Association of rhizosphere soil microbiome with the occurrence and development of replant disease-A review
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [39]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Replant disease devastates crop growth, and its disease etiology has not been fully elucidated. The latest research revealed its close association with the changes of rhizosphere microecology, especially the changes in rhizosphere microbial community structure. With the advance of modern high-throughput DNA sequencing technology, the relationship between rhizosphere microbiome and replant diseases has become a popular research focus. This review comprehensively analyzes the currently available literatures regarding to the relationship between rhizosphere microbiome, crop growth and replant diseases. In summary, a new perspective for the disease etiology and possible prevention regimen has been arisen from better understanding the association between replant disease and the dynamic changes of rhizosphere soil microbial population.

    Reference
    [1] Egamberdieva D,Kamilova F,Validov S,Gafurova L,Kucharova Z,Lugtenberg B.High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan.Environmental Microbiology,2008,10(1):1-9.
    [2] Mendes R,Kruijt M,de Bruijn I,Dekkers E,van der Voort M,Schneider JH,Piceno YM,DeSantis TZ,Andersen GL,Bakker PA,Raaijmakers JM.Deciphering the rhizosphere microbiome for disease-suppressive bacteria.Science,2011,332(6033):1097-1100.
    [3] Bressan M,Roncato MA,Bellvert F,Comte G,Haichar FZ,Achouak W,Berge O.Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots.The ISME Journal,2009,3(11):1243-1257.
    [4] Aleklett K,Leff J,Fierer N,Hart M.Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities.PeerJ,2015,3(8):e804.
    [5] Bulgarelli D,Rott M,Schlaeppi K,van Themaat EVL,Ahmadinejad N,Assenza F,Rauf P,Huettel B,Reinhardt R,Schmelzer E,Peplies J,Gloeckner FO,Amann R,Eickhorst T,Schulze-Lefert P.Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.Nature,2012,488(7409):91-95.
    [6] Lennon JT,Jones SE.Microbial seed banks:the ecological and evolutionary implications of dormancy.Nature Reviews Microbiology,2011,9(2):119-130.
    [7] Philippot L,Raaijmakers JM,Lemanceau P,van der Putten WH.Going back to the roots:the microbial ecology of the rhizosphere.Nature Reviews Microbiology,2013,11(11):789-799.
    [8] Pineda A,Zheng SJ,van Loon JJA,Pieterse CM,Dicke M.Helping plants to deal with insects:the role of beneficial soil-borne microbes.Trends in Plant Science,2010,15(9):507-514.
    [9] Surette MA,Sturz AV,Lada RR,Nowak J.Bacterial endophytes in processing carrots (Daucus carota L.var.sativus):their localization,population density,biodiversity and their effects on plant growth.Plant and Soil,2003,253(2):381-390.
    [10] Van der Ent S,Van Wees SCM,Pieterse CMJ.Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes.Phytochemistry,2009,70(13/14):1581-1588.
    [11] Notz R,Maurhofer M,Dubach H,Haas D,Défago G.Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat.Applied and Environmental Microbiology,2002,68(5):2229-2235.
    [12] Wu ZX,Hao ZP,Zeng Y,Guo LP,Huang LQ,Chen BD.Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng.Antonie Van Leeuwenhoek,2015,108(5):1059-1074.
    [13] Bever JD,Westover KM,Antonovics J.Incorporating the soil community into plant population dynamics:the utility of the feedback approach.Journal of Ecology,1997,85(5):561-573.
    [14] Lundberg DS,Lebeis SL,Paredes SH,Yourstone S,Gehring J,Malfatti S,Tremblay J,Engelbrektson A,Kunin V,del Rio TG,Edgar RC,Eickhorst T,Ley RE,Hugenholtz P,Tringe SG,Dangl JL.Defining the core Arabidopsis thaliana root microbiome.Nature,2012,488(7409):86-90.
    [15] Reeve JR,Schadt CW,Carpenter-Boggs L,Kang S,Zhou JZ,Reganold JP.Effects of soil type and farm management on soil ecological functional genes and microbial activities.The ISME Journal,2010,4(9):1099-1107.
    [16] Bais HP,Weir TL,Perry LG,Gilroy S,Vivanco JM.The role of root exudates in rhizosphere interactions with plants and other organisms.Annual Review of Plant Biology,2006,57(1):233-266.
    [17] Kessler D,Bhattacharya S,Diezel C,Rothe E,Gase K,Schöttner M,Baldwin IT.Unpredictability of nectar nicotine promotes outcrossing by hummingbirds in Nicotiana attenuata.The Plant Journal,2012,71(4):529-538.
    [18] Santhanam R,Luu VT,Weinhold A,Goldberg J,Oh Y,Baldwin IT.Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping.Proceedings of the National Academy of Sciences of the United States of America,2015,112(36):E5013-E5020.
    [19] Li XG,Ding CF,Hua K,Zhang TL,Zhang YN,Zhao L,Yang YR,Liu JG,Wang XX.Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy.Soil Biology and Biochemistry,2014,78:149-159.
    [20] Li XG,Ding CF,Zhang TL,Wang XX.Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing.Soil Biology and Biochemistry,2014,72:11-18.
    [21] Figuerola ELM,Guerrero LD,Türkowsky D,Wall LG,Erijman L.Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale.Environmental Microbiology,2015,17(3):678-688.
    [22] Nayyar A,Hamel C,Lafond G,Gossen BD,Hanson K,Germida J.Soil microbial quality associated with yield reduction in continuous-pea.Applied Soil Ecology,2009,43(1):115-121.
    [23] Sun J,Zhang Q,Zhou J,Wei QP.Illumina amplicon sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site.PLoS One,2014,9(10):e111744.
    [24] Kwak YS,Weller DM.Take-all of wheat and natural disease suppression:a review.The Plant Pathology Journal,2013,29(2):125-135.
    [25] Deacon JW.Managing disease.Nature,1984,309(5970):732.
    [26] Weller DM,Raaijmakers JM,Gardener BBM,Thomashow LS.Microbial populations responsible for specific soil suppressiveness to plant pathogens.Annual Review of Phytopathology,2002,40(1):309-348.
    [27] Raaijmakers JM,van der Sluis L,Bakker PAHM,Schippers B,Koster M,Weisbeek PJ.Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp..Canadian Journal of Microbiology,1995,41(2):126-135.
    [28] Mazzola M.Mechanisms of natural soil suppressiveness to soilborne diseases.Antonie Van Leeuwenhoek,2002,81(1/4):557-564.
    [29] Duijff BJ,Pouhair D,Olivain C,Alabouvette C,Lemanceau P.Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47.European Journal of Plant Pathology,1998,104(9):903-910.
    [30] Pace NR.A molecular view of microbial diversity and the biosphere.Science,1997,276(5313):734-740.
    [31] Carvalhais LC,Dennis PG,Tyson GW,Schenk PM.Application of metatranscriptomics to soil environments.Journal of Microbiological Methods,2012,91(2):246-251.
    [32] Wang HB,Zhang ZX,Li H,He HB,Fang CX,Zhang AJ,Li QS,Chen RS,Guo XK,Lin HF,Wu LK,Lin S,Chen T,Lin RY,Peng XX,Lin WX.Characterization of metaproteomics in crop rhizospheric soil.Journal of Proteome Research,2011,10(3):932-940.
    [33] Su JQ,Wei B,Xu CY,Qiao M,Zhu YG.Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China.Environment International,2014,65:9-15.
    [34] Lopez-Lima D,Sánchez-Nava P,Carrion G,de los Monteros AE,Villain L.Corky-root symptoms for coffee in central Veracruz are linked to the root-knot nematode Meloidogyne paranaensis,a new report for Mexico.European Journal of Plant Pathology,2015,141(3):623-629.
    [35] Reid A,Evans F,Mulholland V,Cole Y,Pickup J.High-throughput diagnosis of potato cyst nematodes in soil samples.Methods in Molecular Biology,2015,1302:137-148.
    [36] Wang Y,Lu BH,Yang LN,Gao J.First report of Fusarium armeniacum causing stem and root rot on Platycodon grandiflorus in Jilin province,China.Plant Disease,2015,99(11):1644.
    [37] Zhao YP,Wu LK,Chu LX,Yang YQ,Li ZF,Azeem S,Zhang ZX,Fang CX,Lin WX.Interaction of Pseudostellaria heterophylla with Fusarium oxysporum f.sp.heterophylla mediated by its root exudates in a consecutive monoculture system.Scientific Reports,2015,5:8197.
    [38] Hjort K,Presti I,Elväng A,Marinelli F,Sjöling S.Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics.Applied Microbiology and Biotechnology,2014,98(6):2819-2828.
    [39] Neeraja C,Anil K,Purushotham P,Suma K,Sarma PVSRN,Moerschbacher BM,Podile AR.Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants.Critical Reviews in Biotechnology,2010,30(3):231-241.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Lei Zhang, Huimin Xu, Baoli Zhu. Association of rhizosphere soil microbiome with the occurrence and development of replant disease-A review. [J]. Acta Microbiologica Sinica, 2016, 56(8): 1234-1241

Copy
Share
Article Metrics
  • Abstract:1271
  • PDF: 2995
  • HTML: 1071
  • Cited by: 0
History
  • Received:November 11,2015
  • Revised:February 23,2016
  • Online: August 02,2016
Article QR Code