Phycosphere Microbiology: an emerging interdiscipline comprehensively promoting sustainable development
Author:
Affiliation:

College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (41876114, 41206093), the Fundamental Research Funds for Zhejiang Provincial Universities (Innovation Group Project) (2024J006), the Natural Science Foundation of Zhejiang Province (LY23D060005, LY18D060007), the Project of Higher Education Society of Zhejiang Province (KT2024099), the Key Textbook Project of Zhejiang for the 14th Five-year Plan, the Industry-University Collaborative Education Project of Zhejiang, and the Undergraduate Teaching Reform Project of Zhejiang (JGBA2024256).

  • Article
  • | |
  • Metrics
  • |
  • Reference [142]
  • |
  • Related [1]
  • | | |
  • Comments
    Abstract:

    Algae and bacteria are both the oldest forms of life on our planet, and billions of years of natural evolution have driven the algae and their microbiomes to evolve into interactive phycobionts. Through complex, flexible, intelligent, and multi-interface interactions between algae and bacteria, the functions of both sides of the phycobionts are exquisitely regulated. The creation, innovation, and development of the phycobiont theory shows vital scientific value for revealing the mystery of the origin and evolution of the life on Earth, and this theory is also being transformed into diverse practical applications in significant fields for sustainable development. After centuries of incubation, knowledge accumulation and development, currently, it is the right time to promote Phycosphere Microbiology to develop into an emerging interdiscipline. In this review, we comprehensively discussed the core concepts of Phycosphere Microbiology, sorted out its vital relationships with environment protection, human health maintenance, resource utilization, and green-oriented transition of energy, then reviewed its development history, and summarized the main research achievements during three development periods. Finally, we also proposed and discussed the future development trends and potential research directions for this emerging interdiscipline.

    Reference
    [1] 习近平. 论科技自立自强: 大字本[M]. 北京: 中央文献出版社, 2023.XI JP. On Self-reliance and Self-improvement of Science and Technology: a Big Print[M]. Beijing: Central Party Literature Press, 2023 (in Chinese).
    [2] ECURU J, MacRAE E, LANG C. Bioeconomy: game changer for climate action[J]. Nature, 2022, 610(7933): 630.
    [3] DELEBECQUE C, PHILP J. Training for synthetic biology jobs in the new bioeconomy[J]. Science, 2015, 14. DOI: 10.1126/science.caredit.a1500143.
    [4] SEYMOUR JR, AMIN SA, RAINA JB, STOCKER R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships[J]. Nature Microbiology, 2017, 2: 17065.
    [5] KELLER L, SURETTE MG. Communication in bacteria: an ecological and evolutionary perspective[J]. Nature Reviews Microbiology, 2006, 4(4): 249-258.
    [6] MERKEL A. The role of science in sustainable development[J]. Science, 1998, 281(5375): 336-337.
    [7] STROTHER PK, FOSTER C. A fossil record of land plant origins from charophyte algae[J]. Science, 2021, 373(6556): 792-796.
    [8] AZAM F, MALFATTI F. Microbial structuring of marine ecosystems[J]. Nature Reviews Microbiology, 2007, 5(10): 782-791.
    [9] ALIVISATOS AP, BLASER MJ, BRODIE EL, CHUN M, DANGL JL, DONOHUE TJ, DORRESTEIN PC, GILBERT JA, GREEN JL, JANSSON JK, KNIGHT R, MAXON ME, MCFALL-NGAI MJ, MILLER JF, POLLARD KS, RUBY EG, TAHA SA, CONSORTIUM UMI. A unified initiative to harness Earth’s microbiomes[J]. Science, 2015, 350(6260): 507-508.
    [10] DELAUX PM, SCHORNACK S. Plant evolution driven by interactions with symbiotic and pathogenic microbes[J]. Science, 2021, 371(6531): eaba6605.
    [11] RYAN GEORGIANNA D, MAYFIELD SP. Exploiting diversity and synthetic biology for the production of algal biofuels[J]. Nature, 2012, 488(7411): 329-335.
    [12] SOKOLOVSKAYA OM, SHELTON AN, TAGA ME. Sharing vitamins: cobamides unveil microbial interactions[J]. Science, 2020, 369(6499): eaba0165.
    [13] WORDEN AZ, FOLLOWS MJ, GIOVANNONI SJ, WILKEN S, ZIMMERMAN AE, KEELING PJ. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes[J]. Science, 2015, 347(6223): 1257594.
    [14] BELL W, MITCHELL R. Chemotactic and growth responses of marine bacteria to algal extracellular products[J]. The Biological Bulletin, 1972, 143(2): 265-277.
    [15] DURáN P, FLORES-URIBE J, WIPPEL K, ZHANG PF, GUAN R, MELKONIAN B, MELKONIAN M, GARRIDO-OTER R. Shared features and reciprocal complementation of the Chlamydomonas and Arabidopsis microbiota[J]. Nature Communications, 2022, 13(1): 406.
    [16] EGAN S, HARDER T, BURKE C, STEINBERG P, KJELLEBERG S, THOMAS T. The seaweed holobiont: understanding seaweed-bacteria interactions[J]. FEMS Microbiology Reviews, 2013, 37(3): 462-476.
    [17] NATRAH FMI, BOSSIER P, SORGELOOS P, YUSOFF FM, DEFOIRDT T. Significance of microalgal-bacterial interactions for aquaculture[J]. Reviews in Aquaculture, 2014, 6(1): 48-61.
    [18] SEYMOUR JR, SIMó R, AHMED T, STOCKER R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web[J]. Science, 2010, 329(5989): 342-345.
    [19] ZHANG X, TIAN X, MA L, FENG B, LIU Q, YUAN L, FAN C, HUANG H, YANG Q. Biodiversity of the symbiotic bacteria associated with toxic marine dinoflagellate Alexandrium tamarense. Journal of Biosciences and Medicines, 2015, 3: 23-28.
    [20] SCOTT GD. Lichen terminology[J]. Nature, 1957, 179(4557): 486-487.
    [21] 申建波, 白洋, 韦中, 储成才, 袁力行, 张林, 崔振岭, 丛汶峰, 张福锁. 根际生命共同体: 协调资源、环境和粮食安全的学术思路与交叉创新[J]. 土壤学报, 2021, 58(4): 805-813.SHEN JB, BAI Y, WEI Z, CHU CC, YUAN LX, ZHANG L, CUI ZL, CONG WF, ZHANG FS. Rhizobiont: an interdisciplinary innovation and perspective for harmonizing resources, environment, and food security[J]. Acta Pedologica Sinica, 2021, 58(4): 805-813 (in Chinese).
    [22] AMIN SA, PARKER MS, VIRGINIA ARMBRUST E. Interactions between diatoms and bacteria[J]. Microbiology and Molecular Biology Reviews, 2012, 76(3): 667-684.
    [23] COLE JJ. Interactions between bacteria and algae in aquatic ecosystems[J]. Annual Review of Ecology and Systematics, 1982, 13: 291-314.
    [24] COOPER MB, SMITH AG. Exploring mutualistic interactions between microalgae and bacteria in the omics age[J]. Current Opinion in Plant Biology, 2015, 26: 147-153.
    [25] RAMANAN R, KIM BH, CHO DH, OH HM, KIM HS. Algae-bacteria interactions: evolution, ecology and emerging applications[J]. Biotechnology Advances, 2016, 34(1): 14-29.
    [26] GIOVANNONI S, STINGL U. The importance of culturing bacterioplankton in the ‘omics’ age[J]. Nature Reviews Microbiology, 2007, 5(10): 820-826.
    [27] KAEBERLEIN T, LEWIS K, EPSTEIN SS. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment[J]. Science, 2002, 296(5570): 1127-1129.
    [28] 魏江春. 中国地衣学现状综述[J]. 菌物学报, 2018, 37(7): 812-818.WEI JC. A review on the present situation of lichenology in China[J]. Mycosystema, 2018, 37(7): 812-818 (in Chinese).
    [29] ZIPFEL C, OLDROYD GED. Plant signalling in symbiosis and immunity[J]. Nature, 2017, 543(7645): 328-336.
    [30] IVANOV S, HARRISON MJ. Receptor-associated kinases control the lipid provisioning program in plant-fungal symbiosis[J]. Science, 2024, 383(6681): 443-448.
    [31] TSCHITSCHKO B, ESTI M, PHILIPPI M, KIDANE AT, LITTMANN S, KITZINGER K, SPETH DR, LI SJ, KRABERG A, TIENKEN D, MARCHANT HK, KARTAL B, MILUCKA J, MOHR W, KUYPERS MMM. Rhizobia-diatom symbiosis fixes missing nitrogen in the ocean[J]. Nature, 2024, 630(8018): 899-904.
    [32] SAGAN L. On the origin of mitosing cells[J]. Journal of Theoretical Biology, 1967, 14(3): 225-IN6.
    [33] MERESCHKOWSKY C. Theorie der zwei plasmaarten als grundlage der symbiogenesis, einer neuen lehre von der entstehung der organismen[J]. Biologisches Centralblatt, 1910, 30: 278-288.
    [34] WALLIN IE. On the nature of mitochondria. I. Observations on mitochondria staining methods applied to bacteria. II. Reactions of bacteria to chemical treatment[J]. American Journal of Anatomy, 1922, 30(2): 203-229.
    [35] MARGULIS L. Origin of Eukaryotic Cells[M]. New Haven: Yale University Press, 1970: 351-359.
    [36] SCHWARTZ RM, DAYHOFF MO. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts[J]. Science, 1978, 199(4327): 395-403.
    [37] MARTIN FM, UROZ S, BARKER DG. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria[J]. Science, 2017, 356(6340): eaad4501.
    [38] OSWALD WJ, GOTAAS HB. Photosynthesis in sewage treatment[J]. Transactions of the American Society of Civil Engineers, 1957, 122(1): 73-97.
    [39] BURLEW JS. Algal Culture, from Laboratory to Pilot Plant[M]. Washington: Carnegie Institution of Washington, 1953: 105-153.
    [40] WANG YH, LIU JZ, KANG D, WU CX, WU YH. Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: a review[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(4): 717-735.
    [41] SILVA ES. Endonuclear bacteria in two species of dinoflagellates[J]. Protistologica, 1978, 14(2): 113-119.
    [42] SILVA ES. Intracellular bacteria: the origin of dinoflagellate toxicity[J]. Journal of Environmental Pathology, Toxicology and Oncology, 1990, 10(3): 124-128.
    [43] COYNE KJ, WANG YF, JOHNSON G. Algicidal bacteria: a review of current knowledge and applications to control harmful algal blooms[J]. Frontiers in Microbiology, 2022, 13: 871177.
    [44] MEYER N, BIGALKE A, KAULFU? A, POHNERT G. Strategies and ecological roles of algicidal bacteria[J]. FEMS Microbiology Reviews, 2017, 41(6): 880-899.
    [45] SUTTLE CA, CHAN AM. Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp.[J]. Applied and Environmental Microbiology, 1994, 60(9): 3167-3174.
    [46] SAFFERMAN RS, MORRIS ME. Algal virus: isolation[J]. Science, 1963, 140(3567): 679-680.
    [47] SAFFERMAN RS, SCHNEIDER IR, STEERE RL, MORRIS ME, DIENER TO. Phycovirus SM-1: a virus infecting unicellular blue-green algae[J]. Virology, 1969, 37(3): 386-395.
    [48] 连玉武, 王艳丽, 郑天凌, 洪华生. 赤潮科学中藻菌关系研究的若干进展[J]. 海洋科学, 1999, 23(1): 35-38.LIAN YW, WANG YL, ZHENG TL, HONG HS. Advance in the research on interaction between red tide algae and bacteria[J]. Marine Sciences, 1999, 23(1): 35-38 (in Chinese).
    [49] 孔丘. 论语: 外二种[M]. 北京: 北京出版社, 2006: 12-16.KONG Q. The Analects of Confucius: two kinds of foreign languages[M]. Beijing: Beijing Publishing House Group, 2006: 12-16 (in Chinese).
    [50] 陶弘景. 名医别录[M]. 北京: 中国中医药出版社, 2013: 230.TAO HJ. Famous Doctors’ Prescriptions[M]. Beijing: China Traditional Chinese Medicine Press, 2013: 230 (in Chinese).
    [51] 缪启愉, 缪桂龙译注. 齐民要术译注[M]. 上海: 上海古籍出版社, 2021: 156.MIAO QY, MIAO GL. Qi Min Yao Shu[M]. Shanghai: Shanghai Ancient Books Press, 2021: 156 (in Chinese).
    [52] 陈荣, 熊墨年, 何晓晖. 中国中医药学术语集成: 中医文献[M]. 北京: 中医古籍出版社, 2007: 848.CHEN R, XIONG MN, HE XH. China Chinese medicine academic language integration: Chinese medicine literature[M]. Beijing: Chinese Medicine Ancient Books Press, 2007: 848 (in Chinese).
    [53] 李时珍. 本草纲目: 校点本[M]. 北京: 人民卫生出版社, 1982: 838-874.LI SZ. Compendium of Materia Medica (Annotated Edition)[M]. Beijing: People’s Medical Publishing House, 1982: 838-874 (in Chinese).
    [54] DEBENI DEVI N, CHAUDHURI A, GOUD VV. Algae biofilm as a renewable resource for production of biofuel and value-added products: a review[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102749.
    [55] MAGDOULI S, BRAR SK, BLAIS JF. Co-culture for lipid production: advances and challenges[J]. Biomass and Bioenergy, 2016, 92: 20-30.
    [56] FUHRMAN JA. Marine viruses and their biogeochemical and ecological effects[J]. Nature, 1999, 399(6736): 541-548.
    [57] KOUZUMA A, WATANABE K. Exploring the potential of algae/bacteria interactions[J]. Current Opinion in Biotechnology, 2015, 33: 125-129.
    [58] PENESYAN A, MARSHALL-JONES Z, HOLMSTROM C, KJELLEBERG S, EGAN S. Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs[J]. FEMS Microbiology Ecology, 2009, 69(1): 113-124.
    [59] SUTHERLAND I. Biofilm exopolysaccharides: a strong and sticky framework[J]. Microbiology, 2001, 147(Pt 1): 3-9.
    [60] BEIJERINCK MW. Culturversuche mit zoochlorellen, lichengonidien und anderen niederen algen[J]. Botanische Zeitung, 1890, 48: 725-785.
    [61] LOK C. Mining the microbial dark matter[J]. Nature, 2015, 522: 270-273.
    [62] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
    [63] DUFFY JE, CANUEL EA, ADEY W, SWADDLE JP. Biofuels: algae[J]. Science, 2009, 326(5958): 1345.
    [64] CUEVAS-CASTILLO GA, NAVARRO-PINEDA FS, RODRíGUEZ SA BAZ, SACRAMENTO RIVERO JC. Advances on the processing of microalgal biomass for energy-driven biorefineries[J]. Renewable and Sustainable Energy Reviews, 2020, 125: 109606.
    [65] LIU Z, DENG Z, HE G, WANG HL, ZHANG X, LIN J, QI Y, LIANG X. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth & Environment, 2022, 3: 141-155.
    [66] MALLAPATY S. How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830): 482-483.
    [67] ANONYMOUS. Two letters from a gentleman in the country, relating to Mr. Leuwenhoeck’s letter in transaction, No. 283. Communicated by Mr. C[J]. Philosophical Transactions of the Royal Society of London, 1702: 23(288): 1494-1501.
    [68] WALCOTT CD. Discovery of Algonkian bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 1915, 1(4): 256-257.
    [69] ACHARIUS E. Afhandling om de cryptogamiske vexter, som komma under namn af Calicioidea[J]. Kongliga Svenska Vetenskapsakademiens Handlingar, 1815: 246-271.
    [70] FRANK AB. über die biologischen verk?ltnisse des thallus einiger krustflechten[J]. Beitr?ge zur Biologie der Pflanzen, 1877, 2: 123-200.
    [71] PFEFFER W. Locomotorische richtungsbewegungen durch chemische Reize[J]. Ber Deutsche Botan Gesellschaft, 1883, 1: 524-533.
    [72] FRANK AB. Frank: Ueber die auf Wurzelsymbiose beruhende Ern?hrung gewisser B?ume durch unterirdische Pilze[J]. Berichte der Deutschen Botanischen Gesellschaft, 1885, 3(4): 128-145.
    [73] ZOPF W. Zopf: ueber nebensymbiose (parasymbiose)[J]. Berichte der Deutschen Botanischen Gesellschaft, 1897, 15(1): 90-92
    [74] WERNER RG. Etude biologique et physiologique du Celidium stictarum (De Not.) Tul[J]. Bulletin Trimestriel de la Société Mycologique de France, 1928, 44: 194-204.
    [75] TOBLER F. Die Flechten; Eine Einführung in Ihre Allgemeine Kenntnis: auf Grund Neuerer Forschungen und Kritisch Dargestellt[M]. Jena: Gustav Fischer Verlag Press, 1934: 1-84.
    [76] Symbiosis PENNISI E.. A lichen ménage à trois[J]. Science, 2016, 353(6297): 337.
    [77] YUAN XL, XIAO SH, TAYLOR TN. Lichen-like symbiosis 600 million years ago[J]. Science, 2005, 308(5724): 1017-1020.
    [78] TOBY KIERS E, WEST SA. Evolutionary biology. Evolving new organisms via symbiosis[J]. Science, 2015, 348(6233): 392-394.
    [79] SPRIBILLE T, TUOVINEN V, RESL P, VANDERPOOL D, WOLINSKI H, CATHERINE AIME M, SCHNEIDER K, STABENTHEINER E, TOOME-HELLER M, THOR G, MAYRHOFER H, JOHANNESSON H, MCCUTCHEON JP. Basidiomycete yeasts in the cortex of Ascomycete macrolichens[J]. Science, 2016, 353(6298): 488-492.
    [80] ACHARIUS E, DALTON J, GRENVILLE WWG, PIERSON R, STEVENSON JA. Lichenographiae Svecicae Prodromus[M]. Lincopiae: D.G. Bj?rn, 1798.
    [81] ACHARIUS E, AKRELL CF, BAUMANN JMW, STEVENSON JA. Methodus qua omnes detectos lichenes: secundum organa carpomorpha, ad genera, species et varietates[M]. Stockholmiae: Impensis F.D.D. Ulrich, typis C.F. Marquard, 1803.
    [82] ACHARIUS E. Lichenographia Universalis. In qua Lichenes Omnes Detectos, Adiectis Observationibus et Figuris Horum Vegetabilium Naturam et Organorum Carpomorphorum Structuram Illustrantibus, ad Genera, Species[M]. Gottingae: Apud I. F. Danckwerts, 1810.
    [83] ACHARIUS E. Synopsis Methodica Lichenum[M]. Paris: Imprimerie de L. Martinet, rue Mignon, 2, 1814: 25-66.
    [84] SCHWENDENER S. Ueber die wahre Natur der Flechten[C]//Proceedings of the Swiss Scientific Society in Rheinfelden, German, 1867: 88-90.
    [85] REINKE J. Ueber die anatomischen Verh?ltnisse einiger Arten von Gunnera L.[J]. Nachrichten von der K?nigl. Gesellschaft der Wissenschaften und der Georg‐Augusts‐Universit?t zu G?ttingen, 1872, 9: 100-108.
    [86] 刘华杰, 贾泽峰, 任强, 周启明. 中国地衣学现状与潜力: 祝贺魏江春院士八旬华诞地衣学文集[M]. 北京: 科学出版社, 2011: 22-28.LIU HJ, JIA ZF, REN Q, ZHOU QM. The present status and potentialities of the lichenology in China: congratulations to Academician Wei Jiangchun on his 80th birthday[M]. Beijing: Science Press, 2011: 22-28 (in Chinese).
    [87] OTTO S. Prinzipien der flechtensymbiose[J]. Flora, 1975, 164(4/5): 359-376.
    [88] FUQUA WC, WINANS SC, GREENBERG EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Journal of Bacteriology, 1994, 176(2): 269-275.
    [89] SANCHEZ C, LACHAIZE C, JANODY F, BELLON B, R?DER L, EUZENAT J, RECHENMANN F, JACQ B. Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an Internet database[J]. Nucleic Acids Research, 1999, 27(1): 89-94.
    [90] ZILBER-ROSENBERG I, ROSENBERG E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution[J]. FEMS Microbiology Reviews, 2008, 32(5): 723-735.
    [91] DROOP MR. A procedure for routine purification of algal cultures with antibiotics[J]. British Phycological Bulletin, 1967, 3(2): 295-297.
    [92] HASEGAWA Y, MARTIN JL, GIEWAT MW, ROONEY-VARGA JN. Microbial community diversity in the phycosphere of natural populations of the toxic alga, Alexandrium fundyense[J]. Environmental Microbiology, 2007, 9(12): 3108-3121.
    [93] KODAMA M, OGATA T, SAKAMOTO S, SATO S, HONDA T, MIWATANI T. Production of paralytic shellfish toxins by a bacterium Moraxella sp. isolated from Protogonyaulax tamarensis[J]. Toxicon, 1990, 28(6): 707-714.
    [94] METZKER ML. Sequencing technologies: the next generation[J]. Nature Reviews Genetics, 2010, 11: 31-46.
    [95] CROFT MT, LAWRENCE AD, RAUX-DEERY E, WARREN MJ, SMITH AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria[J]. Nature, 2005, 438(7064): 90-93.
    [96] AMIN SA, GREEN DH, HART MC, KüPPER FC, SUNDA WG, CARRANO CJ. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(40): 17071-17076.
    [97] LIN SJ, CHENG SF, SONG B, ZHONG X, LIN X, LI WJ, LI L, ZHANG YQ, ZHANG H, JI ZL, CAI MC, ZHUANG YY, SHI XG, LIN LX, WANG L, WANG ZB, LIU X, YU S, ZENG P, HAO H, et al. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis[J]. Science, 2015, 350(6261): 691-694.
    [98] JIAO NZ, HERNDL GJ, HANSELL DA, BENNER R, KATTNER G, WILHELM SW, KIRCHMAN DL, WEINBAUER MG, LUO TW, CHEN F, AZAM F. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593-599.
    [99] 魏江春. 沙漠生物地毯工程: 干旱沙漠治理的新途径[J]. 干旱区研究, 2005, 22(3): 287-288.WEI JC. Biocarpet engineering using microbiotic crust for controlling sand[J]. Arid Zone Research, 2005, 22(3): 287-288 (in Chinese).
    [100] DURHAM BP, BOYSEN AK, CARLSON LT, GROUSSMAN RD, HEAL KR, CAIN KR, MORALES RL, COESEL SN, MORRIS RM, INGALLS AE, ARMBRUST EV. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean[J]. Nature Microbiology, 2019, 4(10): 1706-1715.
    [101] BUCHAN A, GONZáLEZ JM, MORAN MA. Overview of the marine Roseobacter lineage[J]. Applied and Environmental Microbiology, 2005, 71(10): 5665-5677.
    [102] FU H, UCHIMIYA M, GORE J, MORAN MA. Ecological drivers of bacterial community assembly in synthetic phycospheres[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(7): 3656-3662.
    [103] GALLACHER S, SMITH EA. Bacteria and paralytic shellfish toxins[J]. Protist, 1999, 150(3): 245-255.
    [104] DOUCETTE GJ. Interactions between bacteria and harmful algae: a review[J]. Natural Toxins, 1995, 3(2): 65-74.
    [105] MORAN MA, BELAS R, SCHELL MA, GONZáLEZ JM, SUN F, SUN S, BINDER BJ, EDMONDS J, YE W, ORCUTT B, HOWARD EC, MEILE C, PALEFSKY W, GOESMANN A, REN Q, PAULSEN I, ULRICH LE, THOMPSON LS, SAUNDERS E, BUCHAN A. Ecological genomics of marine roseobacters[J]. Applied and Environmental Microbiology, 2007, 73(14): 4559-4569.
    [106] GREEN DH, LLEWELLYN LE, NEGRI AP, BLACKBURN SI, BOLCH CJS. Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum[J]. FEMS Microbiology Ecology, 2004, 47(3): 345-357.
    [107] BAKER TR, DOUCETTE GJ, POWELL CL, BOYER GL, PLUMLEY FG. GTX4 imposters: characterization of fluorescent compounds synthesized by Pseudomonas stutzeri SF/PS and Pseudomonas/Alteromonas PTB-1, symbionts of saxitoxin-producing Alexandrium spp.[J]. Toxicon, 2003, 41(3): 339-347.
    [108] KOPP M, DOUCETTE GJ, KODAMA M, GERDTS G, SCHüTT C, MEDLIN LK. Phylogenetic analysis of selected toxic and non-toxic bacterial strains isolated from the toxic dinoflagellate Alexandrium tamarense[J]. FEMS Microbiology Ecology, 1997, 24(3): 251-257.
    [109] 魏江春. 奇妙的地衣: 第一讲[J]. 生命世界, 1977(3): 37-38.WEI JC. Wonderful lichen-lecture 1[J]. Life World, 1977(3): 37-38 (in Chinese).
    [110] 魏江春. 地衣名词及名称[M]. 北京: 科学出版社, 1980: 1-73.WEI JC. Lichen Nouns and Names[M]. Beijing: Science Press, 1980: 1-73 (in Chinese).
    [111] 魏江春. 中国药用地衣[M]. 北京: 科学出版社, 1982: 1-65.WEI JC. Medicinal Lichens in China[M]. Beijing: Science Press, 1982: 1-65 (in Chinese).
    [112] 魏江春. 中国地衣综览[M]. 北京: 世界图书出版公司, 1991: 1-285.WEI JC. Overview of Chinese Lichens[M]. Beijing: World Book Publishing Company, 1991: 1-285 (in Chinese).
    [113] 魏江春. 菌物生物多样性与人类可持续发展[J]. 中国科学院院刊, 2010, 25(6): 645-650.WEI JC. The biodiversity of pan-fungi and the sustainable development of human beings[J]. Bulletin of Chinese Academy of Sciences, 2010, 25(6): 645-650 (in Chinese).
    [114] HULTMAN J, WALDROP MP, MACKELPRANG R, DAVID MM, MCFARLAND J, BLAZEWICZ SJ, HARDEN J, TURETSKY MR, MCGUIRE AD, SHAH MB, VERBERKMOES NC, LEE LH, MAVROMMATIS K, JANSSON JK. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes[J]. Nature, 2015, 521(7551): 208-212.
    [115] SEYEDSAYAMDOST MR, CASE RJ, KOLTER R, CLARDY J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis[J]. Nature Chemistry, 2011, 3(4): 331-335.
    [116] IANORA A, BENTLEY MG, CALDWELL GS, CASOTTI R, CEMBELLA AD, ENGSTR?M-?ST J, HALSBAND C, SONNENSCHEIN E, LEGRAND C, LLEWELLYN CA, PALDAVI?IEN? A, PILKAITYTE R, POHNERT G, RAZINKOVAS A, ROMANO G, TILLMANN U, VAICIUTE D. The relevance of marine chemical ecology to plankton and ecosystem function: an emerging field[J]. Marine Drugs, 2011, 9(9): 1625-1648.
    [117] THUME K, GEBSER B, CHEN L, MEYER N, KIEBER DJ, POHNERT G. The metabolite dimethylsulfoxonium propionate extends the marine organosulfur cycle[J]. Nature, 2018, 563(7731): 412-415.
    [118] AMIN SA, HMELO LR, TOL HMV, DURHAM BP, CARLSON LT, HEAL KR, MORALES RL, BERTHIAUME CT, PARKER MS, DJUNAEDI B, INGALLS AE, PARSEK MR, MORAN MA, ARMBRUST EV. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria[J]. Nature, 2015, 522(7554): 98-101.
    [119] SEGEV E, WYCHE TP, KIM KH, PETERSEN J, ELLEBRANDT C, VLAMAKIS H, BARTENEVA N, PAULSON JN, CHAI L, CLARDY J, KOLTER R. Dynamic metabolic exchange governs a marine algal-bacterial interaction[J]. eLife, 2016, 5: e17473.
    [120] NAKAYAMA T, NOMURA M, TAKANO Y, TANIFUJI G, SHIBA K, INABA K, INAGAKI Y, KAWATA M. Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(32): 15973-15978.
    [121] ZAN JD, LI ZY, TIANERO MD, DAVIS J, HILL RT, DONIA MS. A microbial factory for defensive kahalalides in a tripartite marine symbiosis[J]. Science, 2019, 364(6445): eaaw6732.
    [122] COALE TH, LOCONTE V, TURK-KUBO KA, VANSLEMBROUCK B, MAK WKE, CHEUNG S, EKMAN A, CHEN JH, HAGINO K, TAKANO Y, NISHIMURA T, ADACHI M, GROS ML, LARABELL C, ZEHR JP. Nitrogen-fixing organelle in a marine alga[J]. Science, 2024, 384(6692): 217-222.
    [123] 朱建明, 周进, 王慧, 陈国福, 蔡中华. 藻菌关系的生态网络研究方法: 回顾与展望[J]. 科学通报, 2021, 66(34): 4378-4394.ZHU JM, ZHOU J, WANG H, CHEN GF, CAI ZH. The ecological network approach to algal-bacterial relationships: review and prospects[J]. Chinese Science Bulletin, 2021, 66(34): 4378-4394 (in Chinese).
    [124] BURM?LLE M, REN D, BJARNSHOLT T, S?RENSEN SJ. Interactions in multispecies biofilms: do they actually matter?[J]. Trends in Microbiology, 2014, 22(2): 84-91.
    [125] CIRRI E, POHNERT G. Algae-bacteria interactions that balance the planktonic microbiome[J]. New Phytologist, 2019, 223(1): 100-106.
    [126] DEVEAU A, BONITO G, UEHLING J, PAOLETTI M, BECKER M, BINDSCHEDLER S, HACQUARD S, HERVé V, LABBé J, LASTOVETSKY OA, MIESZKIN S, MILLET LJ, VAJNA B, JUNIER P, BONFANTE P, KROM BP, OLSSON S, ELSAS JD, WICK LY. Bacterial-fungal interactions: ecology, mechanisms and challenges[J]. FEMS Microbiology Reviews, 2018, 42(3): 335-352.
    [127] FALLAHI A, REZVANI F, ASGHARNEJAD H, NAZLOO EK, HAJINAJAF N, HIGGINS B. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: a review[J]. Chemosphere, 2021, 272: 129878.
    [128] GOECKE F, LABES A, WIESE J, IMHOFF JF. Chemical interactions between marine macroalgae and bacteria[J]. Marine Ecology Progress Series, 2010, 409: 267-299.
    [129] KRAMER J, ?ZKAYA ?, KüMMERLI R. Bacterial siderophores in community and host interactions[J]. Nature Reviews Microbiology, 2020, 18(3): 152-163.
    [130] KUHLISCH C, SHEMI A, BARAK-GAVISH N, SCHATZ D, VARDI A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions[J]. Nature Reviews Microbiology, 2024, 22(3): 138-154.
    [131] LI SN, ZHANG CF, LI FH, REN NQ, HO SH. Recent advances of algae-bacteria consortia in aquatic remediation[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(3): 315-339.
    [132] SADIQ FA, HANSEN MF, BURM?LLE M, HEYNDRICKX M, FLINT S, LU WW, CHEN W, ZHANG H. Trans-kingdom interactions in mixed biofilm communities[J]. FEMS Microbiology Reviews, 2022, 46(5): fuac024.
    [133] SINGH RP, REDDY CK. Seaweed-microbial interactions: key functions of seaweed-associated bacteria[J]. FEMS Microbiology Ecology, 2014, 88(2): 213-230.
    [134] ZHOU J, LYU YH, RICHLEN M, ANDERSON DM, CAI ZH. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions[J]. Critical Reviews in Plant Sciences, 2016, 35(2): 81-105.
    [135] 张晓玲, 杨桥. 麻痹性贝类毒素生物学研究与应用[M]. 武汉: 华中科技大学出版社, 2022: 12-36.ZHANG XL, YANG Q. Biological Research and Application of Paralytic Shellfish Poisoning Toxins[M]. Wuhan: Huazhong University of Science and Technology Press, 2022: 12-36 (in Chinese).
    [136] 张晓玲, 杨桥. 藻际微生物学导论[M]. 杭州: 浙江大学出版社, 2025: 1-26.ZHANG XL, YANG Q. Introduction to Phycosphere Microbiology[M]. Hangzhou: Zhejiang University Press, 2025: 1-26 (in Chinese).
    [137] 杨桥, 张晓玲. 藻际微生物学: 百年百人百事[M]. 武汉: 华中科技大学出版社, 2025: 10-36.YANG Q, ZHANG XL. Phycosphere Microbiology with Hundreds of Years, Peoples and Events[M]. Wuhan: Huazhong University of Science and Technology Press, 2025: 10-36 (in Chinese).
    [138] 杨桥. 可培养藻际微生物的发现与应用[M]. 武汉: 华中科技大学出版社, 2025: 10-36.YANG Q. Discovery and Application of Culturable Phycosphere Microorganisms[M]. Wuhan: Huazhong University of Science and Technology Press, 2025: 10-36 (in Chinese).
    [139] 杨桥. 面向未来的藻际微生物学[C]//2023年中国微生物学会学术年会, 上海, 2023-10-20.YANG Q. Towards the future of Phycosphere Microbiology[C]//2023 Annual Conference of Chinese Society for Microbiology, Shanghai, 2023-10-20 (in Chinese).
    [140] 杨桥. 面向未来的藻际微生物学[C]//2023年全国海洋微生物学学术研讨会, 青岛, 2023-10-27.YANG Q. Towards the future of Phycosphere Microbiology[C]//2023 National Marine Microbiology Symposium, Qingdao, 2023-10-27 (in Chinese).
    [141] LI SY, LIU QM, DUAN CY, LI JL, SUN HX, XU L, YANG Q, WANG Y, SHEN XH, ZHANG L. c-di-GMP inhibits the DNA binding activity of H-NS in Salmonella[J]. Nature Communications, 2023, 14: 7502.
    [142] 杨桥. 藻际微生物学: 全面助推可持续发展的新兴交叉学科[C]//中国菌物学会2024年学术年会, 福州, 2024-08-26.YANG Q. Phycosphere Microbiology: an emerging interdiscipline comprehensively promoting sustainable development[C]//2024 Annual Meeting of Mycological Society of China, Fuzhou, 2024-08-26 (in Chinese).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Xiaoling, YANG Qiao. Phycosphere Microbiology: an emerging interdiscipline comprehensively promoting sustainable development. [J]. Acta Microbiologica Sinica, 2025, 65(5): 1831-1848

Copy
Share
Article Metrics
  • Abstract:193
  • PDF: 314
  • HTML: 99
  • Cited by: 0
History
  • Received:December 05,2024
  • Online: April 30,2025
Article QR Code