陈捷, 辛舟生, 高永东. 海藻渣复配微生物菌剂防治黄瓜苗期枯萎病的协同增效作用[J]. 中国生物防治学报, 2022, 38(1): 97-107. HAO DZ, WANG YK, CHEN J, XIN ZS, GAO YD. Synergistic effect of seaweed residue combined with microbial inoculum on cucumber Fusarium wilt control[J]. Chinese Journal of Biological Control, 2022, 38(1): 97-107(in Chinese).
    [53] SHARMA G, MATHUR V. Modulation of insect-induced oxidative stress responses by microbial fertilizers in Brassica juncea[J]. FEMS Microbiology Ecology, 2020, 96(4): fiaa040.
    [54] Shi WC, Li MC, Wei GS, Tian RM, Li CP, Wang B, Lin RS, Shi CY, Chi XL, Zhou B, Gao Z. The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome[J]. Microbiome, 2019, 7(1): 14.
    [55] Shi WC, Su GY, Li MC, Wang B, Lin RS, Yang YT, Wei T, Zhou B, Gao Z. Distribution of bacterial endophytes in non-lesion tissues of potato and their response to potato common cab[J]. Frontiers in Microbiology, 2021, 12: 616013.
    [56] NIU SQ, GAO Y, ZI HX, LIU Y, LIU XM, XIONG XQ, YAO QQ, QIN ZW, CHEN N, GUO L, YANG YZ, QIN P, LIN JZ, ZHU YH. The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance in rice via a multi-level mechanism[J]. The Crop Journal, 2022, 10(2): 375-386.
    [57] ZHAO HG, ZHAO J, LI LJ, YIN CY, CHEN Q, NIE XX, PANG JH, WANG LX, LI EZ. Effect of nitrogen application and microbial fertilizer on nitrogen conversion processes in saline farmland[J]. Water, 2023, 15(15): 2748.
    [58] LI Y, FANG F, WEI JL, WU XB, CUI RZ, LI GS, ZHENG FL, TAN DS. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment[J]. Scientific Reports, 2019, 9: 12014.
    [59] 王启尧, 赵庚星, 赵永昶, 杨婧文, 张术伟, 李涛, 李建伟, 潘登, 涂强. 滨海盐渍棉田施用微生物菌肥的降盐效果及棉花长势响应[J]. 华北农学报, 2021, 36(S1): 267-274. WANG QY, ZHAO GX, ZHAO YC, YANG JW, ZHANG SW, LI T, LI JW, PAN D, TU Q. Effect of microbial bacterial fertilizer on reducing salt and cotton growth in coastal saline cotton field[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 267-274(in Chinese).
    [60] 刘月, 杨树青, 张万锋, 娄帅. 微咸水灌溉下微生物菌肥对盐渍土理化性质和细菌群落的影响[J]. 环境科学, 2023, 44(8): 4585-4598. LIU Y, YANG SQ, ZHANG WF, LOU S. Effects of microbial fertilizer on physicochemical properties and bacterial communities of saline soil under brackish water irrigation[J]. Environmental Science, 2023, 44(8): 4585-4598(in Chinese).
    [61] LIU HW, BRETTELL LE, QIU ZG, SINGH BK. Microbiome-mediated stress resistance in plants[J]. Trends in Plant Science, 2020, 25(8): 733-743.
    [62] LIU J, LI H, YUAN ZY, FENG JJ, CHEN SH, SUN GZ, WEI ZH, HU TT. Effects of microbial fertilizer and irrigation amount on growth, physiology and water use efficiency of tomato in greenhouse[J]. Scientia Horticulturae, 2024, 323: 112553.
    [63] MISRA S, CHAUHAN PS. ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism[J]. 3 Biotech, 2020, 10(3): 119.
    [64] Wei GS, Li MC, Shi WC, Tian RM, Chang CY, Wang ZR, Wang NX, Zhao GX, Gao Z. Similar drivers but different effects lead to distinct ecological patterns of soil bacterial and archaeal communities[J]. Soil Biology & Biochemistry, 2020, 144: 107759.
    [65] KAUR J, PANDOVE G. Understanding the beneficial interaction of plant growth promoting rhizobacteria and endophytic bacteria for sustainable agriculture: a bio-revolution approach[J]. Journal of Plant Nutrition, 2023, 46(14): 3569-3597.
    [66] VERMA P, CHANDRA P, RAI AK, KUMAR A, PRAJAPAT K, SUNDHA P, BASAK N, MANN A, SAHARAN BS, BEDWAL S, YADAV RK. Native rhizobacteria suppresses spot blotch disease, improves growth and yield of wheat under salt-affected soils[J]. Plant Stress, 2023, 10: 100234.
    [67] DAVE K, GOTHALWAL R, SINGH M, JOSHI N. Facets of rhizospheric microflora in biocontrol of phytopathogen Macrophomina phaseolina in oil crop soybean[J]. Archives of Microbiology, 2021, 203(2): 405-412.
    [68] 何建清, 张格杰. 植物根际促生菌肥代替部分化肥对黑青稞生长、产量和品质的影响[J]. 河南农业科学, 2022, 51(7): 93-101. HE JQ, ZHANG GJ. Effects of plant growth promoting rhizobacteria(PGPR) fertilizer instead of part of chemical fertilizer on growth, yield and quality of black highland barley[J]. Journal of Henan Agricultural Sciences, 2022, 51(7): 93-101(in Chinese).
    [69] NONG Q, MALVIYA MK, SOLANKI MK, LIN L, XIE JL, MO ZH, WANG ZP, SONG XP, HUANG X, LI CN, LI YR. Integrated metabolomic and transcriptomic study unveils the gene regulatory mechanisms of sugarcane growth promotion during interaction with an endophytic nitrogen-fixing bacteria[J]. BMC Plant Biology, 2023, 23(1): 54.
    [70] PAVLICEVIC M, ELMER W, ZUVERZA-MENA N, ABDELRAHEEM W, PATEL R, DIMKPA C, O’KEEFE T, HAYNES CL, PAGANO L, CALDARA M, MARMIROLI M, MAESTRI E, MARMIROLI N, WHITE JC. Nanoparticles and biochar with adsorbed plant growth-promoting rhizobacteria alleviate Fusarium wilt damage on tomato and watermelon[J]. Plant Physiology and Biochemistry: PPB, 2023, 203: 108052.
    [71] Han JJ, Shen XA, Yang F, Wang F, Qin CY, Zou DY, Hu QY, Lin JX, Wang JH. Research progress on the mechanism of arbuscular mycorrhizal fungi (AMF) mediated mineral elements uptake by plants[J]. Acta Agrestia Sinica, 2023, 31(6): 1609.
    [72] NOPPHAKAT K, RUNSAENG P, KLINNAWEE L. Acaulospora as the dominant arbuscular mycorrhizal fungi in organic lowland rice paddies improves phosphorus availability in soils[J]. Sustainability, 2021, 14(1): 31.
    [73] SATO T, HACHIYA S, INAMURA N, EZAWA T, CHENG WG, TAWARAYA K. Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability[J]. Mycorrhiza, 2019, 29(6): 599-605.
    [74] SHETEIWY MS, EL-SAWAH AM, KOBAE Y, BASIT F, HOLFORD P, YANG HS, EL-KEBLAWY A, ABDEL-FATTAH GG, WANG SC, ARAUS JL, KORANY SM, ALSHERIF EA, AbdELGAWAD H. The effects of microbial fertilizers application on growth, yield and some biochemical changes in the leaves and seeds of guar (Cyamopsis tetragonoloba L.)[J]. Food Research International, 2023, 172: 113122.
    [75] 卢德, 李韬, 林强, 邱长玉, 罗坚, 石华月, 赖艳梅, 李乙, 曾燕蓉. 微生物菌肥对果桑初果期的叶片光合性能和果实品质的影响分析[J]. 广西蚕业, 2022, 59(3): 12-17. LU D, LI T, LIN Q, QIU CY, LUO J, SHI HY, LAI YM, LI Y, ZENG YR. Effect of microbial bacterial fertilizer on photosynthetic performance of leaves and fruit quality of mulberry at early fruit stage[J]. Guangxi Sericulture, 2022, 59(3): 12-17(in Chinese).
    [76] 玄志友. HPS微生物菌肥提升阿克苏冰糖心苹果品质及产量[J]. 中国果业信息, 2022, 39(9): 62. XUAN ZY. HPS microbial fertilizer improves the quality and yield of Aksu rock candy apple[J]. China Fruit News, 2022, 39(9): 62(in Chinese).
    [77] 刘政典, 任珂, 卢瑜珺, 孙鹏程, 封明军, 郭彩萍, 江峰, 王新建. HPS微生物菌肥对阿克苏冰糖心苹果品质及产量的影响[J]. 现代园艺, 2022, 45(9): 14-16, 20. LIU ZD, REN K, LU YJ, SUN PC, FENG MJ, GUO CP, JIANG F, WANG XJ. Effect of HPS microbial fertilizer on the quality and yield of Aksu rock candy apple[J]. Contemporary Horticulture, 2022, 45(9): 14-16, 20(in Chinese).
    [78] 王爱玲, 段国琪, 田时敏, 梁哲军, 张建诚. 减氮配施微生物菌肥对“富士”苹果品质和光合特性的影响[J]. 北方园艺, 2022(18): 16-22. WANG AL, DUAN GQ, TIAN SM, LIANG ZJ, ZHANG JC. Effects of combined application of microbial fertilizer on quality and photosynthetic characteristics of ‘fuji’ apple[J]. Northern Horticulture, 2022(18): 16-22(in Chinese).
    [79] 周进. 微生物菌肥配施对葡萄土壤养分和品质的影响[J]. 北方园艺, 2020(24): 51-56. ZHOU J. Effects of microbial bacterial manure combined with reduced fertilizer on soil nutrients and quality of grapes in greenhouse[J]. Northern Horticulture, 2020(24): 51-56(in Chinese).
    [80] 石慧敏, 陆蓝翔, 王焱, 贺丽娜, 王小月, 叶建仁. 五种促生微生物菌肥对巨峰葡萄生长和果实品质的影响[J]. 分子植物育种, 2023. https://kns.cnki.net/ kcms/detail/46.1068.S.20220916.1222.040.html. Shi HM, Lu LX, Wang Y, He LN, Wang XY, Ye JR. Effects of five growth-promoting microbial fertilizers on growth and fruit quality of Jufeng grape[J]. Molecular Plant Breeding, 2023. https://kns.cnki.net/ kcms/detail/46.1068.S.20220916.1222.040.html (in Chinese).
    [81] DEMIR H, YALÇI HK, KATGICI A. Ameliorative effects of microbial fertiliser on yield and quality parameters of curly lettuce and cucumber with fertiliser saving[J]. Folia Horticulturae, 2023, 35(1): 91-106.
    [82] MI S, ZHANG XN, WANG YH, MA YD, SANG YX, WANG XH. Effect of different fertilizers on the physicochemical properties, chemical element and volatile composition of cucumbers[J]. Food Chemistry, 2022, 367: 130667.
    [83] 赵怡红, 杨玉萍, 令娟丽, 刘永超. 微生物菌肥在草莓生产上应用试验[J]. 基层农技推广, 2020, 8(6): 27-29. ZHAO YH, YANG YP, LING JL, LIU YC. Application of microbial bacterial fertilize in strawberry production[J]. Primary Agricultural Technology Extension, 2020, 8(6): 27-29(in Chinese).
    [84] 穆凯代斯罕·伊萨克. HPS微生物菌肥对库尔勒香梨园土壤、叶片和果实品质的影响研究[D]. 阿拉尔: 塔里木大学硕士学位论文, 2022. Mukaidaisiyisake. Effects of HPS microbial fertilizer on soil, leaf and fruit quality in Korla fragrant pear orchard[D]. Alaer: Master’s Thesis of Tarim University, 2022(in Chinese).
    [85] 谢昶琰, 王迪, 安祥瑞, 吴中营, 王东升, 魏树伟, 王少敏, 董园园, 徐阳春, 董彩霞. 滴灌减量施肥对梨树体养分及果实产量、品质的影响[J]. 江苏农业学报, 2021, 37(6): 1526-1533. XIE CY, WANG D, AN XR, WU ZY, WANG DS, WEI SW, WANG SM, DONG YY, XU YC, DONG CX. Effects of drip irrigation and reducing fertilization on tree nutrient, fruit yield and quality of pear[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(6): 1526-1533(in Chinese).
    [86] STAMFORD NP, FELIX F, OLIVEIRA W, SILVA E, CAROLINA S, ARNAUD T, FREITAS AD. Interactive effectiveness of microbial fertilizer enriched in N on lettuce growth and on characteristics of an Ultisol of the rainforest region[J]. Scientia Horticulturae, 2019, 247: 242-246.
    [87] WANG QY, ZHAO MR, WANG JQ, HU BY, CHEN QJ, QIN Y, ZHANG GQ. Effects of microbial inoculants on agronomic characters, physicochemical properties and nutritional qualities of lettuce and celery in hydroponic cultivation[J]. Scientia Horticulturae, 2023, 320: 112202.
    [88] 任瑞敏, 张传伟, 曹鑫, 李响, 姜俊海, 陈姗姗. 微生物菌肥对大叶芹生长发育及产量品质的影响[J/OL]. 吉林农业大学学报, 2023. https://kns.cnki.net/kcms2/ detail/22.1100.s.20230714.1855.003.html. Ren RM, Zhang CW, Cao X, Li X, Jiang JT, Chen SS. The effect of microbial fertilizer on the growth, yield and quality of Spuriopinella brachycarpa (Kom.) Kitag[J/OL]. Journal of Jilin Agricultural University, 2023. https://kns.cnki.net/kcms2/detail/22. 1100.s.20230714.1855.003.html (in Chinese).
    [89] 王夫同. 微生物菌肥在设施番茄种植中的应用效果研究[J]. 农业工程技术, 2023, 43(4): 37-38. WANG FT. Study on the application effect of microbial bacterial fertilizer in greenhouse tomato planting[J]. Agricultural Engineering Technology, 2023, 43(4): 37-38(in Chinese).
    [90] 武杞蔓, 刘朋宇, 张颖, 李玥莹. 微生物菌肥对番茄生长、品质及糖代谢相关酶的影响[J]. 江苏农业科学, 2022, 50(24): 125-130. WU QM, LIU PY, ZHANG Y, LI YY. Influences of microbial agents on tomato growth, quality and enzymes related to sugar metabolism[J]. Jiangsu Agricultural Sciences, 2022, 50(24): 125-130(in Chinese).
    [91] 张学刚, 王连林, 龙素霞, 湛毅强, 张丽英, 陈铁成. 功能性微生物菌肥对小麦生物学性状、营养品质的影响研究[J]. 肥料与健康, 2023, 50(4): 48-55. ZHANG XG, WANG LL, LONG SX, ZHAN YQ, ZHANG LY, CHEN TC. Study on the effect of functional microbial fertilizer on biological characteristics and nutritional quality of wheat[J]. Fertilizer & Health, 2023, 50(4): 48-55(in Chinese).
    [92] 徐淑英. 新型肥料对水稻福香占产量及米质的影响[J]. 中国稻米, 2023, 29(3): 109-111, 114. XU SY. Effects of new fertilizations on yield and grain quality of rice variety Fuxiangzhan[J]. China Rice, 2023, 29(3): 109-111, 114(in Chinese).
    [93] 曹秋艳, 李海渤, 冯慧敏, 付龙威, 刘堂茂, 王斌. 施用微生物菌肥对无花果鲜食品质和贮藏特性的影响[J]. 江苏农业学报, 2023, 39(3): 807-813. CAO QY, LI HB, FENG HM, FU LW, LIU TM, WANG B. Effect of applying microbial fertilizer on fresh-eating quality and storage characteristics of figs[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(3): 807-813(in Chinese).
    [94] PYLAK M, OSZUST K, FRĄC M. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(3): 597-616.
    [95] 张鸿雁, 林国莉, 李如莲, 纪晓琦. 番茄果腐病拮抗菌的筛选及对番茄的防腐保鲜作用[J]. 生物技术通报, 2022, 38(3): 69-78. ZHANG HY, LIN GL, LI RL, JI XQ. Screening of antagonist against tomato fruit rot and their preservation qualities on tomato[J]. Biotechnology Bulletin, 2022, 38(3): 69-78(in Chinese).
    [96] LIU X, GAO Y, YANG HY, LI LM, JIANG YS, LI Y, ZHENG JX. Pichia kudriavzevii retards fungal decay by influencing the fungal community succession during cherry tomato fruit storage[J]. Food Microbiology, 2020, 88: 103404.
    [97] SHI Y, YANG QY, ZHAO QH, DHANASEKARAN S, AHIMA J, ZHANG XY, ZHOU SQ, DROBY S, ZHANG HY. Aureobasidium pullulans S-2 reduced the disease incidence of tomato by influencing the postharvest microbiome during storage[J]. Postharvest Biology and Technology, 2022, 185: 111809.
    [98] 孙文财. 微生物菌肥在农业生产中应用的必要性[J]. 农业开发与装备, 2021(4): 224-225. SUN WC. Necessity of application of microbial bacterial fertilizer in agricultural production[J]. Agricultural Development & Equipments, 2021(4): 224-225(in Chinese).
    [99] 徐国祗, 李频道. 花生减肥增效试验报告[J]. 现代农业, 2020(5): 44-45. XU GZ, LI PD. Experimental report on reducing weight and increasing efficiency of peanut[J]. Modern Agriculture, 2020(5): 44-45(in Chinese).
    [100] Liu JA, Shu AP, Song WF, Shi WC, Li MC, Zhang WX, Li ZZ, Liu GR, Yuan FS, Zhang SX, Liu ZB, Gao Z. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria[J]. Geoderma, 2021, 404: 115287.
    [101] Song WF, Shu AP, Liu JA, Shi WC, Li MC, Zhang WX, Li ZZ, Liu GR, Yuan FS, Zhang SX, Liu ZB, Gao Z. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil[J]. Pedosphere, 2022, 32(4): 637-648.
    [102] 陈文东, 黄平, 王开金, 聂秀竹, 洪明勇, 张孝秀, 王永刚. 复合微生物菌剂在昭通苹果化肥减量增效中的应用效果初探[J]. 耕作与栽培, 2023, 43(4): 57-60. CHEN WD, HUANG P, WANG KJ, NIE XZ, HONG MY, ZHANG XX, WANG YG. Preliminary study on the application effect of compound microbial agents in the reduction and increase of apple fertilizer in Zhaotong[J]. Tillage and Cultivation, 2023, 43(4): 57-60(in Chinese).
    [103] GONG HR, LI J, SUN MX, XU XB, OUYANG Z. Lowering carbon footprint of wheat-maize cropping system in North China Plain: through microbial fertilizer application with adaptive tillage[J]. Journal of Cleaner Production, 2020, 268: 122255.
    [104] WANG N, WANG XX, CHEN L, LIU HJ, WU YF, HUANG M, FANG LC. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: a systematic review[J]. The Science of the Total Environment, 2024, 912: 168994.
    [105] REN ZM, CHENG R, CHEN P, XUE YY, XU H, YIN Y, HUANG GT, ZHANG W, ZHANG LH. Plant-associated microbe system in treatment of heavy metals-contaminated soil: mechanisms and applications[J]. Water, Air, & Soil Pollution, 2023, 234(1): 39.
    [106] WANG X, HU K, XU Q, LU LF, LIAO SJ, WANG GJ. Immobilization of Cd using mixed Enterobacter and Comamonas bacterial reagents in pot experiments with Brassica rapa L.[J]. Environmental Science & Technology, 2020, 54(24): 15731-15741.
    [107] SHI KX, RADHAKRISHNAN M, DAI XL, ROSEN BP, WANG GJ. NemA catalyzes trivalent organoarsenical oxidation and is regulated by the trivalent organoarsenical-selective transcriptional repressor NemR[J]. Environmental Science & Technology, 2021, 55(9): 6485-6494.
    [108] 吴多基, 林小兵, 胡祖武, 魏宗强, 吴建富. 炭基微生物菌剂对红壤性水稻土-水稻系统中Cd行为的影响[J]. 核农学报, 2023, 37(10): 2079-2087. WU DJ, LIN XB, HU ZW, WEI ZQ, WU JF. Effects of biochar-based microbial agent on the behavior of Cd in red paddy soil-rice system[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(10): 2079-2087(in Chinese).
    [109] 何明皇, 习文祥, 王丹, 潘红忠, 祝贤彬, 刘紫薇. 微生物菌肥对养殖底泥中重金属含量和微生物群落结构及功能的影响[J]. 安全与环境工程, 2023, 30(3): 234-243. HE MH, XI WX, WANG D, PAN HZ, ZHU XB, LIU ZW. Effect of microbial fertilizer on heavy metal content, microbial community structure and function in aquacultural sediment[J]. Safety and Environmental Engineering, 2023, 30(3): 234-243(in Chinese).
    [110] 霍乾伟, 李天元, 张闻, 宋繁永, 王加宁, 陈贯虹. 微生物修复石油污染土壤影响因素分析[J]. 现代化工, 2022, 42(S2): 83-87, 93. HUO QW, LI TY, ZHANG W, SONG FY, WANG JN, CHEN GH. Analysis on influencing factors of microbial remediation of petroleum contaminated soil[J]. Modern Chemical Industry, 2022, 42(S2): 83-87, 93(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王佳,李明聪. 微生物菌肥在植物减肥增效中的应用研究进展:以果树为例[J]. 微生物学通报, 2024, 51(11): 4394-4415

复制
分享
文章指标
  • 点击次数:202
  • 下载次数: 283
  • HTML阅读次数: 394
  • 引用次数: 0
历史
  • 收稿日期:2024-03-08
  • 录用日期:2024-04-27
  • 在线发布日期: 2024-10-31
  • 出版日期: 2024-11-20
文章二维码