科微学术

微生物学通报

姜黄素对大鼠脊髓损伤后微生物多样性及脊髓转录组学的影响
作者:
基金项目:

陕西省科学技术厅一般项目(2024SF-YBXM-037);延安市科技局项目(2019ZCSY-013);延安大学研究生教育创新计划(YCX2023114)


Effects of curcumin on microbial diversity and transcriptomics in rats with spinal cord injury
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】脊髓损伤是一种中枢神经系统的严重创伤,除了导致运动、感觉、自主神经功能障碍外,还会引起胃肠道功能障碍,不利于后续功能恢复。先前的研究表明,姜黄素对脊髓损伤具有一定的治疗作用,但姜黄素对脊髓损伤后肠道菌群是否具有调节作用及治疗相关通路鲜有报道。【目的】观察姜黄素对脊髓损伤大鼠行为学和组织形态学的影响,并利用高通量测序技术探讨姜黄素对盲肠组织微生物及其代谢产物的影响,探究姜黄素对脊髓损伤大鼠微生物多样性及脊髓转录组学的影响。【方法】将50只6−8周、220−240 g左右雌性SD大鼠随机分为假手术组、脊髓损伤模型组、脊髓损伤后姜黄素低、中、高剂量给药组。假手术组无脊髓损伤,模型组和姜黄素组建立脊髓损伤模型,在脊髓损伤模型建立30 min后分别腹腔注射姜黄素50、100和200 mg/kg,每天1次,连续治疗1周。术后采用大鼠脊髓损伤评分(basso, beattie & bresnahan locomotor rating scale, BBB scale)量表评定运动功能;苏木精-伊红染色观察大鼠脊髓组织形态学变化;通过对16S rRNA基因的V3+V4可变区进行高通量测序,分析α及β多样性、菌群的相对丰度以及短链脂肪酸含量,评估治疗前后对肠道菌群的影响。【结果】中等剂量姜黄素100 mg/kg可使脊髓损伤后肢体运动功能明显改善,对受损脊髓有一定的保护和修复作用;姜黄素给药可改善脊髓损伤后微生物群多样性,提高短链脂肪酸水平;脊髓损伤后大鼠肠道菌群信号转导通路发生变化,在应用姜黄素后部分信号通路恢复表达。【结论】姜黄素可以影响脊髓损伤大鼠肠道微生物多样性并提高短链脂肪酸水平,对脊髓损伤大鼠具有治疗作用。

    Abstract:

    [Background] Spinal cord injury, a severe trauma of the central nervous system, causes not only motor, sensory, and autonomic nerve dysfunction but also gastrointestinal dysfunction, being not conducive to subsequent functional recovery. Studies have shown that curcumin has a therapeutic effect on spinal cord injury, while little is known about whether curcumin can regulate intestinal microbiota after spinal cord injury or not and the treatment-related pathways. [Objective] To observe the effects of curcumin on the behaviors, the spinal cord histomorphology, the diversity and metabolites of cecal microbiota, and the spinal cord transcriptomics in the rats with spinal cord injury. [Methods] A total of 50 female SD rats of 6−8 weeks and 220−240 g were randomized into a sham operation group, a model (spinal cord injury) group, and low-, medium-, and high-dose (50, 100, and 200 mg/kg, respectively) curcumin+spinal cord injury groups. Curcumin 50 mg/kg, 100 mg/kg, and 200 mg/kg was intraperitoneally injected 30 min after the establishment of the rat model of spinal cord injury, once a day for a week. The Basso, Beattie & Bresnahan (BBB) locomotor rating scale was used for scoring of the motor function. Hematoxylin-eosin staining was used to observe the histomorphological changes in the spinal cord of rats. High-throughput sequencing of the V3+V4 variable region of 16S rRNA gene was carried out to analyze the α diversity, β diversity, and relative abundance of microflora, and the levels of short-chain fatty acids were measured, on the basis of which the changes of intestinal microbiota before and after treatment were evaluated. [Results] The medium dose (100 mg/kg) of curcumin significantly improved the limb motor function after spinal cord injury, demonstrating protective and repair effects on the damaged spinal cord. Curcumin administration in the rat model of spinal cord injury improved the diversity of microbiota and elevated the levels of short-chain fatty acids. The spinal cord injury altered the signaling pathways of intestinal microbiota, which was restored after the administration of curcumin. [Conclusion] Curcumin can affect intestinal microbial diversity and increase the levels of short-chain fatty acids in the rat model of spinal cord injury, and had a therapeutic effect on rats with spinal cord injury.

    参考文献
    [1] STERNER RC, STERNER RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies[J]. Frontiers in Immunology, 2022, 13: 1084101.
    [2] LEE J, LEE G, KO G, LEE SJ. Nerve injury-induced gut dysbiosis contributes to spinal cord TNF-α expression and nociceptive sensitization[J]. Brain, Behavior, and Immunity, 2023, 110: 155-161.
    [3] DING WZ, HU SA, WANG PJ, KANG HL, PENG RP, DONG YM, LI F. Spinal cord injury: the global incidence, prevalence, and disability from the global burden of disease study 2019[J]. Spine, 2022, 47(21): 1532-1540.
    [4] ISLAM T, KOBOZIEV I, ALBRACHT-SCHULTE K, MISTRETTA B, SCOGGIN S, YOSOFVAND M, MOUSSA H, ZABET-MOGHADDAM M, RAMALINGAM L, GUNARATNE PH, MOUSTAID- MOUSSA N. Curcumin reduces adipose tissue inflammation and alters gut microbiota in diet-induced obese male mice[J]. Molecular Nutrition & Food Research, 2021, 65(22): e2100274.
    [5] GAO F, SHEN J, ZHAO L, HAO Q, YANG YL. Curcumin alleviates lipopolysaccharide (LPS)-activated neuroinflammation via modulation of miR-199b-5p/IκB kinase β (IKKβ)/nuclear factor kappa B (NF-κB) pathway in microglia[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2019, 25: 9801-9810.
    [6] IGLESIAS DE, CREMONINI E, OTEIZA PI, FRAGA CG. Curcumin mitigates TNFα-induced caco-2 cell monolayer permeabilization through modulation of NF-κB, ERK1/2, and JNK pathways[J]. Molecular Nutrition & Food Research, 2022, 66(21): e2101033.
    [7] LIU CF, ROKAVEC M, HUANG ZK, HERMEKING H. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis[J]. Cell Death & Differentiation, 2023, 30: 1771-1785.
    [8] WANG YJ, LIU FJ, LIU MR, ZHOU X, WANG M, CAO KX, JIN SJ, SHAN AS, FENG XJ. Curcumin mitigates aflatoxin B1-induced liver injury via regulating the NLRP3 inflammasome and Nrf2 signaling pathway[J]. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2022, 161: 112823.
    [9] PIVARI F, MINGIONE A, PIAZZINI G, CECCARANI C, OTTAVIANO E, BRASACCHIO C, CAS MD, VISCHI M, COZZOLINO MG, FOGAGNOLO P, RIVA A, PETRANGOLINI G, BARREA L, Di RENZO L, BORGHI E, SIGNORELLI P, PARONI R, SOLDATI L. Curcumin supplementation (meriva®) modulates inflammation, lipid peroxidation and gut microbiota composition in chronic kidney disease[J]. Nutrients, 2022, 14(1): 231.
    [10] YANG C, HAN MM, LI RY, ZHOU LG, ZHANG Y, DUAN LN, SU SY, LI M, WANG Q, CHEN TK, MO YS. Curcumin nanoparticles inhibiting ferroptosis for the enhanced treatment of intracerebral hemorrhage[J]. International Journal of Nanomedicine, 2021, 16: 8049-8065.
    [11] JIN WL, BOTCHWAY BOA, LIU XH. Curcumin can activate the Nrf2/HO-1 signaling pathway and scavenge free radicals in spinal cord injury treatment[J]. Neurorehabilitation and Neural Repair, 2021, 35(7): 576-584.
    [12] ZHOU Y, ZHANG Y, BOTCHWAY BOA, WANG XC, LIU XH. Curcumin can improve spinal cord injury by inhibiting DNA methylation[J]. Molecular and Cellular Biochemistry, 2024, 479(2): 351-362.
    [13] 王启. 姜黄素对大鼠脊髓损伤后心肺功能的修复作用及其机制研究[D]. 延安: 延安大学硕士学位论文, 2020. WANG Q. Effect and mechanism of Curcumin on CardiopulmonaryFunction after Spinal cord Injury in Rats[D]. Yan’an: Master’s Thesis of Yan’an University, 2020(in Chinese).
    [14] EOR JY, SON YJ, KIM JY, KANG HC, YOUN SE, KIM JH, KIM SH. Neuroprotective effect of both synbiotics and ketogenic diet in a pentylenetetrazol- induced acute seizure murine model[J]. Epilepsy Research, 2021, 174: 106668.
    [15] YUAN JY, BOTCHWAY BOA, ZHANG Y, TAN XN, WANG XZ, LIU XH. Curcumin can improve spinal cord injury by inhibiting TGF-β-SOX9 signaling pathway[J]. Cellular and Molecular Neurobiology, 2019, 39(5): 569-575.
    [16] 徐由立. 慢性乙型肝炎脾胃湿热证和肝郁脾虚证患者肠道菌群的变化及其与甲基化相关蛋白的关联性研究[D]. 成都: 成都中医药大学博士学位论文, 2019. XU YL. Study on the changes of intestinal flora in patients with chronic hepatitis B syndrome of spleen and stomach dampness-heat and liver depression and spleen deficiency and their association with methylation-related proteins[D]. Chengdu: Doctoral Dissertation of Chengdu University of TCM, 2019(in Chinese)
    [17] 张振显. 姜黄素对大鼠脊髓损伤后微生物多样性及脊髓转录组学影响的研究[D]. 延安: 延安大学硕士学位论文, 2019. ZHANG ZX. Effect of curcumin on microbial diversity and transcriptomics in rats with spinal cord injury[D]. Yan’an: Master’s Thesis of Yan’an University, 2019(in Chinese).
    [18] KANG JN, SUN ZF, LI XY, ZHANG XD, JIN ZX, ZHANG C, ZHANG Y, WANG HY, HUANG NN, JIANG JH, NING B. Alterations in gut microbiota are related to metabolite profiles in spinal cord injury[J]. Neural Regeneration Research, 2023, 18(5): 1076-1083.
    [19] 李政, 李龙文, 徐东, 汪晓宁, 周英龙, 帅勤, 唐瑷, 何燕飞. 白藜芦醇对脊髓损伤大鼠的治疗作用与肠道菌群的相关性研究[J]. 辽宁中医药大学学报, 2024, 26(1): 10-15. LI Z, LI WL, XV D, WANG XN, ZHOU YL, SHUAI Q, TANG Y, HE FY. Therapeutic Effect of Resveratrol on Spinal Cord Injury in Rats and Its Mechanism[J]. Journal of Liaoning University of TCM, 2024, 26(1): 10-15(in Chinese).
    [20] YANG WJ, YU TM, HUANG XS, BILOTTA AJ, XU LQ, LU Y, SUN JR, PAN F, ZHOU J, ZHANG WB, YAO SX, MAYNARD CL, SINGH N, DANN SM, LIU ZJ, CONG YZ. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity[J]. Nature Communications, 2020, 11: 4457.
    [21] TANG CF, WANG CY, WANG JH, WANG QN, LI SJ, WANG HO, ZHOU F, LI JM. Short-chain fatty acids ameliorate depressive-like behaviors of high fructose-fed mice by rescuing hippocampal neurogenesis decline and blood-brain barrier damage[J]. Nutrients, 2022, 14(9): 1882.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王青燕,郝琴,高慧,张欣,马佳蕊,张振显,梁家兴,靳雅惠,沈娟,杨彦玲. 姜黄素对大鼠脊髓损伤后微生物多样性及脊髓转录组学的影响[J]. 微生物学通报, 2024, 51(11): 4712-4724

复制
相关视频

分享
文章指标
  • 点击次数:145
  • 下载次数: 298
  • HTML阅读次数: 291
  • 引用次数: 0
历史
  • 收稿日期:2024-03-03
  • 录用日期:2024-04-25
  • 在线发布日期: 2024-10-31
  • 出版日期: 2024-11-20
文章二维码