科微学术

微生物学通报

藜麦茎部响应瓜笄霉侵染的代谢组分析
作者:
基金项目:

山西省重点研发计划(2022ZDYF117);山西省基础研究计划(20210302123419);山西省现代农业产业技术体系建设专项(2024CYJSTX03-31);"特""优"农业高质量发展科技支撑工程项目(TYGC24-31,TYGC24-32)


Metabolomics of the stems of quinoa in response to infection by Choanephora cucurbitarum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】藜麦笄霉软腐病(quinoa Choanephora rot)的病原为瓜笄霉(Choanephora cucurbitarum),但藜麦响应其侵染后的代谢变化尚未明确。【目的】研究瓜笄霉侵染藜麦后的代谢物变化及关键代谢途径,以利于了解该病的生理生化机制。【方法】基于非靶向代谢组学研究技术,结合多元统计分析方法,分析瓜笄霉侵染藜麦茎部代谢物差异及代谢途径变化。【结果】相较于对照组,瓜笄霉侵染藜麦后,显著差异代谢物有512种(P<0.01),其中283种为上调,229种为下调。KEGG富集分析发现藜麦茎部响应瓜笄霉侵染的主要差异代谢物共19种(P<0.05),这些主要代谢物显著富集到花生四烯酸代谢、亚油酸代谢、α-亚麻酸代谢、黄酮和黄酮醇的生物合成共4条代谢通路。【结论】瓜笄霉侵染可导致藜麦中花生四烯酸代谢、亚油酸代谢、α-亚麻酸代谢、黄酮和黄酮醇的生物合成等代谢途径发生变化,其中α-亚麻酸代谢及其相关代谢物茉莉酸的积累、黄酮和黄酮醇的生物合成受阻,可能是藜麦响应瓜笄霉侵染的主要方式。

    Abstract:

    [Background] The pathogen responsible for quinoa Choanephora rot is Choanephora cucurbitarum. However, the metabolic changes of quinoa in response to the infection remain unclear. [Objective] We studied the changes of metabolites and key metabolic pathways in quinoa after infection with C. cucurbitarum, aiming to understand the physiological and biochemical mechanisms of the disease. [Methods] We employed non-targeted metabolomics and multivariate statistical analysis to investigate the changes in metabolites and metabolic pathways in quinoa stems after infection with C. cucurbitarum. [Results] Compared with the control, infection with C. cucurbitarum in quinoa resulted in 512 differential metabolites (P<0.01), including 283 upregulated metabolites and 229 downregulated metabolites. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed 19 main differential metabolites in the quinoa stems in response to infection (P<0.05). These differential metabolites were enriched in four metabolic pathways: arachidonic acid metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, and flavone and flavonol biosynthesis. [Conclusion] C. cucurbitarum infection leads to changes in arachidonic acid metabolism, linoleic acid metabolism, α-linolenic acid metabolism, and flavone and flavonol biosynthesis in quinoa. The accumulation of jasmonic acid from α-linolenic acid metabolism and the blocked biosynthesis of flavone and flavonol may be involved in the response of quinoa to C. cucurbitarum infection.

    参考文献
    [1] The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II[J]. Botanical Journal of the Linnean Society, 2003, 141(4): 399-436.
    [2] 黄久香, 陈文娜, 李玉玲, 姚纲. 基于多个叶绿体基因序列片段重建广义苋科系统发育关系[J]. 植物学报, 2020, 55(4): 457-467. HUANG JX, CHEN WN, LI YL, YAO G. Phylogenetic study of Amaranthaceae sensu lato based on multiple plastid DNA fragments[J]. Chinese Bulletin of Botany, 2020, 55(4): 457-467(in Chinese).
    [3] DINI A, RASTRELLI L, SATURNINO P, SCHETTINO O. A compositional study of Chenopodium quinoa seeds[J]. Nahrung, 1992, 36(4): 400-404.
    [4] 陈亚蕾, 田淼, 孙江伟, 周建波, 任璐, 秦楠, 殷辉, 赵晓军. 昆诺阿藜链格孢叶斑病病原及其生物学特性[J]. 菌物学报, 2022, 41(5): 713-729. CHEN YL, TIAN M, SUN JW, ZHOU JB, REN L, QIN N, YIN H, ZHAO XJ. Biological characteristics of the pathogen causing Alternaria leaf spot on quinoa[J]. Mycosystema, 2022, 41(5): 713-729(in Chinese).
    [5] 殷辉, 周建波, 吕红, 常芳娟, 秦楠, 翟世玉, 邢鲲, 赵飞, 赵晓军. 藜麦尾孢叶斑病的病原鉴定[J]. 植物病理学报, 2019, 49(3): 408-414. YIN H, ZHOU JB, LÜ H, CHANG FJ, QIN N, ZHAI SY, XING K, ZHAO F, ZHAO XJ. Identification of the pathogen causing Cercospora leaf spot on quinoa[J]. Acta Phytopathologica Sinica, 2019, 49(3): 408-414(in Chinese).
    [6] BRAHMANAGE RS, LIU M, WANASINGHE DN, DAYARATHNE MC, MEI L, JEEWON R, LI X, HYDE KD. Heterosporicola beijingense sp. nov. (Leptosphaeriaceae, Pleosporales) associated with Chenopodium quinoa leaf spots[J]. Phytopathologia Mediterranea, 2020, 59(2): 219-227.
    [7] SUN SL, ZHU ZD, ZHANG JL, MEI L. Outbreak of Choanephora stem rot caused by Choanephora cucurbitarum on quinoa (Chenopodium quinoa) in China[J]. Plant Disease, 2018, 102(11): 2379.
    [8] YIN H, TIAN M, PENG YF, QIN N, LÜ H, REN L, ZHAO XJ. First report on Choanephora cucurbitarum causing Choanephora rot in Chenopodium plants and its sensitivity to fungicide[J]. Journal of Fungi, 2023, 9(9): 881.
    [9] YIN H, ZHOU JB, LV H, QIN N, CHANG FJ, ZHAO XJ. Identification, pathogenicity, and fungicide sensitivity of Ascochyta caulina (Teleomorph: Neocamarosporium calvescens) associated with black stem on quinoa in China[J]. Plant Disease, 2020, 104(10): 2585-2597.
    [10] YIN H, TIAN M, PENG YF, CHEN YL, QIN N, LÜ H, SUN JW, REN L, ZHAO XJ. Characterization, phylogeny and pathogenicity of Fusarium solani causing quinoa basal stem rot in Shanxi Province, China[J]. Plant Pathology, 2024, 73(2): 272-291.
    [11] 薛婧, 侯学萍, 姜晓东, 殷辉, 赵晓军, 李新凤. 藜麦炭疽病病原菌鉴定、生物学特性及室内药剂毒力测定[J/OL]. 植物病理学报, 2024. DOI: 10.13926/j.cnki. apps.001638. XUE J, HOU XP, JIANG XD, Yin H, ZHAO XJ, LI XF. Identification and biological characteristics of the pathogen causing quinoa anthracnose and indoor toxicity determination of several fungicides to the pathogen[J/OL]. Acta Phytopathologica Sinica, 2024. DOI: 10.13926/j.cnki.apps.001638(in Chinese).
    [12] YIN H, ZHOU JB, CHEN YL, REN L, QIN N, XING YL, ZHAO XJ. Morphology, phylogeny, and pathogenicity of Trichothecium, Alternaria, and Fusarium species associated with panicle rot on Chenopodium quinoa in Shanxi Province, China[J]. Plant Pathology, 2022, 71(2): 344-360.
    [13] 王慧, 曹天光, 秦垒, 唐君蔚, 张新旭, 耿金鹏. 碳离子辐射藜麦多酚含量变化的多组学分析[J/OL]. 分子植物育种, 2023. https://kns.cnki.net/kcms2/detail/46. 1068.S.20230724.2116.011.html. WANG H, CAO TG, QIN L, TANG JW, ZHANG XX, GENG JP. Multi-omics analysis of changes in polyphenol content of quinoa irradiated with carbon ions[J/OL]. Molecular Plant Breeding, 2023. https://kns.cnki.net/kcms2/detail/46.1068.S.20230724.2116.011.html (in Chinese).
    [14] 赵丽娟, 闫素月, 史晓晶, 尉俊海, 张洪. 霜霉病菌侵染对藜麦叶片代谢的影响[J]. 植物病理学报, 2021, 51(3): 334-339. ZHAO LJ, YAN SY, SHI XJ WEI JH, ZHANG H. Downy mildew-infection changes the metabolism of quinoa leaves[J]. Acta Phytopathologica Sinica, 2021, 51(3): 334-339(in Chinese).
    [15] 高汉峰, 杨莹, 陈红雨, 程亮, 郭青云. 出芽短梗霉菌PA-2侵染对藜叶片代谢的影响[J]. 中国生物防治学报, 2021, 37(2): 286-296. GAO HF, YANG Y, CHEN HY, CHENG L, GUO QY. Effect of Aureobasidium pullulans PA-2 metabolism of Chenopodium album leaves[J]. Chinese Journal of Biological Control, 2021, 37(2): 286-296(in Chinese).
    [16] HAMZEHZARGHANI H, KUSHALAPPA AC, DION Y, RIOUX S, COMEAU A, YAYLAYAN V, MARSHALL WD, MATHER DE. Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against Fusarium head blight[J]. Physiological and Molecular Plant Pathology, 2005, 66(4): 119-133.
    [17] FEUSSNER I, POLLE A. What the transcriptome does not tell-proteomics and metabolomics are closer to the plants’ patho-phenotype[J]. Current Opinion in PlAC, CHOO TM, DION Y, RIOUX S, MAMER O, FAUBERT D. Metabolomics technology?to phenotype?resistance in barley against Gibberella zeae[J]. European Journal of Plant Pathology, 2011, 130(1): 29-43.
    [35] AGATI G, CEROVIC ZG, PINELLI P, TATTINI M. Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques[J]. Environmental and Experimental Botany, 2011, 73: 3-9.
    [36] LIANG ML, YE HJ, SHEN Q, JIANG XY, CUI GB, GU WX, ZHANG LH, NAQVI NI, DENG YZ. Tangeretin inhibits fungal ferroptosis to suppress rice blast[J]. Journal of Integrative Plant Biology, 2021, 63(12): 2136-2149.
    [37] LONG L, LIU J, GAO Y, XU FC, ZHAO JR, LI B, GAO W. Flavonoid accumulation in spontaneous cotton mutant results in red coloration and enhanced disease resistance[J]. Plant Physiology and Biochemistry, 2019, 143: 40-49.
    [38] BAI QX, DUAN BB, MA JC, FEN YN, SUN SJ, LONG QM, LV JJ, WAN DS. Coexpression of PalbHLH1 and PalMYB90 genes from Populus alba enhances pathogen resistance in poplar by increasing the flavonoid content[J]. Frontiers in Plant Science, 2020, 10: 1772.
    [39] KARRE S, KUMAR A, YOGENDRA K, KAGE U, KUSHALAPPA A, CHARRON JB. HvWRKY23 regulates flavonoid glycoside and hydroxycinnamic acid amide biosynthetic genes in barley to combat Fusarium head blight[J]. Plant Molecular Biology, 2019, 100(6): 591-605.
    [40] McLUSKY SR, BENNETT MH, BEALE M, LEWIS MJ, GASKIN P, MANSFIELD J. Cell wall alterations and localized accumulation of feruloyl-3'- methoxytyramine in onion epidermis at sites of attempted penet汲扡瑴io孮砠by张頼i>奂幯祴ry剴嵩恳 a橬祬彩i<耯孩瀾甠荡佲来丠呡扳恳葯董卩牡癴轥彤縠孷剩杴h act杩桮嬠扰olarisation, peroxidase activity and suppression of flavonoid biosynthesis[J]. The Plant Journal, 1999, 17(5): 523-534.
    [41] SAIJO Y, TINTOR N, LU XL, RAUF P, PAJEROWSKA-MUKHTAR K, HÄWEKER H, DONG XN, ROBATZEK S, SCHULZE-LEFERT P. Receptor quality cont呲穯l 獩剮儠th来丠桥nd汯奰la赳彭剩c 楲牥祴孩cu乬鹵酭张扦卯豲挠杰瑬硡穮轴尠innat楥爠適佭赭湵孮扩ty[J]. The EMBO Journal, 2009, 28(21): 3439-3449.
    [42] SCHENKE D, BÖTTCHER C, SCHEEL D. Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production[J]. Plant, Cell & Environment, 2011, 34(11): 1849-1864.
    [43] ZHU NQ, SHENG SQ, LI DJ, LAVOIE EJ, KARWE MV, ROSEN RT, HO CT. Antioxidative flavonoid glycosides from quinoa seeds (Chenopodium quinoa Willd)[J]. Journal of Food Lipids, 2001, 8(1): 37-44.
    [44] REPO-CARRASCO-VALENCIA R, HELLSTRÖM JK, PIHLAVA JM, MATTILA PH. Flav杯汮卯id聳耠敡nd删副汴he楲爠陰彨乥荮药酬佩卣造赣扯剭买繯歵癮佤畳朠剩n And楥牡佮戠孩扮digenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus)[J]. Food Chemistry, 2010, 120(1): 128-133.n Chinese).
    [29] GRIFFITHS G. Jasmonates: biosynthesis, perception and signal transduction[J]. Essays in Biochemistry, 2020, 64(3): 501-512.
    [30] 罗大力, 张幼怡, 韩启德. 花生四烯酸的生物活性及其钙信号转导作用[J]. 生理科学进展, 2002, 33(3): 251-254. LUO DL, ZHANG YY, HAN QD. Biological activity of arachidonic acid and its calcium signal transduction[J]. Progress in Physiological Sciences, 2002, 33(3): 251-254(in Chinese).
    [31] SAVCHENKO T, WALLEY JW, CHEHAB EW, XIAO YM, KASPI R, PYE MF, MOHAMED ME, LAZARUS CM, BOSTOCK RM, DEHESH K. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks[J]. The Plant Cell, 2010, 22(10): 3193-3205.
    [32] 袁成凌, 姚建铭, 余增亮. 花生四烯酸及其代谢物的生物学作用[J]. 中国药物化学杂志, 2000, 10(1): 75-78. YUAN CL, YAO JM, YU ZL. Biological effects of arachidonic acid and its metabolites[J]. Chinese Journal of Medicinal Chemistry, 2000, 10(1): 75-78(in Chinese).
    [33] KUMAR A, YOGENDRA KN, KARRE S, KUSHALAPPA AC, DION Y, CHOO TM. WAX INDUCER1(HvWIN1) transcription factor regulates free fatty acid biosynthetic genes to reinforce cuticle to resist Fusarium head blight in barley spikelets[J]. Journal of Experimental Botany, 2016, 67(14): 4127-4139.
    [34] KUMARASWAMY GK, BOLLINA V, KUSHALAPPA
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

彭玉飞,王天禧,杨振永,田淼,任璐,吕红,秦楠,殷辉,赵晓军. 藜麦茎部响应瓜笄霉侵染的代谢组分析[J]. 微生物学通报, 2024, 51(11): 4590-4603

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-26
  • 录用日期:2024-05-20
  • 在线发布日期: 2024-10-31
  • 出版日期: 2024-11-20
文章二维码