The strategies and research progresses of rational improvement of the yield of microbial drug-A review
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Microbial drug is a large family of small molecules with unusual structural features and potent bioactivities. The production of microbial drug is crucial for its subsequent development and cost. Traditional breeding strategies for microbial drug production have been demonstrated to be remarkably effective, but they have also indicated the drawback of exceptional randomness and high cost. Synthetic biology has recently promised a revival for the rational enhancement of microbial drugs. In this review, we mainly discuss the recent progress from the aspects of promoter engineering, precursor supply, genome shuffling and etc., to delineate the application of the synthetic biology strategies to enhance the production of the microbial drugs, particularly, produced by actinomycetes.

    Reference
    [1] Wu LZ, Hong B. Synthetic biology toward microbial secondary metabolites and pharmaceuticals. Acta Pharmaceutica Sinica, 2013, 48(2): 155-160. (in Chinese) 武临专, 洪斌. 微生物药物合成生物学研究进展. 药学学报, 2013, 48(2): 155-160.
    [2] Huang W, Wang JB, Tang GL. Synthetic biology toward medicinal natural products. Chinese Bulletin of Life Sciences, 2011, 23(9): 891-899. (in Chinese) 黄伟, 王健博, 唐功利. 天然产物类药物的合成生物学研究. 生命科学, 2011, 23(9): 891-899.
    [3] Liang QF, Wang Q, Qi QS. Synthetic biology and rearrangements of microbial genetic material . Hereditas, 2011, 33(10): 1102-1112. (in Chinese) 梁泉峰, 王倩, 祁庆生. 合成生物学与微生物遗传物质的重构. 遗传, 2011, 33(10): 1102-1112.
    [4] Wang YY, Guo WB, Song CJ. New method for industrial microbial strains improvement: construction of dominant genome-simplified strains. Acta Microbiol Sinica, 2012, 52(3): 286-294. (in Chinese) 王媛媛, 郭文斌, 宋存江. 工业微生物菌种改造的新方法-优势小基因组生产菌的构建. 微生物学报, 2012, 52(3): 286-294.
    [5] Olano C, Lombo F, Mendez C, Salas JA. Improving production of bioactive secondary metabolite in actinomycetes by metabolic engineering. Metabolic Engineering, 2008, 10(5): 281-292.
    [6] Zhu CC, Kang QJ, Bai LQ, Cheng L, Deng ZX. Idengtification and engineering of regulation-related genes toward improved kasugamycin production. Applied Microbiology and Biotechnology, 2015: 1-11.
    [7] 陈艳萍, 赵春田, 裘娟萍. 全局调控基因对抗生素生物合成的影响. 浙江农业科学, 2012 (7): 1067-1073.
    [8] Wang T, Bai LQ, Zhu DQ, Lei X, Liu G, Deng ZX, You DL. Enhancing macrolide production in streptomyces by coexpressing three heterologous genes. Enzyme and Microbial Technology, 2012, 50(1): 5-9.
    [9] Tan GY, Bai LQ, Zhong JJ. Exogenous 1, 4-butyrolactone stimulates a-factor-like cascade and validamycin biosynthesis in Streptomyces hygroscopicus 5008. Biotechology and Bioengineering, 2013, 110 (11): 2984-2993.
    [10] Santo-Beneit F, Rodriguez-Garcia A, Sola-Landa A, Martin JF. Cross-talk between two global regulators in streptomyces: PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Molecular Microbiology, 2011, 92(2): 337-345.
    [11] Wang R, Mast Y, Wang J, Zhang W, Zhao G, Wohlleben W, Lu Y, Jang W. Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Molecular Microbiology, 2013, 87(1): 30-48.
    [12] Yu Z, Zhu H, Zhang W, Qin Z, Yang S, Tan H, Jiang W. Different regulation of antibiotic biosynthesis by draR-K, a novel two-component system in Streptomyces coelicolor. Molecular Microbiology, 2012, 85(3): 535-556.
    [13] Yanai K, Murakami T, Bibb M. Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of streptomyces kanamyceticus. Proceedings of the National Academy of Sciences, 2006, 103(25): 9661-9666.
    [14] Liao GJ, Li J, Li L, Yang HH, Tian YQ, Tan HR. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochrom ogenes lead to an improved nikkomycin production. Microbial Cell Factories, 2010, 9(1): 1-6.
    [15] Wohlleben W, Mast Y, Muth G, Rottgen M, Stegmann E, Weber T. Synthetic biology of secondary metabolite biosynthesis in actinomycetes: engineering precursor supply as a way to optomize antibiotic production. FEBS Letters, 2012, 586(15): 2171-2176.
    [16] Zhou X, Wu H, Li Z, Zhou XF, Bai LQ, Deng ZX. Over-expression of UDP-glucose pyrophosphorylase increases validamycin a but decreases validoxylamine a production in Streptomyces hygroscopicus var. jinggangensis 5008. Metabolic Engineering, 2011, 13(6): 768-776.
    [17] Zhou YP, Ren XD, Wang L, Chen XS, Mao ZG, Tang L. Enhancement of ε -poly-lysine production in ε -poly-lysine-tolerant Streptomyces sp. by genome shuffling. Bioprocess and Biosystems Engineering, 2015, 38(9): 1705-1713.
    [18] Zhu FY, Zhong XF, Hu MZ, Lu L, Deng ZX, Liu TG. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnology and Bioengineering, 2014, 9999(7): 1-10.
    [19] DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJJ, Dueber JE. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015, 11: 465-471.
    [20] Kong JQ, Wang W, Cheng KD, Zhu P. Research progresses in synthetic biology of artemisinin. Acta Pharmaceutica Sinica, 2013, 48(2): 193-205. (in Chinese) 孔建强, 王伟, 程克棣, 朱平. 青蒿素的合成生物学研究进展. 药学学报, 2013, 48(2): 193-205.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Yun Wu, Chenyang Song, Wenqing Chen. The strategies and research progresses of rational improvement of the yield of microbial drug-A review. [J]. Acta Microbiologica Sinica, 2016, 56(3): 454-460

Copy
Share
Article Metrics
  • Abstract:1345
  • PDF: 2467
  • HTML: 574
  • Cited by: 0
History
  • Received:November 08,2015
  • Revised:December 25,2015
  • Online: March 03,2016
Article QR Code