2025, 65(6):2433-2448.DOI: 10.13343/j.cnki.wsxb.20250296
摘要:产甲烷古菌是缺氧环境中碳循环的核心驱动者。近年的研究表明,产甲烷古菌还参与了(类)金属的生物地球化学循环,但其介导的金属转化机制尚未得到系统的总结。本文综合了最新的研究成果,重点解析了产甲烷古菌对铁(Fe)、汞(Hg)、钒(V)、铬(Cr)、镉(Cd)、砷(As)、硒(Se)等典型(类)金属的氧化、还原、甲基化及去甲基化过程。(1) Fe(Ⅲ)还原对甲烷生成具有双向调控作用,当胞外Fe(Ⅲ)还原不能耦合能量代谢时,会显著抑制产甲烷古菌的生长及产甲烷过程,例如巴氏甲烷八叠球菌(Methanosarcina barkeri);而当胞外Fe(Ⅲ)还原耦合能量代谢时,则会促进产甲烷古菌的生理代谢活性,例如噬乙酸甲烷八叠球菌(Methanosarcina acetivorans);(2) 在汞甲基化机制方面,产甲烷古菌通过hgcAB基因簇编码的甲基转移酶实现Hg(Ⅱ)向甲基汞(methylmercury, MeHg)的转化,且部分菌株,如卢米尼甲烷马赛球菌(Methanomassiliicoccus luminyensis)的甲基化活性与死细胞释放的酶活性相关;(3) 砷转化机制呈现多样性,M. acetivorans通过As(Ⅲ)S-腺苷甲硫氨酸甲基转移酶(arsenic methyltransferase, ArsM)催化As(Ⅲ)甲基化,同时可利用砷酸盐还原酶(arsenate reductase, ArsC)还原As(V)为As(Ⅲ),而稻田古菌群落还表现出有机胂的去甲基化能力;(4) 硒的生物转化具有双重性,低浓度硒纳米颗粒(selenium nanoparticles, SeNPs)能够促进产甲烷活性并诱导有机硒合成,而高浓度则会引发氧化应激。在环境效应方面,(类)金属通过改变氧化还原电位、竞争电子受体或诱导毒性胁迫,显著影响产甲烷古菌的代谢活性与群落结构。本文系统地揭示了产甲烷古菌在(类)金属循环中的多功能性,并提出未来需要结合宏组学与代谢组学技术解析关键酶的分子机制,同时探索基于产甲烷古菌的(类)金属污染生物修复新策略。