科微学术

微生物学通报

一株人参细菌性软腐病致病假单胞菌的基因组特征与毒力基因分析
作者:
基金项目:

国家中药材产业技术体系辽阳综合试验站项目(CARS-21-06);辽宁省农业科学院学科建设项目(2019DD144221);辽宁省应用基础研究计划(联合计划)项目(2022JH2/101300284);辽宁省农业科学院协同创新专项(2022XTCX0503)


Genomic characteristics and virulence genes of Pseudomonas glycinae, the causal agent of bacterial soft rot in ginseng
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】细菌性软腐病是植物根部主要病害之一,可在作物生长期和储藏期造成巨大损失。2023年本团队首次发现并报道了由Pseudomonas glycinae引起的人参细菌性软腐病。【目的】探索Pseudomonas glycinae XJFL-1菌株的基因组特征,并通过与属内和种内代表性菌株的比较基因组学分析,初步探讨P. glycinae的遗传特性以及菌株XJFL-1基因组中可能编码的致病相关的毒力因子和Ⅱ型、Ⅲ型分泌系统效应因子。【方法】通过基因组注释、比较基因组学分析和基因家族分析等探索基因组的特征、遗传特性及毒力基因。【结果】基因组注释发现编码了碳水化合物、氨基酸和蛋白质代谢相关酶类,以及与鞭毛运动、膜形成和群体感应相关的重要基因;平均核苷酸一致性(average nucleotide identity, ANI)、数字DNA-DNA杂交分析(digital DNA-DNA hybridization, dDDH)及共线性分析结果确认该菌株为P. glycinae,并且P. glycinae物种的直系同源基因集具有较高的种内保守性;植物细胞壁降解酶系(plant cell wall degrading enzyme, PCWDE)分析结果显示,菌株XJFL-1可编码37种PCWDE,主要为糖苷水解酶(glycoside hydrolase, GH)、碳水化合物酯酶(carbohydrate esterase, CE)和多糖裂解酶(polysaccharide lyase, PL);预测到的Ⅱ型分泌系统效应因子基因主要有编码脂肪酶的lapAlapBlapC,编码碱性磷酸酶的phoA2,编码磷脂酶的plcA和编码几丁质酶的cbpD;Ⅲ型分泌系统中E3泛素连接酶效应因子是XJFL-1编码的优势基因,包括IpaH家族的ipaH9.8ipaH7.8ipaH4.5ipaH3ipaH1.4SLRP家族的slrP,以及sspH2sspH1NGR_a03640,但未注释到编码果胶酶的相关基因。果胶酶活力测定结果显示,菌株XJFL-1确实不能分泌果胶酶类。【结论】比较基因组学和基因家族分析结果明确了菌株XJFL-1与假单胞菌属(Pseudomonas)内代表性菌株的亲缘关系,以及P. glycinae的种内遗传特性;毒力基因预测结果发现,菌株编码了丰富的PCWDEs基因和独特的与致病相关的Ⅱ型和Ⅲ型分泌系统效应因子。

    Abstract:

    [Background] Bacterial soft rot poses a significant threat to plant roots, resulting in substantial agricultural losses. Our team identified Pseudomonas glycinae as the causative agent of bacterial soft rot in ginseng in 2023. [Objective] To delve into the genomic characteristics of P. glycinae XJFL-1, conduct a comparative genomics analysis for XJFL-1 with intra- and intergenus strains, and predict putative virulence factors and effectors of type II and III secretion systems (T2SS and T3SS, respectively). [Methods] We performed genome annotation, comparative genomics analysis, and gene family analysis to predict the genomic characteristics, genetic characteristics, and virulence genes. [Results] Genome annotation revealed the presence of genes encoding the enzymes involved in carbohydrate, amino acid, and protein metabolism, as well as key genes associated with flagellar movement, membrane biogenesis, and quorum sensing. Strain XJFL-1 was identified as P. glycinae based on ANI, dDDH, and collinearity analyses, and a high degree of intraspecific gene conservation was found for P. glycinae. Strain XJFL-1 encoded 37 plant cell wall-degrading enzymes (PCWDEs) including glycoside hydrolases (GHs), carbohydrate esterases (CEs), and polysaccharide lyases (PLs). In addition, the strain carried the genes encoding effectors of T2SS (e.g. lapA, lapB, lapC, phoA2, plcA, and cbpD) and T3SS (e.g. ipaH9.8, ipaH7.8, ipaH4.5, ipaH3, ipaH1.4, slrP, sspH2, sspH1, and NGR_a03640). However, pectinase genes were conspicuously absent. The results of the pectinase activity assay indicated that strain XJFL-1 was unable to secrete pectinase. [Conclusion] The results of comparative genomics and gene family analyses clarified the genetic relationship of strain XJFL-1 with representative strains of Pseudomonas and the intraspecific genetic characterization of P. glycinae. Additionally, the strain carried abundant genes encoding PCWDEs and effectors of T2SS and T3SS associated with pathogenicity.

    参考文献
    [1] 国家药典委员会. 中华人民共和国药典(第四部)[S]. 北京: 中国医药科技出版社, 2020: 8. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Volume IV[S]. Beijing: China Medical Science Press, 2020: 8(in Chinese).
    [2] 白容霖. 人参9种病害的症状和病原物[J]. 吉林农业大学学报, 2002, 24(2): 78-81. BAI RL. Symptoms and pathogens of nine diseases of ginseng[J]. Journal of Jilin Agricultural University, 2002, 24(2): 78-81(in Chinese).
    [3] 赵方杰. 陕西留坝西洋参连作障碍成因及消减措施初步研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2020. ZHAO FJ. Preliminary study on the causes and reduction measures of continuous cropping obstacles of Panax quinquefolium l. in Liuba, shaanxi[D]. Yangling: Master’s Thesis of Northwest A&F University, 2020(in Chinese).
    [4] 潘丽梅, 田志成. 人参细菌性软腐病组织解剖研究[J]. 吉林林学院学报, 1996, 12(1): 27-29. PAN LM, TIAN ZC. Histoanatomical study on bacterial soft rot of ginseng[J]. Journal of Jilin Forestry University, 1996, 12(1): 27-29(in Chinese).
    [5] 潘丽梅, 田志成, 陈月静, 张晓薇. 人参软腐细菌侵染的初步研究[J]. 吉林林学院学报, 1994, 10(1): 20-24. PAN LM, TIAN ZC, CHEN YJ, ZHANG XW. Preliminary study on infection of ginseng soft rot bacteria[J]. Journal of Jilin Forestry University, 1994, 10(1): 20-24(in Chinese).
    [6] 白容霖, 潘丽梅, 刘伟成. 吉林省人参细菌性软腐病病原[J]. 植物保护学报, 2000, 27(1): 63-68. BAI RL, PAN LM, LIU WC. Studies on the pathogen of ginseng bacterial soft rot in Jilin Province[J]. Journal of Plant Protection, 2000, 27(1): 63-68(in Chinese).
    [7] 潘丽梅, 杨贵, 赵金香. 吉林省人参细菌性软腐病的症状和病原[J]. 吉林林学院学报, 1995, 11(4): 205-209. PAN LM, YANG G, ZHAO JX. Symptoms and pathogens of bacterial soft rot of ginseng in Jilin Province[J]. Journal of Jilin Forestry University, 1995, 11(4): 205-209(in Chinese).
    [8] ZHANG AH, ZHANG XX, LEI FJ, ZHANG LX. First report of bacterial soft rot of ginseng caused by Pseudomonas qessardii in Jilin Province of China[J]. Plant Disease, 2018, 102(2): 437.
    [9] LIU K, SUN WS, LI XL, SHEN BY, ZHANG TJ. Isolation, identification, and pathogenicity of Pseudomonas glycinae causing ginseng bacterial soft rot in China[J]. Microbial Pathogenesis, 2024, 186: 106497.
    [10] TATUSOV RL, GALPERIN MY, NATALE DA, KOONIN EV. The COG database: a tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Research, 2000, 28(1): 33-36.
    [11] BRETTIN T, DAVIS JJ, DISZ T, EDWARDS RA, GERDES S, OLSEN GJ, OLSON R, OVERBEEK R, PARRELLO B, PUSCH GD, SHUKLA M, THOMASON JA, STEVENS R, VONSTEIN V, WATTAM AR, XIA FF. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes[J]. Scientific Reports, 2015, 5: 8365.
    [12] KANEHISA M, GOTO S, KAWASHIMA S, OKUNO Y, HATTORI M. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32(suppl_1): D277-D280.
    [13] LIU B, ZHENG DD, JIN Q, CHEN LH, YANG J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface[J]. Nucleic Acids Research, 2019, 47(D1): D687-D692.
    [14] ALCOCK BP, HUYNH W, CHALIL R, SMITH KW, RAPHENYA AR, WLODARSKI MA, EDALATMAND A, PETKAU A, SYED SA, TSANG KK, BAKER SJC, DAVE M, McCARTHY MC, MUKIRI KM, NASIR JA, GOLBON B, IMTIAZ H, JIANG XJ, KAUR K, KWONG M, et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database[J]. Nucleic Acids Research, 2023, 51(D1): D690-D699.
    [15] BLIN K, SHAW S, STEINKE K, VILLEBRO R, ZIEMERT N, LEE SY, MEDEMA MH, WEBER T. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline[J]. Nucleic Acids Research, 2019, 47(W1): W81-W87.
    [16] ALMAGRO ARMENTEROS JJ, TSIRIGOS KD, SØNDERBY CK, PETERSEN TN, WINTHER O, BRUNAK S, von HEIJNE G, NIELSEN H. SignalP 5.0 improves signal peptide predictions using deep neural networks[J]. Nature Biotechnology, 2019, 37: 420-423.
    [17] CHEN CJ, CHEN H, ZHANG Y, THOMAS HR, FRANK MH, HE YH, XIA R. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
    [18] MEIER-KOLTHOFF JP, KLENK HP, GÖKER M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2): 352-356.
    [19] DARLING ACE, MAU B, BLATTNER FR, PERNA NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements[J]. Genome Research, 2004, 14(7): 1394-1403.
    [20] SUN JH, LU F, LUO YJ, BIE LZ, XU L, WANG Y. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes[J]. Nucleic Acids Research, 2023, 51(W1): W397-W403.
    [21] 刘静, 张昭寰, 吴倩, 陶倩, 黄振华, 潘迎捷, 赵勇. 细菌分泌系统的结构及作用机制研究进展[J]. 生物化学与生物物理进展, 2022, 49(12): 2305-2327. LIU J, ZHANG ZH, WU Q, TAO Q, HUANG ZH, PAN YJ, ZHAO Y. Research progress on the structure and mechanism of bacterial secretion system[J]. Progress in Biochemistry and Biophysics 2022, 49(12): 2305-2327(in Chinese).
    [22] WANG JW, LI JH, HOU Y, DAI W, XIE RP, MARQUEZ-LAGO TT, LEIER A, ZHOU TL, TORRES V, HAY I, STUBENRAUCH C, ZHANG YJ, SONG JN, LITHGOW T. BastionHub: a universal platform for integrating and analyzing substrates secreted by Gram-negative bacteria[J]. Nucleic Acids Research, 2021, 49(D1): D651-D659.
    [23] GIRARD L, LOOD C, HÖFTE M, VANDAMME P, ROKNI-ZADEH H, van NOORT V, LAVIGNE R, de MOT R. The ever-expanding Pseudomonas genus: description of 43 new species and partition of the Pseudomonas putida group[J]. Microorganisms, 2021, 9(8): 1766.
    [24] TAKIKAWA Y, SERIZAWA S, ICHIKAWA T, TSUYUMU S, GOTO M. Pseudomonas syringae pv. actinidiae pv. nov.: the causal bacterium of canker of kiwifruit in Japan[J]. Japanese Journal of Phytopathology, 1989, 55(4): 437-444.
    [25] 李志栋. 内蒙古加工型番茄细菌性斑点病病原鉴定及种子带菌检测技术的研究[D]. 呼和浩特: 内蒙古农业大学硕士学位论文, 2010. LI ZD. Pathogen identification of bacterial spot of processing tomato in inner Mongolia and methods for detecting bacterium in seeds[D]. Hohhot: Master’s Thesis of Inner Mongolia Agricultural University, 2010(in Chinese).
    [26] MYUNG IS, LEE YK, LEE SW, KIM WG, SHIM HS, RA DS. A new disease, bacterial leaf spot of rape, caused by atypical Pseudomonas viridiflava in Korea[J]. Plant Disease, 2010, 94(9): 1164.
    [27] MATSUI H, NISHIMURA T, ASAI ST, MASUDA S, SHIRASU K, YAMAMOTO M, NOUTOSHI Y, TOYODA K, ICHINOSE Y. Complete genome sequence of Pseudomonas amygdali pv. tabaci strain 6605, a causal agent of tobacco wildfire disease[J]. Microbiology Resource Announcements, 2021, 10(28): e00405-21.
    [28] 李盛, 李翔, 朱美如, 王夏, 李昊阳, 谭欣如, 王海燕. 马铃薯青枯病拮抗菌的筛选及温室防治效果研究[J]. 作物杂志, 2024(2): 242-248. Li S, Li X, Zhu MR, WANG X, LI HY, TAN XR, WANG HY. Screening and identification of antagonistic bacteria against Ralstonia solanacearum and their efficacy in controlling potato bacterial wilt in greenhouse[J]. Crops, 2024(2): 242-248(in Chinese).
    [29] 邱睿, 李小杰, 白静科, 陈玉国, 姚晨虓, 苏新宏, 张盈盈, 房文祎, 李彩虹, 刘畅, 徐敏, 宋瑞芳, 李淑君. 烟草镰刀菌根腐病生防假单胞菌的筛选与鉴定[J]. 中国烟草学报, 2023, 29(3): 84-93. QIU R, LI XJ, BAI JK, CHEN YG, YAO CX, SU XH, ZHANG YY, FANG WY, LI CH, LIU C, XU M, SONG RF, LI SJ. Screening and identification of Pseudomonas against Fusarium root rot of tobacco[J]. Acta Tabacaria Sinica, 2023, 29(3): 84-93(in Chinese).
    [30] 魏雪, 江孟遥, 钟涛, 张曼, 王智荣, ZSOLT Zalan, FERENC Hegyi, KRISZTINA Takacs, 杜木英. 荧光假单胞菌ZX对葡萄采后灰霉病的防治[J]. 食品工业科技, 2021, 42(22): 125-132. WEI X, JIANG MY, ZHONG T, ZHANG M, WANG ZR, ZALAN Z, HEGYI F, TAKACS K, DU MY. Control of gray mold in postharvest grapes with Pseudomonas fluorescens ZX[J]. Science and Technology of Food Industry, 2021, 42(22): 125-132(in Chinese).
    [31] JIA JY, WANG XQ, DENG P, MA L, BAIRD SM, LI XD, LU SE. Pseudomonas glycinae sp. nov. isolated from the soybean rhizosphere[J]. Microbiology Open, 2020, 9(9): e1101.
    [32] MA L, QU SX, LIN JS, JIA JY, BAIRD SM, JIANG N, LI HP, HOU LJ, LU SE. The complete genome of the antifungal bacterium Pseudomonas sp. strain MS82[J]. Journal of Plant Diseases and Protection, 2019, 126(2): 153-160.
    [33] FILLOUX A. The underlying mechanisms of type II protein secretion[J]. Biochimica et Biophysica Acta, 2004, 1694(1/2/3): 163-179.
    [34] BURKINSHAW BJ, STRYNADKA NCJ. Assembly and structure of the T3SS[J]. Biochimica et Biophysica Acta, 2014, 1843(8): 1649-1663.
    [35] LI P, JIANG W, YU Q, LIU W, ZHOU P, LI J, XU JJ, XU B, WANG FC, SHAO F. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence[J]. Nature, 2017, 551: 378-383.
    [36] 邵增玉. 沙门氏菌E3泛素连接酶SspH2和SlrP调控Ⅰ型IFN信号通路的研究[D]. 北京: 中国农业科学院硕士学位论文, 2019. SHAO ZY. The study on Salmonella E3 ubiquitin ligases SspH2 and SlrP regulating type Ⅰ interferon signaling pathway[D]. Beijing: Master’s Thesis of Chinese Academy of Agricultural Sciences, 2019(in Chinese).
    [37] MALLICK T, MISHRA R, MOHANTY S, JOSHI RK. Genome wide analysis of the potato soft rot pathogen Pectobacterium carotovorum strain ICMP 5702 to predict novel insights into its genetic features[J]. The Plant Pathology Journal, 2022, 38(2): 102-114.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘坤,孙文松,张天静,沈宝宇,李晓丽. 一株人参细菌性软腐病致病假单胞菌的基因组特征与毒力基因分析[J]. 微生物学通报, 2024, 51(11): 4667-4686

复制
分享
文章指标
  • 点击次数:129
  • 下载次数: 285
  • HTML阅读次数: 224
  • 引用次数: 0
历史
  • 收稿日期:2024-03-19
  • 录用日期:2024-05-10
  • 在线发布日期: 2024-10-31
  • 出版日期: 2024-11-20
文章二维码